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risk model of low-grade gliomas
based on cell senescence-
related genes
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Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The
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Background: Cellular senescence is a key element in the occurrence and

progression of a variety of tumors. As a result, cellular senescence-related

markers can be categorized based on the prognosis status of patients. Due to

the heterogeneity and the complexity of the tumor microenvironment (TME),

the long-term effectiveness of low-grade glioma (LGG) treatment remains a

clinical challenge. Consequently, developing and refining effective treatment

approaches to aid with LGG management is critical.

Methods: Based on the expressions of cell senescence-related genes (CSRGs)

acquired from the cellAge database, consensus clustering was utilized to

identify stable molecular subtypes. Clinical features, immune infiltration,

route modifications, and genetic changes of various subtypes were also

assessed. Following that, the least absolute shrinkage and selection operator

(LASSO) regression and univariate Cox regression analysis were used for

developing the cell senescence-related risk score (CSRS) model. Finally, a

correlation study of the CSRS model with molecular, immunological, and

immunotherapy parameters was performed.

Results: C1, C2, and C3, are the three senescence-related subtypes that were

identified. Patients belonging to the C1 subtype had poor prognoses and a

substantial proportion of themwas in the grade G3. The differentially expressed

genes (DEGs) among the three subtypes were used to develop the CSRSmodel.

In both the training and independent validation cohort, the model had a high

area under the receiver operating characteristic (ROC) curve in predicting the

overall survival (OS) of patients. As a result, this model can predict clinical

features and responses to immunotherapy in a variety of patients and it is a

potential independent prognostic factor for LGG.
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Conclusion: This research discovered three LGG subtypes related to cell

senescence and created a CSRS model for six genes. Cell senescence was

highly associated with unfavorable prognosis in LGG. The CSRS model can be

used to predict the prognosis of patients and identify patients who would

benefit from immunotherapy.
KEYWORDS

low-grade glioma, cell senescence, tumor microenvironment, molecular subtypes,
prognostic model
Introduction

Low-grade glioma (LGG) is a common central nervous

system tumor that typically consists of World Health

Organization grades II and III and is less malignant than

glioblastoma (GBM) (1). LGG has recently been shown to

have molecular traits that can help with diagnosis and

treatment. IDH1, IDH2, TP53, EGFR, and ATRX mutations,

1p/19q co-deletion, and MGMT promoter methylation are all

known prognostic markers for LGG patients. These genetic

characteristics, on the other hand, are unable to accurately

predict survival outcomes. Despite advancements in LGG

therapies such as surgical resection, adjuvant chemotherapy,

postoperative radiation, and immunotherapy (2), patients with

LGG still have a low overall survival rate. Therefore, studying the

underlying molecular mechanisms of LGG initiation and

progression for identifying effective biomarkers is crucial to

optimizing LGG diagnosis and treatment regimes.
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Cell senescence is a sustained proliferative arrest hallmarked

by changes in cell shape, gene expression, heterochromatin

formation, and metabolic activity caused by excessive stress-

inducing stimuli (3). Following the identification of various cell

senescence-related markers, cellular senescence has been

detected in several malignancies in recent years. Cell

senescence serves two purposes. On the one hand, because

their proliferative capacity is reduced, senescent tumor cells

can impede carcinogenesis (4). Furthermore, tumorigenic Ras

expression is linked to the presence of senescent cells in diverse

cancer lesions (5). In precancerous lesions, inactivation of tumor

suppressors promotes cell senescence. Moreover, VO-OHpic, a

phosphate and tension homology deleted on chromosome ten

(PTEN) inhibitor, also promotes cell senescence and reduces

carcinogenesis (6). On the other hand, senescent cells often have

oncogenic properties. The senescence-associated secretory

phenotype (SASP) has been observed, and it can affect the

tumor microenvironment in both the autocrine environment

and paracrine manner. In mammary epithelial cells, senescent

human fibroblasts can induce the formation of precancerous and

malignant mammary epithelial cells (7). The CXCR2 ligands

GRO- and IL-8 can drive malignant melanocytes to develop by

expressing high levels of CXC chemokine receptor 2 (CXCR2)

(8, 9). Senescent stromal cells can aid cancer cell metastasis by

promoting epithelial-mesenchymal transition (EMT) (10). As a

result, cell senescence is important for tumor progression, tumor

pathway modulation, and immunotherapeutic responses. As a

result, identifying cell senescence-related genetic traits can aid in

a more thorough investigation of the mechanisms underlying

the link between LGG progression and cellular senescence.

