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Highly multiplexed, single-cell imaging has revolutionized our understanding

of spatial cellular interactions associated with health and disease. With ever-

increasing numbers of antigens, region sizes, and sample sizes, multiplexed

fluorescence imaging experiments routinely produce terabytes of data. Fast

and accurate processing of these large-scale, high-dimensional imaging data is

essential to ensure reliable segmentation and identification of cell types and for

characterization of cellular neighborhoods and inference of mechanistic

insights. Here, we describe RAPID, a Real-time, GPU-Accelerated Parallelized

Image processing software for large-scale multiplexed fluorescence

microscopy Data. RAPID deconvolves large-scale, high-dimensional

fluorescence imaging data, stitches and registers images with axial and lateral

drift correction, andminimizes tissue autofluorescence such as that introduced

by erythrocytes. Incorporation of an open source CUDA-driven, GPU-assisted

deconvolution produced results similar to fee-based commercial software.

RAPID reduces data processing time and artifacts and improves image contrast

and signal-to-noise compared to our previous image processing pipeline, thus

providing a useful tool for accurate and robust analysis of large-scale,

multiplexed, fluorescence imaging data.

KEYWORDS

image processing, highlymultiplexed imaging, CODEX imaging, image deconvolution,
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1 Introduction

High-dimensional, single-cell imaging yields multiscale

biological information from the molecular to the cellular to the

tissue level to enable the inference of biological mechanisms and

to drive therapeutic and diagnostic development (1). Over the past

decade, several highly multiplexed fluorescence imaging

techniques, including MxIF, t-CyCIF, and CODEX, have been

developed to enable the imaging of over 50 antigens in a single

tissue section (2). These multiplexing techniques typically use

cyclic immunostaining and imaging to circumvent the spectral

limitation of conventional microscopes. Given the complexity and

time-consuming nature of these experiments, it is necessary to

quickly examine the acquired and processed images from the first

few cycles as a data sanity check and to allow optimization of

experimental conditions (e.g., exposure time) before additional

experiments are performed. Moreover, with high-dimensional

imaging datasets on the order of terabytes now routinely

generated, efficient and accurate image processing is imperative

for reliable and reproducible downstream analysis.

Although different highly multiplexed fluorescence imaging

techniques rely on different modes of antibody tagging (e.g.,

fluorophores, DNA oligonucleotide barcodes) and different

tissue handling protocols, they all involve iterative, multicycle

image acquisition using conventional fluorescence microscopes.

The raw imaging data typically consists of multiple tile scans

(i.e., fields of view) over a large tissue region across many cycles

with 2 to 4 channel images per tile and multiple z planes per

image volume. To view these marker images, it is necessary to

generate montages from individual tiles and to align these

montages from different cycles to create a high-dimensional

imaging dataset also called hyperstack (x, y, channel, cycle).

At this scale, creation of high-dimensional imaging datasets

is challenging. For example, microscopes are often affected by

out-of-focus light and noise from the light source and the

camera, resulting in blurry and noisy images. There is also

axial and lateral drift during the cyclic imaging process that

can lead to misalignment. In addition, tissue autofluorescence

from endogenous fluorophores (i.e., erythrocytes, collagen,

elastin) can result in low signal-to-noise ratios in the imaging

data, confounding the detection of weakly expressed antigens.

To reliably quantify protein markers and assign cell identities in

these large-scale imaging datasets, it is important to address all

issues associated with the cyclic tissue imaging process.

A number of tools have been developed for processing high-

dimensional fluorescence imaging data. One such pipeline, the

CODEX Uploader, which is implemented as open-source Java

package, was developed in our lab as part of the study describing

the first version of CODEX multiplexed imaging (3). An

ideologically similar pipeline was implemented in Python as a

part of the Cytokit toolbox (4). The CODEX Uploader has a

graphical user interface (GUI) that allows users without any
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programming background to easily process the complex

multiplexed imaging data. This pipeline was used in proof-of-

principle validations of CODEX fluidics and antibody DNA-

barcoding technology for spatial biology discovery (5, 6).

The CODEX Uploader works well for small-scale multiplexed

imaging data with single-tile format (~1,000-10,000 images) (5, 6).

However, it is slow when handling larger datasets with large tissue

regions involving multiple tiles (>100,000 images on the order of

terabytes). With these large datasets, the runtime of the CODEX

Uploader is on the order of days on server computers (RAM = 256

GB, 2.6 GHz dual-processors). Moreover, axial and lateral drifts are

not adequately addressed in the CODEX Uploader. The CODEX

Uploader uses volumetric 3D drift compensation, which was

designed to maintain an alignment across the full volume of the

z-stack (3). This can result in suboptimal maintenance of focal plane

within each z-stack. The 3D drift compensation was originally

intended to couple with 3D watershed driven cell segmentation,

which was proven to perform efficiently in immune tissues tightly

packed with uniformly sized nuclei (3). In heterogeneous cancer

tissues, we found that single plane-based neural network-driven

segmentation algorithms outperform watershed-based

segmentation (7). The single plane-based algorithms demand

maintenance of focus across cycles in the aligned stacks, which in

a number of cases the CODEX Uploader cannot provide.

Furthermore, the CODEX Uploader does not adequately suppress

tissue autofluorescence from intensely fluorescent tissue

components such as erythrocytes, potentially confounding the

detection of low abundance antigens. Therefore, computational

tools for efficient and accurate processing of large-scale high-

dimensional imaging data involving multiple tiles (>100,000

images on the order of terabytes) are needed.

To address this need, we developed a second-generation

CODEX data processor with a parallelized GPU-accelerated

image processing framework, which we call RAPID for Real-

time GPU-Accelerated Parallelized Image processor for massive

multiplexed fluorescence microscopy Data. We compared

RAPID to the CODEX Uploader on multiplexed imaging data

of formalin-fixed paraffin-embedded (FFPE) human tissue of

pancreatic ductal adenocarcinoma (PDAC) and cervical lymph

nodes. Due to the use of parallelized GPU acceleration,

processing time with RAPID was 2- to 3-fold faster than that

of the CODEX Uploader with significantly improved image

quality. By correcting for axial and lateral drifts and

minimizing tissue autofluorescence, RAPID also improved

image contrast and signal-to-noise and reduced artifacts and

high-intensity background signal. RAPID allows the processing

of any pre-selected regions or cycles while image acquisition is

ongoing, thus enabling the review of processed images shortly

after image acquisition. In summary, RAPID (https://github.

com/nolanlab/RAPID) is an open-source software that users can

debug, modify, and extend to address various image

processing tasks.
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2 Results

2.1 RAPID enables faster image
processing of CODEX multiplexed
imaging data

CODEX multiplexed imaging is an iterative process during

which a z-stack of one tile is acquired in a given filter channel before

switching to the next filter channel and then moving to the next tile

until data on the entire tissue region of interest is captured. This

process is repeated in multiple cycles with fluorescently labeled

oligonucleotides that detect oligonucleotide-coupled primary

antibodies (Figure 1A). Currently, a typical CODEX multicycle

experiment for a 30-core (core diameter = 1 mm) tissue microarray

with 53 protein markers involves nine tiles per core, four channel

images per tile, and six planes per image volume over 26 cycles and

produces over 210,000 images, about a terabyte of data. A single-tile

experiment (per tissue sample or coverslip) can be imaged in 2 days,

but multi-tile experiments are typically imaged in 4 to 6 days. The

CODEX Uploader takes about a day to process one terabyte

CODEX dataset.
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The CODEX Uploader is limited in several aspects when

processing multi-tile CODEX data (Figure 1B). First, it only

corrects for lateral drift between different imaging cycles within

the same tile but it does not account for lateral drift between tiles,

leading to misalignment along the edges of tiles in the mosaic.

Second, following volumetric 3D drift compensation, it selects

the best focus plane for only in one predefined cycle and channel

(typically, cycle 1 and the nuclear channel) and then uses the

same z-plane for the remaining cycles, which can result in

unfocused images in the mosaic and imperfect maintenance of

focus. Third, it does not adequately suppress high-intensity

autofluorescence (e.g., red blood cells (RBCs)), confounding

the detection of low abundance antigens using fluorescence.

Finally, the CODEX Uploader runtime scales up considerably

with antigen number, tissue area, and sample size, making it

impractical to check image quality before all data has been

collected. To address these limitations, we developed RAPID,

which is parallelized and GPU accelerated. RAPID employs

different processing algorithms (Figure 1C).

RAPID includes an open-source 3D GPU-based image

deconvolution (8) in contrast to the commercial deconvolution
A

B DC

FIGURE 1

Overview of image processing methods for CODEX multiplexed imaging data. (A) CODEX workflow and the structure of a raw imaging dataset.
(B) Overview of the CODEX Uploader pipeline. (C) Overview of the RAPID pipeline. (D) Plot of processing time versus number of regions
analyzed with the two pipelines on a local system and for the RAPID run on a cloud-based system.
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software from Microvolution required for use of the CODEX

Uploader. RAPID corrects for axial drift by selecting the best

focus plane for every channel and every cycle. It then applies the

compensation of offsets relative to these planes, preventing

unfocused images in the final mosaic. Further, it corrects for

lateral drift by computing the spatial shift between two images

using Fourier-based approaches. Additionally, it minimizes

high-intensity tissue autofluorescence with a customized

autofluorescence removal pipeline. Table 1 summarizes the

main differences between the CODEX Uploader and RAPID.