Several systems biology approaches are currently available for

identifying biomarkers and constructing genetic signatures

linked to the prognosis of patients with LGG. Tan et al. looked

at immune-related genes in LGG and discovered six genetic

markers that could help diagnose LGG and predict patient

prognoses (11). Bai et al. examined N6-adenosine methylation

(m6A) methylation-regulated genes in LGG and built a

prognostic model based on their findings, to improve

prognosis prediction accuracy in LGG patients (12).
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Using Cox regression analysis, Liu et al. created a ten-gene

signature for LGG (13). Young people with LGG, on the other

hand, have a terrible prognosis. As a result, more stable

prognostic models, as well as particular markers, must

be investigated.

In this research, we studied stable molecular subtypes

according to cell senescence-related genes (CSRGs) by constant

clustering and carried out a comparison of pathway and immune

features among subtypes. Afterward, differential expression

analysis and LASSO were used to find prognosis-related CSRGs.

Moreover, we made a cell senescence-related risk score (CSRS)

model that can help in the treatment of LGG and aid in

developing personalized treatment strategies for affected people.
Materials and methods

Data collection and pre-processing

The LGG dataset (TCGA–LGG) was gathered from The

Cancer Genome Atlas and comprised RNA sequencing (RNA-

seq) data and clinical information from 506 samples (TCGA).

The Chinese Glioma Genome Atlas (CGGA, http://www.cgga.

org.cn/) was also retrieved to obtain “mRNAseq 693 (batch1)”

and “mRNAseq 325 (batch2).” By combining two batches of

RNA-seq data, a total of 408 LGG samples (CGGA cohort) were

included in this study. Following that, the TCGA–LGG and

CGGA cohorts were employed as the training and validation

sets, respectively. In addition, the cellAge database (https://

genomics.senescence.info/cells/) yielded 279 CSRGs.
Molecular typing of CSRGs

To classify data into distinct kinds, consistency matrices

were created using the ConsensusClusterPlus R package’s

consistency clustering function (14). The samples’ molecular

subtypes were determined using CSRG expression data. Then,

using the “km” method and “canberra” as the metric distance,

500 bootstraps were run, with each bootstrapping operation

involving 80 percent of the patients in the training set. To

establish the molecular subtypes of the samples, the number of

clusters was varied from 2 to 10, with the ideal number

established by computing the consistency matrix and the

consistency cumulative distribution function.
Lasso Cox regression analysis

A shrinkage estimation algorithm is the Lasso method. It

constructs a penalty function that decreases some coefficients

while setting others to zero, resulting in a more refined model.

As a result, it preserves the benefit of subset shrinking and is a
Frontiers in Immunology 03
biassed estimator for multicollinear data. As a result, it is

possible to pick variables while estimating parameters,

allowing it to better tackle the multicollinearity problem in

regression analysis. The Lasso Cox regression was carried out

in this work with the help of the R package glmnet (15).
Construction and evaluation of the
CSRS model

The coxph function in the survival R package (https://mran.

microsoft.com/web/packages/survival/index.html) was used to

perform a univariate Cox analysis of CSRGs in the TCGA–LGG

and CGGA cohorts, yielding two sets of CSRGs closely linked to

the prognosis of LGG patients, and the overlapping genes were

chosen for further analysis with the criterion of P value less than

0.05. Then, across the three categories previously identified,

differently expressed CSRGs were discovered. Lasso regression

was used to minimize the number of genes to produce

prognosis-related CSRGs. The MASS package’s stepAIC was

applied to further compress the number of prognostic CSRGs.