RAPID has several distinct advantages (Figure 1C). First,

RAPID can process any portion of the full dataset as soon as the

data are acquired such that the data acquisition and processing is

occurring simultaneously which has two important

consequences – the image quality can be assessed during data

acquisition and reduces time from acquisition and processing

from a number of days down to a few hours. Therefore, data

quality can be intermittently assessed, allowing the user to

terminate data acquisition if needed. Second, GPU-based

computation is implemented using the gpuArray object and

the gpuArray-enabled MATLAB functions for time-consuming

steps such as deconvolution and image registration. Third,

RAPID loops through the data cycles using the parfor function

in MATLAB to process each cycle independently in parallel on

multicore CPUs. The two most time-consuming steps are

deconvolution and image stitching. The GPU-acceleration

parallel computing used in RAPID reduced the deconvolution

time by 13 fold compared to deconvolution without

parallelization. Image stitching with correction for lateral shift

between tiles was not implemented in the CODEX Uploader. In

RAPID, the fast microscopy stitching algorithm MIST is used to

estimate the tile positions and parallel computing is employed to

create mosaics; this was 6-fold faster than the same steps

completed with the conventional ImageJ Grid/Collection plugin.

To benchmark the runtime, both the CODEX Uploader and

RAPID were used to process the same multiplexed dataset of

eight regions (9 tiles per region and 6 z-planes per tile acquired

with 4 wavelength channels over 9 cycles) on the same computer
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equipped with two low-cost graphics processing units (NVIDIA

GeForce GTX 1080). RAPID used 9 CPU cores for parallel

computing and had a total runtime two-fold faster than CODEX

Uploader (Figure 1D). To enable scalable and reproducible

workflows, RAPID was deployed on the commercial cloud

computing platform Amazon Web Services (AWS). By taking

advantage of the high GPU/CPU resources and network

bandwidth available on AWS, the analysis was 3-fold faster

than on the desktop computer at a cost of approximately $1 per

1000 input tiles (Figure 1D). A preconfigured server image is

publicly available at https://github.com/nolanlab/RAPID.
2.2 RAPID employs open-source GPU-
accelerated 3D image deconvolution

Since multiplexed fluorescence imaging data are intrinsically

blurred due to the diffraction-limited nature of optical systems, it

is necessary to use image deconvolution to partially reverse the

image blurring, thus improving image resolution and contrast.

The standard Richardson-Lucy deconvolution (RLD) method

reduces noise contamination and deburrs images but calculates

corrected images iteratively, resulting in high computational

burden. The CODEX Uploader utilizes a commercial software

that runs a GPU-accelerated RLD algorithm (9). In RAPID, we

incorporated a new, open-source method for rapid GPU-based

image deconvolution that only requires a single iteration and is

faster than the classic RLD method (8).

We demonstrated that the open-source algorithm reduced blur

and improved resolution of CODEX images as effectively as the

commercial software utilized by the CODEX Uploader (Figure 2A).

The full-width at half maximum of the nuclear fluorescence

intensity for 10 randomly selected cells in RAPID processed

images was consistently lower than the raw data and was similar

to CODEX Uploader (Figure 2B). Furthermore, use of the open-

source deconvolution algorithm reduced blur and increased image

contrast enabling more accurate cell segmentation than achieved

without the deconvolution (Figure 2C).
TABLE 1 Comparison between the old and new CODEX image processing pipelines.

RAPID CODEX Uploader

Parallel computing Yes No

3D GPU-based deconvolution Yes (open source) Yes (commercial, >$5k)

Correction for axial drift Yes Yes (insufficient)

Correction for between-cycle lateral drift Yes Yes

Correction for within-cycle lateral drift Yes No

High-intensity autofluorescence removal Yes No

Modular Yes No

Processing in parallel with CODEX experiment Yes No

Graphical user interface No Yes
Comparison of RAPID and CODEX Uploader.
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2.3 RAPID corrects for both lateral and
axial drifts and removes image distortion

To evaluate the impact of the drifting issues, the CODEX

Uploader was compared against RAPID on a 3×3 tile CODEX

dataset of human PDAC tissue. Although the best focus plane is

typically captured within a z-stack, the position of this focal

plane within the z-stack can change over time due to axial drifts.