StepAIC starts with the most complicated model and removes

one variable at a time to reduce the AIC, with a smaller AIC

value indicating a better model that achieves a sufficient fit with

fewer parameters. In addition, each patient’s CSRS was

calculated using the following equation: CSRS=Sbi×Expi,
where Expi is the level of gene expression of prognosis-related

CSRGs and b is the Cox regression coefficient of corresponding

genes. CSRS score was converted to z-score. We set z-score = 0 as

a cut-off to classify samples into high- (z-score > 0) and low-risk

(z-score < 0) groups. Furthermore, the Kaplan–Meier (KM)

algorithm was utilized for plotting the survival curves for

subsequent prognostic studies. Finally, we used a log-rank test

for determining the value of differences.
Single-sample gene set
enrichment analysis

The R package GSVA (16) was used to perform a single-

sample gene set enrichment analysis (ssGESA) on the gene

expression profiles corresponding to LGG samples in the

TCGA–LGG cohort to examine the association between CSRS

and biological functions in various samples. The scores of each

sample on various functions were then measured (i.e., ssGSEA

scores for each sample corresponding to each function). Finally,

we calculated the correlations between these functions and CSRS.
Patient response to different
immunotherapies and drugs

To predict the clinical responsiveness of patients in the high-

and low-CSRS groups to immune checkpoint inhibitors, the
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Tumor Immune Dysfunction and Exclusion (TIDE) algorithm

was utilized (17). The TIDE algorithm probed into the M2

subtype of cancer-associated fibroblast (CAF), myeloid-derived

suppressor cells (MDSCs), and tumor-associated macrophages

as three cell types that reduced T-cell infiltration in cancers

(TAMs). To avoid immune evasion, this algorithm used two

different mechanisms: a malfunction score for tumor-infiltrating

cytotoxic T cells (CTLs) and an exclusion score for the

immunosuppressive factor CTL. Immune escape is more likely

with a higher TIDE prediction score, implying that patients are

less likely to benefit from immunotherapy. Moreover, we

measured the half-maximal inhibitory concentration (IC50) of

the drug using the pRRophetic R package (18) to observe the

sensitivity of patients in the high- and low-CSRS groups to

different chemotherapeutic agents and targeted drugs.
Gene set enrichment analysis

In distinct biological processes, GSEA can reveal pathways of

various molecular subtypes. GSEA was used in this investigation

with all candidate gene sets from the Hallmark database (19),

and FDR<0.05 was set as the criterion of substantial enrichment.
Cell abundance in TME

The relative abundance of 22 immune cells in LGG was

quantified using the CIBERSORT algorithm (20)(https://

cibersort.stanford.edu/). The fraction of immune cells was also

determined with the help of the Estimation of STromal and

Immune cells in MAlignant Tumours Using Expression Data

(ESTIMATE) software (21).
Statistical analysis

R (https://www.r-project.org/, version 3.6.3) was used for all

statistical studies and data visualization. P < 0.05 represented a

significant difference, and all estimated P-values were two-tailed.
Results

Identification of three cell senescence-
related molecular subtypes of LGG

Initially, we carried out a univariate cox analysis (P < 0.05)

on CSRGs from both TCGA–LGG and CGGA datasets to get

115 genes strongly linked to LGG patients’ prognoses.

Afterward, by consistent clustering, we grouped 506 LGG

samples. Cluster number was optimized using the cumulative
Frontiers in Immunology 04
distribution function (CDF), and the CDF delta area curve

suggested that the outcomes of clustering were stable when the

number of clusters was 3 (Figures 1A, B). Consequently, the

number (k) was selected as three to get three molecular subtypes

(Figure 1C). We further studied the prognostic features of these

three molecular subtypes. We observed a remarkable difference

in patient prognosis between the three molecular subtypes in the

TCGA–LGG cohort (Figure 1D), the best prognosis was

observed in patients of the C3 subtype and patients of the C1

subtype showed the worst prognosis. Moreover, the mortality of

patients in the C1 subtype was greatly enhanced in comparison

with those in the C3 subtype (Figure 1E). Afterward, using the

same strategy, molecular typing was carried out on samples in

the CGGA cohort and we observed similar a remarkable

difference in the prognosis of patients belonging to these three

molecular subtypes (Figures 1F, G), which aligned with the

outcomes from the TCGA–LGG training set. Then, a

comparison was done between the CSRSs in the various

molecular subtypes in the TCGA–LGG and CGGA cohorts

(Figures 1H, I). Remarkable differences were observed in

CSRSs of various molecular subtypes, the lowest CSRS was

observed in the C1 subtype and the highest in the C3 subtype.
Differences in clinicopathological
characteristics among three molecular
subtypes

The TCGA dataset was used for comparing the differences in

clinical features among the three subgroups. There was no

discernible gender difference between the three categories.

However, the C1 subtype had a higher number of patients in

the G3 grade, whereas the C2 and C3 subtypes had a higher

proportion of patients in the G2 grade. In terms of IDH

mutations, the C2 and C3 subtypes had the highest frequency

of patients with mutations. Furthermore, the C3 subtype had a

considerably larger number of individuals with 1p19q co-

deletion than the C1 and C2 subtypes. Individuals with the C2

and C3 subtypes also had considerably more MGMT promoter

methylation events than patients with the C1 subtype (Figure

S1A). Patients who experienced both IDH mutations and 1p19q

co-deletion also had the greatest prognosis, with a median OS of

8 years. Patients with an IDH mutation but no 1p/19q deletion

(astrocytoma) had a median survival time of 6.4 years.

Furthermore, patients with IDH wild-type LGG had a median

OS of 1.7 years, which was comparable to those with IDH wild-

type glioblastoma and commensurate with the prognosis of

patients with the C3 subtype. In the CGGA cohort, differences

in age, gender, grade, IDH mutation, 1p19q co-deletion, and

MGMT promoter methylation were compared (Figure S1B). In

the CGGA cohort, differences in age and gender were

not significant.
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Differences in mutational characteristics
among three molecular subtypes

We analyzed the mutational profiles of various molecular

subtypes further for revealing the possible underlyingmechanisms

used in the classification of cell senescence-related subtypes. In

this report, data on the molecular properties in the TCGA–LGG

cohort was retrieved from previous research on pan-cancer (22).

The cellular senescence subtypes were linked with measures of

DNA damage, such as the fraction of genome altered, homologous

recombination defects, aneuploidy, tumor mutation burden, and

the number of segments. Moreover, patients of the C3 subtype

had lower scores of aneuploidies, number of segments, fraction

altered, homologous recombination defects, and tumor mutation

burden (Figure 2A). Additionally, further molecular subtypes

were provided in the above study. Therefore, these six molecular

subtypes were compared with our three molecular subtypes

(Figure 2B). More “Codel” molecular subtypes were discovered
Frontiers in Immunology 05
in the C3 subtype and more “G-CIMP-high” molecular subtypes

in the C2 subtype. Furthermore, LGG was sorted into six

molecular subtypes based on 160 different immune signatures in

the above study, the best prognosis was observed in patients of

immunoassay subtype C3 and the worst prognosis was seen in

subtypes C4 and C6. Hence, a comparison of these six immuno-

molecular subtypes was carried out with the three molecular

subtypes. We defined and observed that the C4 subtype of the

immuno-molecular subtypes occupied more of the C1 subtypes

(Figure 2C). Additionally, the connection between gene mutations

and molecular subtypes was studied and a strong correlation was

identified. In LGG, ATRX, CIC, IDH1, TP53, and TTN genes

went through numerous somatic mutations. The IDH1 gene

among them had a higher frequency of mutations in C2 and C3

subtypes, and patients with IDH1/2 mutations showed a better

prognosis. Moreover, the TP53 gene had the highest mutation

frequency in the C subtype , fo l lowed by the C1

subtype (Figure 2D).
A

B

D E

F G IH

C

FIGURE 1

LGG subtypes sorted by CSRGs found in the TCGA–LGG and CGGA cohorts. (A) CDF curves of TCGA–LGG cohort samples. CDF curves for
consensus scores (based on different numbers of subtype, k = 2 – 10) are illustrated using various colors; (B) CDF Delta area curves for samples
in the TCGA–LGG cohort; (C) Clustering plot of consensus scores for samples in the TCGA–LGG cohort at k = 3; (D) KM curves indicating
prognostic differences between the three molecular subtypes in the LGG cohort; (E) Differences in survival status of patients from different
subtypes in the TCGA–LGG cohort; (F) KM curves indicating prognostic differences between the three molecular subtypes in the CGGA cohort;
(G) Differences in survival status of patients from different subtypes in the CGGA cohort. (H) Differences in CSRS between the three molecular
subtypes in the TCGA–LGG cohort; (I) Differences in CSRSs between the three molecular subtypes in the CGGA cohort. Significance was
measured by variance analysis (*P < 0.05; ***P < 0.001; ****P < 0.0001).
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Differences in immune characteristics
among three molecular subtypes