The image data processed by the CODEX Uploader sometimes

contains out-of-focus images in imaging cycles beyond the first

cycle (Figures 3A-C). For example, in a 9-cycle 9-tile multicycle

dataset, six of all the cycles contain out-of-focus images after

processing by the CODEX Uploader (Figures 3A, B). In contrast,

RAPID selects the best focus plane for every tile across every

channel and cycle, thereby avoiding unfocused images in later

cycles (Figures 3A, B). The focus correction for CD45 and CD3

cycles performed in RAPID resulted in quantification of 2%

more T cells in multiplexed imaging data than identified with the

CODEX Uploader (Figure 3C).

Lateral drift involves spatial shifts between tiles in sequential

imaging cycles and within the same imaging cycle. The CODEX

Uploader compensates for lateral drift in different imaging cycles

but ignores within-cycle drift during tile scanning and generates

a mosaic after cropping the overlapping region between tiles. As

a result, the image montage generated by the CODEX Uploader
Frontiers in Immunology 05
contains distorted cells at the interface of two adjacent tiles

(Figures 3D, E). In contrast, RAPID uses phase correlation-

based image registration to correct for both the axial and lateral

spatial shifts, thus producing focused tiles without axial

misalignment between tiles, improving cell identification

(Figures 3D, E).
2.4 RAPID removes high-intensity
fluorescent artifacts and improves weak
marker detection

Tissue autofluorescence can interfere with the immuno-

fluorescence detection of antigens, especially for low abundance

markers in Alexa Fluor 488 and Cy3 channels. The sources of

autofluorescence include endogenous tissue components such as

RBCs, collagen, elastin, and lipofuscin and can also result from

tissue-processing techniques such as formalin fixation (10).

Although chemical treatments can quench tissue autofluorescence,

these reagents may not compatible with dimethyl sulfoxide used in

the CODEX imaging protocols, and currently there is no

standardized method for tissue treatment that minimizes

autofluorescence. Therefore, image processing methods are

frequently used to reduce the impact of fluorescent artifacts. For

example, background images can be generated using a rolling ball
A

B C

FIGURE 2

3D image deconvolution improves image contrast in CODEX data. (A) Representative raw and deconvolved images of a cervical lymph node, and plot
of normalized fluorescence intensity versus lateral position of a selected cell corresponding to the raw and deconvolved images. (B) Quantification of
the FWHM for signals cross ten randomly selected cells. (C) Representative raw and deconvolved images of cytokeratin 19-stained pancreatic ducts and
corresponding predicted whole-cell segmentation mask. Wilcoxon matched-pairs signed rank test was used in (B). **P < 0.01.
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algorithm (with a 50-pixel radius) and then subtracted from marker

images for CyCIF multiplexed imaging data (11). For CODEX

imaging, it is common practice to acquire background

autofluorescence (blank) images across all the imaging channels

before the rendering step at the beginning of, during, or after the

multicycle imaging process. In analysis with the CODEX Uploader,

images from the first blank cycle are typically subtracted from the

marker images to alleviate the impact of tissue autofluorescence.
Frontiers in Immunology 06
Although the background subtraction method generates

acceptable results for most endogenous tissue components

such as collagen and elastin, it is unreliable for objects with

high intensity autofluorescence such as that from RBCs. For

RBCs, differences in intensities between imaging cycles or linear-

scaling at different exposure times can result in persistence of a

considerable amount of autofluorescence after background

subtraction. RBCs are commonly detected in the extracellular
A B

D E

C

FIGURE 3

RAPID corrects axial and lateral drifts in CODEX multiplexed data. (A) Representative CODEX nuclear images from cycles 1, 4, and 5 of a PDAC
tissue section processed by the CODEX Uploader and by RAPID. (B) Percentage of in-focus tiles across nine tiles and nine imaging cycles for
one example tissue region. (C) Representative CODEX images of PDAC tissue section stained for CD45 and CD3 processed by the two
pipelines, and the corresponding cell gating using CD3 and CD45 protein expression. (D) Representative images of fibroblasts and epithelium
processed by the two pipelines. (E) Percentage of the non-distorted cells across the twelve tile-tile interfaces of an example tissue region.
Wilcoxon matched-pairs signed rank test was used in (B, E). *P < 0.05, ***P < 0.001.
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spaces, likely from bleeding into the tissue during surgical

removal of specimens. These RBCs can confound the detection

of low abundance markers in nearby cells. Therefore, we

designed an image processing strategy that first normalizes

and enhances the blank images, next identifies the high

intensity pixels by global thresholding and removal of small

objects (artifacts), and then applies two additional thresholding

steps to remove low intensity objects and false positive

cells (Figure 4A).

To confirm that RBCs are a frequent source of high-intensity

background objects, a hematoxylin and eosin (H&E) stain of a

lymph node was analyzed. To digitally isolate the RBCs in the
Frontiers in Immunology 07
H&E image, color deconvolution (12) was applied to separate

the RBCs from the nuclear stain (Figure 4B). The RBC areas

isolated from the H&E images co-localized well with the brightly

fluorescent regions identified from the blank CODEX

image (Figure 4B).

To demonstrate the importance of RBC removal for accurate

detection of low-abundance markers, the standard background

subtraction method was compared against the method used in

RAPID by application to CODEX images of a cervical lymph

node (Figure 4C). Visualization of weakly fluorescent markers

such as CD11c, HLA-DR, and CD25 were hampered due to

persistent autofluorescence artifacts after the standard
A

B

D

C

FIGURE 4

High intensity autofluorescence removal improves signal to noise of CODEX multiplexed imaging data. (A) Flowchart of the high intensity
autofluorescence removal method. (B) Image of an H&E-stained cervical lymph node. Left: RBCs manifest as bright pink patches widely
dispersed among the cells (nuclei indicated by purple pixels). Middle: the pink color image was digitally separated from the H&E image shown in
grayscale. Right: the blank CODEX image from Cy3 channel of the same tissue section. (C) Representative images of weak markers CD11C,
HLA-DR, and CD25 (cyan) overlaid with nuclear stain (magenta) without and with application of the RBC removal algorithm. (D) Signal-to-noise
ratio of three markers CD11c, HLA-DR, and CD25 with and without RBC removal.
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subtraction of a blank image (Figure 4C). After applying the

additional RBC removal step used in RAPID, we saw improved

visualization of the weak markers (Figure 4C) and high signal-

to-noise ratio in the images with RBC removal (Figure 4D).
2.5 RAPID improves down-stream
cell-type identification

To demonstrate the impact of different image processing

methods on downstream analysis, processing results of CODEX

images of a cervical lymph node tissue, which contained intense

autofluorescence from RBCs, with the CODEX Uploader were

compared against those from RAPID. Following image

processing using the two pipelines, cell segmentation, protein

quantification, unsupervised clustering, and cell-type annotation

were performed on over 8,000 cells from a CODEX image

hyperstack with a single tile and 21 protein markers. These

markers allowed identification of lymphoid lineage cells.

Both pipelines identified the same cell types, but RAPID

assigned fewer cells to an inconclusive, RBC-contaminated

cluster (Figure 5A) and identified nearly 30% more T cells

(Figure 5B). An overlay of RBC-contaminated cell clusters on

the RBC autofluorescence image using the CODEX Uploader

revealed that most cells in this cluster were close to strongly

fluorescent artifacts from RBCs; however, significantly fewer

cells were assigned to this cluster after RAPID processing due to

the autofluorescence removal step (Figure 5C). This indicates

that RAPID enables more accurate identification of cell types

affected by strongly autofluorescent artifacts from tissue

components such as RBCs.

To further demonstrate the value of RBC autofluorescence

removal, composite images of five markers (Hoechst, CD20,

CD3, aSMA, and granzyme B) were generated after processing

with the two pipelines. Since these are mutually exclusive

markers, overlapping areas, which manifested as the white

areas in the images, were indicative of RBC autofluorescence

(Figure 5D). The RBC removal step in RAPID dramatically

reduced autofluorescence and resulted in identification of a

higher number of total cells than identified when the images

were processed with the CODEX Uploader (Figure 5E). In

addition, the CODEX Uploader applied a scaling factor to the

deconvolved images, thereby reducing the overall fluorescence

intensity of the nuclear images. In RAPID there is no scaling

step, leading to an overall higher fluorescence intensity and

improved detection of cells marked by low-intensity signal.
3 Discussion

Highly multiplexed, single-cell fluorescence imaging

methods such as CODEX have revolutionized our

understanding of the spatial architecture and multicellular
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interactions that occur in healthy and diseased tissues. To fully

leverage the power of these multiplexed imaging technologies, it

is important to efficiently process the high-dimensional imaging

data to allow for reliable downstream analysis and extraction of

meaningful biological information. As these multiplexed

techniques are advanced to allow imaging of more markers,

larger tissue regions, and more samples, the amount of imaging

data also drastically increases. Big-data-based analytics are

expected to drive the next wave of therapeutic and diagnostic

development; however, the development of new algorithms and

computational tools to process these huge datasets have lagged

behind technology development.

A few CODEX image preprocessing methods have been

reported in the literature. Co-developed with the CODEX

imaging technology, the CODEX Uploader was the first-

generation CODEX image processor and it was originally

optimized based on performance in the multilayered slices of

frozen murine immune tissues where the volumetric watershed

segmentation showed robust and reproducible performance.

Yet, for large-scale high-dimensional data (>100,000 images),

the processing time of the CODEX Uploader is slow (on the

order of days). In addition, CODEX Uploader sometimes leads

to suboptimal maintenance of focal plane across large set of tiles

and it does not perform lateral drift compensation to reduce the

artifacts on the borders between the tiles. Cytokit (4)

implemented an image processing pipeline that is essentially

the same as the original CODEX Uploader. Like CODEX

Uploader, Cytokit lacks lateral drift correction and removal of

strong tissue autofluorescence. Cytokit used the Richardson

Lucy algorithm for image deconvolution, which is slow for the

large-scale dataset. In contrast, RAPID parallelized a GPU-

accelerated deconvolution algorithm (8), which was much

faster and produced similar or better image quality than the

Richardson Lucy algorithm. MCMICRO (13) is another toolbox

for processing and analyzing multiplexed imaging data, but it

lacks 3D deconvolution that is beneficial for multiplexed

imaging data with multiple z-planes like CODEX.

To address these issues, we developed a parallelized GPU-

accelerated image process pipeline called RAPID for fast and

accurate processing of large-scale high-dimensional data. RAPID

reduced the runtime by 2~3 fold relative to CODEXUploader and

improved image quality by reducing noise and artifacts. To enable

scalable and reproducible analysis for CODEX users, we have

made a server image of RAPID available for use on AWS. This

cloud computing option enables users to begin analysis with little

need for configuration. The server-based version is three times

faster than the local version at a cost of approximately $1 per 1000

input tiles. As RAPID can be set up to process any number of

regions and cycles, it can run in the background during image

acquisition with processing finished almost immediately following

the completion of the full experiment. As a result image

acquisition can be terminated if there are quality issues but also

considerably shortens the time for downstream big data analysis.
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RAPID also improves image quality and downstream data

analysis by introducing two new components (1): accurate

correction for axial and lateral drifts, which are inevitable

during extended cyclic imaging process, and (2) effective

detection and removal of intense tissue autofluorescence

artifacts. The drift correction implemented in RAPID removes

cellular distortion in the final mosaic and leads to more accurate

protein quantification. Removal of autofluorescence reduces

noise interference with protein markers, especially those
Frontiers in Immunology 09
present in low abundance. In addition, we demonstrated that

the freely available open-source deconvolution algorithm (8)

used in RAPID produces improved image contrast enabling

accurate whole-cell segmentation and quantification that is

similar to what was obtained with the commercial

deconvolution software in the CODEX Uploader. The analyses

reported here highlight the importance of using deconvolution

to partially reverse the intrinsic blur and noise in the multiplexed

fluorescence images. In addition, RAPID processing of images
A B

D

E

C

FIGURE 5

RAPID improves down-stream cell-type identification. (A) Unsupervised clustering and cell-type annotation of CODEX data processed using the
CODEX Uploader (total number of cells = 8967) and RAPID (total number of cells = 9597). (B) Bar graphs of the numbers of annotated cells
identified by the two pipelines. (C) Overlays of a blank image (Cy3 channel) with cell centroids (green crosses) assigned to the RBC-
contaminated cell clusters after processing with the two pipelines. (D) Overlays of Hoechst nuclear stain with CD3, CD20, CD31, aSMA, and
Granzyme B stainings of images processed with CODEX Uploader and with RAPID. Noise from RBC autofluorescence is indicated by white (due
to overlay of all colors). (E) Scatter plots of x/y coordinates of cell centroids showing the spatial distribution of the annotated clusters in the
tissue. Centroids of cells from the RBC contaminated cluster (orange) co-localize with white spots in images in panel (D).
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with high-intensity background contamination resulted in an

improved signal-to-noise compared to the images processed

with the CODEX Uploader. Further, RAPID improved

downstream detection and segmentation of low-intensity cells

as well as cell-type annotation.

Although we only demonstrate the application of RAPID for

CODEX data, the same pipeline can be broadly applicable to

other multiplexed fluorescence imaging platforms that depend

on repeated fluorescence microscopic imaging. RAPID is open-

source and modular, which allows addition or removal of any

image processing steps. The 3D deconvolution can be used for

any fluorescence microscopic data with multiple z-plane images.

All the other modules apply to any multiplexed fluorescence

imaging data. To use RAPID for different multiplexed imaging

techniques, it may require changes to the directory and file

naming of the raw data and imaging parameters used in the

processing algorithm (e.g. exposure time, image resolution, etc.).

We have specified instructions on the GitHub page. In the

future, a user-friendly GUI will be added and batch

normalization methods could be included to take into

consideration the variations caused by factors such as different

microscopes or users rather than biology.
4 Materials and methods

4.1 CODEX multiplexed tissue staining
and imaging

Tissue microarrays of human pancreatic ductal

adenocarcinoma (core size: 1 mm) and cervical lymph nodes

(core size: 1 mm) were sectioned at 4 mm and mounted onto

Vectabond™-treated glass coverslips (25 mm × 25 mm). The

patient tissues used for this study were fully anonymized, and use

was approved by the Stanford University Institutional Review

Board. Written informed consent was obtained from all patients.

Commercially available, purified, carrier-free anti-human

antibodies (Table S1) were conjugated to maleimide-modified

DNA oligonucleotides and titrated on the tissue of interest

following previously published protocols (5, 14, 15). All the

antibodies used were previously validated for use in CODEX

multicycle imaging (5). The multicycle image acquisition was

conducted using Akoya’s CODEX instrument connected to a

Keyence BZ-X700 microscope configured with four fluorescent

channels (DAPI, FITC, Cy3, Cy5) and a 20x objective. A 3×3 tiled

acquisition (6 z-planes) and 1×1 tile (17 or 29 z-planes) were used

for PDAC and the lymph node sections, respectively. The CODEX

dataset acquired on a Keyence microscope has the following

parameters (1): tile: a single field of view (2); region: tissue

region of interest composed of single tile or multiple tiles

collected as rectangular grids (3); z: the number of z planes

acquired in the axial direction that includes the best focus plane

and additional planes above and below the best focus plane (4);
Frontiers in Immunology 10
channel: images acquired through optical filters for imaging

DAPI, Alexa Fluor 488, Cy3, and Cy5 (5); cycle: group of two

to four imaging channels acquired between oligonucleotide-

fluorophore reactions.
4.2 RAPID

RAPID is fully implemented in MATLAB (version R2020a)

and requires pre-installation of the MIJ toolbox to allow ImageJ

and Fiji to run within MATLAB (16). The source code and user

instructions were released under the GPL License at GitHub

website (https://github.com/nolanlab/RAPID). RAPID consists

of four main components described in the subsections below:

4.2.1 GPU-accelerated 3D image
deconvolution

In the CODEX multicycle imaging process, a z-stack of a

tissue sample is acquired from a series of 2D images by focusing

the fluorescence microscope at different planes. Each 2D image

acquired by the fluorescence microscope contains both in-focus

and out-of-focus information and is affected by noise from light

source and camera, leading to blur that reduces lateral

resolution. This blur is usually modeled by the point-spread

function (PSF), which is the 3D impulse response of a

fluorescence microscope system. Image deconvolution aims to

computationally estimate the underlying sample from noisy,

blurred images. The CODEX Uploader (https://github.com/

nolanlab/CODEX) utilized a commercial deconvolution

software, which implemented the standard RLD algorithm as

the Microvolution ImageJ plugin (9). The following

Microvolution settings were used: iteration number = 25,

deconvolution mode = “vectorial”, numerical aperture = 0.75,

per_pixel_XY_resolution = 377.442, z_pitch = 1500.0,

num_z_planes = 6 or 17 or 29, emission_wavelengths = [425,

525, 595, 670]. In RAPID, a rapid image deconvolution

algorithm (8) was incorporated. First, the PSF of the

microscope for each imaging filter (DAPI, Alexa Fluor 488,

Cy3, Cy5) was estimated using an ImageJ plugin PSF generator

(http://bigwww.epfl.ch/algorithms/psfgenerator/) with the

following parameters: Optical model = Born and Wolf,

wavelength = 425 or 525 or 595 or 670], numerical aperture =

0.75, Pixel size XY = 377.44 nm, Z-step = 1,500 nm, Size XYZ =

255×255×number of z planes (6 or 17 or 29), Display = Grays.

Next, a Wiener-Butterworth filter was used as the unmatched

back projector to accelerate the RLD algorithm. This produces

deconvolved images with similar or better image quality than the

traditional RLD algorithm (8). Three parameters are used to

fully specify the Wiener-Butterworth filter (1): alpha: a small

value used to ensure that inverting the forward projector does

not result in division by zero (good results are obtained with

alpha in the range of 0.001~0.005) (2); beta: spectral amplitude

at the cutoff frequency or resolution limit (set at a small value to
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suppress spatial frequencies beyond the resolution limit); and (3)

n: the filter order used to set the transition slope at the cutoff

frequency (i.e., the highest possible spatial frequency passed by

the microscope). The parameters for RAPID were set as follows:

iteration = 1, alpha = 0.05, beta = 0.1, n = 20.

4.2.2 Axial focus drift correction
The CODEX image data consists of a series of z-stacks in two

to four filter channels across many imaging cycles. Each z-stack

contains the focal plane and planes above and below the focal

plane. The best focus plane may drift within the z stack over the

course of iterative imaging acquisition due to varying tissue

thickness or mechanical or thermal factors. To select the focal

plane from the z-stacks, we incorporated multiple focus measure

operators (17, 18) into the new pipeline. These focus metrics

assume that the focused images have more sharp edges or

variations or textures than blurred ones. In RAPID, the best

focus planes were selected per tile per channel per cycle,

accounting for the temporal and spatial shifts of the focus planes.

4.2.3 Lateral drift compensation
Lateral drift in the CODEX data results from spatial shift of tiles

across different imaging cycles with reference to cycle 1 and within

the same imaging cycle with reference to adjacent tiles. To correct

for the between-cycle drift, a phase-correlation-based method (19)

is used in RAPID to estimate geometric transformation (translation,

rotation, and scaling) that aligns different image cycles. For the

reference images, the first cycle and nuclear channel were set as the

default (can be changed by users). The geometric transformation of

the reference image was subsequently applied to the other image

channels and cycles. To correct for the within-cycle drift, we

adopted the MIST algorithm (20), which uses phase correlation

to compute translations between adjacent tiles and then estimates a

mechanical stage model from the computed pair-wise translations.

The estimated positions of tiles were used to re-organize individual

tiles in 2D space, and linear blending was applied to each tile to

compensate for shading differences in overlapping areas between

adjacent tiles to generate the final stitched image.

4.2.4 High-intensity autofluorescence
detection and removal

High-intensity autofluorescence in FFPE tissue was most

prominent in Alex Fluor 488 and Cy3 channels. Here, we chose

to use the Cy3 channel image from the first blank or background

cycle to identify affected pixels. First, the raw image data was

enhanced by min-max normalization followed by contrast-

limited adaptive histogram equalization (21). Next, image

pixels with high autofluorescence intensities were identified

using multilevel image thresholding based on Otsu’s method

(22), and a binary mask (1 = bright pixels; 0 = dim pixels) was

generated. To refine the mask, small objects with fewer than 10

pixels were considered as noise and removed. To avoid the
Frontiers in Immunology 11
confounding effect of one or a few very bright pixels, the mean

fluorescence intensity of all pixels within individual objects of

the remaining mask were calculated, and objects with low mean

fluorescence intensity (~20% of the highest intensity level 65535)

were removed. In addition, some nucleated cells were also found

to be highly autofluorescent. Therefore, objects overlapping with

nuclear staining were removed to prevent loss of nucleated cells.

Finally, the remaining mask objects were set to zero in the

background-subtracted images across all affected imaging

channels and cycles.
4.3 Cell segmentation and
cell-type annotation

To evaluate the accuracy of whole-cell segmentation with

and without image deconvolution, the cellPose algorithm (23)

was used to segment cells from CODEX images of cytokeratin

staining with an average cell diameter of 45 µm. To assess how

RAPID processing influenced downstream analysis such as cell-

type annotation, a pre-trained mask region-convolutional neural

network (R-CNN) was used to segment the nuclei from CODEX

images processed by CODEX Uploader and by RAPID. The

nuclear masks were morphologically dilated by three pixels to

quantify the mean fluorescence intensity of each protein marker.

The signal spill-over was compensated for as described (3). After

the R-CNN-based cell segmentation, a single csv file was

generated for each tissue region of interest that included cell

ID, region ID, tile number, the (X, Y, Z) coordinates of the cell

centroids, cell size, and the mean fluorescence intensity of each

protein marker per cell. Next, Leiden-based clustering was

performed with the single-cell protein quantification data from

the csv files using the scanpy Python package (24). Finally, the

Leiden clusters were visualized in heat maps of dot plots and

spatially mapped back to the CODEX multicycle imaging data to

allow for manual cell annotations.
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