To better understand the differences in the immunological

milieu of patients belonging to distinct molecular subtypes, the

degree of immune cell infiltration of patients in the TCGA–LGG

cohort was measured using the expression levels of genes in

immune cells. CIBERSORT was used to calculate the relative

abundance of 22 immune cell types (Figure 3A), and most

immune cell subtypes differed significantly. Immune cell

infiltration was measured using ESTIMATE (Figure 3B), and

patients belonging to the C1 subtype had a considerably higher
Frontiers in Immunology 06
“ImmuneScore” and immune cell infiltration degree than patients

belonging to other subtypes. Finally, the immune infiltration

degree of samples in the CGGA cohort was examined

(Figures 3C, D), and a similar phenomenon was observed as in

the TCGA cohort. Moreover, EPIC analysis also displayed the

similar result with CIBERSORT analysis (Figures 3E, F).

Pathway analysis of different
molecular subtypes

We performed GSEA on all candidate gene sets from the

Hallmark database (19) to find out the differentially activated
A

B

D

C

FIGURE 2

Comparison of genomic alterations among the three molecular subtypes. (A) Differences in fraction altered, the number of segments,
homologous recombination defects, aneuploidy score, and tumor mutation burden in the molecular subtypes in the TCGA–LGG cohort;
(B) Comparison of the three molecular subtypes with immuno-molecular subtypes; (C) Comparison of the three molecular subtypes with other
molecular subtypes; (D) Somatic mutations in the three molecular subtypes. (ns, no significance. *P < 0.05, ***P < 0.001, ****P < 0.0001).
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pathways (DAPs) in different molecular subtypes. The C1 subtype

was considerably enriched in 27 DAPs in the TCGA cohort, while

35 DAPs were significantly enriched in the CGGA cohort

(Figures 4A, B). In addition, in different LGG cohorts, aberrant

routes between C1 and C3 subtypes were compared (Figure 4B).

Immune-related pathways such as interferon-gamma, interferon-

alpha, allograft rejection, and inflammatory response were the

most common DAPs. E2F targets, G2M checkpoint, and Myc

targets v1 were also active, as were some cell cycle-related pathways

(Figure 4C). Following that, DAPs between C1 and C2, C1 and C3

subtypes, and C2 and C3 subtypes in different TCGA–LGG

cohorts were compared (Figure 4D). Immunomodulatory

pathways, cell cycle-related pathways, and numerous critical

tumor-related pathways, including P53, hypoxia, and EMT, were
Frontiers in Immunology 07
all active in patients with the C1 subtype. As a result, CSRGs might

have an important role in both the immunosuppressive and

malignant microenvironments (TME).
Identification of DEGs associated with
cell senescence-related subtypes

CSRGs were used to identify three separate molecular

subtypes that were significant in the univariate analysis.

Following that, with the criterion of FDR < 0.05 and |

log2FC| > 1, the limma package was utilized for calculating the

differentially expressed CSRGs (DECSRGs) across C1 and non-

C1, C2, and non-C2, and C3 and non-C3 molecular subtypes. By
A B

D

E F

C

FIGURE 3

Proportions of immune cell components in the two LGG cohorts. (A) Differences in 22 immune cell scores among different molecular subtypes
in the TCGA–LGG cohort; (B) Differences in ESTIMATE immune infiltration in various molecular subtypes in the TCGA–LGG cohort;
(C) Differences in 22 immune cell scores in various molecular subtypes in the CGGA cohort; (D) Differences in ESTIMATE immune infiltration
among various molecular subtypes in the CGGA cohort. (E, F) EPIC analysis for the estimated proportion of immune cells in TCGA-LGG (E) and
CGGA (F) cohorts. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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looking for DECSRGs in different molecular subtypes, a total of

21 genes were discovered. For gene number reduction in the risk

model, Lasso regression was employed to compress these 21

CSRGS even more. The number of independent variables whose

coefficients tended to zero gradually rose as the lambda

increased, as illustrated in Figure S2A, and the number of

independent variables whose coefficients tended to zero

gradually increased as the lambda increased. The confidence

intervals under each lambda were assessed after the model was

built using 10-fold cross-validation (Figure S2B). When lambda

= 0.0317, the model was at its best. As a result, the target genes

for the subsequent analyses were chosen from a list of eight

genes with lambda = 0.0317. We also used the Akaike

information criterion (AIC) to run a stepwise multivariate

regression analysis based on these eight genes. AIC considers

the model’s statistical fit as well as the number of parameters

required to fit it. The MASS package’s stepAIC technique starts

with the most complicated model and removes one variable at a

time to reduce the AIC, with a smaller AIC value indicating a

better model that achieves a sufficient fit with fewer parameters.
Frontiers in Immunology 08
Finally, six genes were identified as prognosis-related CSRGs:

thymosin beta 4 (TMSB4X), cyclin-dependent kinase 6 (CDK6),

forkhead box M1 (FOXM1), insulin-like growth factor-binding

protein-5 (IGFBP5), integrin beta 4 (ITGB4), and IGFBP3

(Figure S2C).
Construction and validation of the
clinical prognostic model

We used the expression levels and coefficients of six CSRGs

to develop a prognostic model related to cellular senescence.

Each sample’s CSRS was measured and normalized based on the

CSRS calculation equation. Afterward, the samples were sorted

into high- and low-risk (CSRS) groups as per the normalized

cutoff value (0). The CSRS distribution of patients in the TCGA–

LGG cohort is illustrated in Figure 5A. The mortality rate of

patients in the high-risk group was high with a shorter survival

time. Consequently, the worse prognosis of patients was related

to high CSRSs. Furthermore, six genes had greatly increased
A B

DC

FIGURE 4

Comparative analysis of pathways between the three different molecular subtypes. (A) GSEA outcomes of C1 vs C3 in the TCGA–LGG cohort;
(B) Bubble plots of GSEA outcomes of C1 vs C3 in two LGG cohorts; (C) Bubble plots of comparative outcomes between various molecular
subtypes in the TCGA–LGG cohort; (D) Radar plot of consistently activated pathways in the TCGA–LGG cohort (C1 vs C2 and C2 vs C3).
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expression levels with increasing CSRSs. Furthermore, ROC

analysis for prognostic classification was done with the help of

R package timeROC (23) and quantified the one-, three-, and

five-year prognostic predictive effectiveness (Figure 5B), and the

model had high AUC values (one-, three-, and five-year AUC

values of 0.87, 0.84, and 0.75, respectively). Finally, the KM curve

indicated a significant difference in survival between patients in

the high- and low-CSRS groups (P < 0.0001), showing that the

overall survival of patients having higher CSRSs was worse in the

training cohort (Figure 5C). In addition, a validation analysis

was done in the CCGA cohort to confirm the strength of the

CSRS model. The CSRSs of patients in the CCGA cohort were

identified similarly and the analysis outcomes are demonstrated

in Figures 5D, E. Similar outcomes were seen in the validation

cohort, patients with high CSRSs had a poor prognosis, and

patients with low CSRSs had a better prognosis (P < 0.0001).
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CSRS distribution in different
clinicopathological characteristics and
patient prognosis
The CSRS distribution in the TCGA–LGG cohort was

examined amongst different groups. Grade, IDH Mutation,

IDH/codel subtype, and MGMT promoter methylation all

showed significant differences in CSRS score in both two

cohorts (Figures S3A, B). We also looked at the differences in

CSRS between molecular subtypes, finding that patients with the

C1 and C3 subtypes had the highest and lowest CSRS,

respectively. The prognostic difference between our established

high- and low-risk categories in the TCGA–LGG cohort was also

evaluated, with the results indicating that our risk groupings

were reliable (Figure S3C).
A B

D E

C

FIGURE 5

The creation and validation of the clinical prognostic model. (A) CSRS, survival time, survival status, and CSRG expression in the TCGA–LGG
dataset; (B) ROC curves and AUC of CSRS in the TCGA–LGG dataset; (C) KM survival curves of CSRS in the TCGA–LGG dataset; (D, E) ROC
curves and KM survival curves of CSRS in the CGGA cohort.
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Differences in immune/pathway
characteristics between different
SRS groups

To better understand the changes in the immunological

milieu, researchers analyzed the relative abundance of 22

immune cells in the TCGA–LGG cohort’s high- and low-CSRS

groups (Figure 6A). The relative abundance of immune cells in

the two groups differed significantly. ESTIMATE was also used

to measure immune cell infiltration (Figure 6B). Patients with a

high CSRS had considerably greater “ImmuneScore” and levels

of immune cell infiltration than those with a low CSRS. Similar

findings were also reported in the CGGA cohort (Figures 6C, D).

The link between CSRS and 22 immune cells was then

investigated (Figure 6E). CSRS was found to have a

remarkable association with B cell naive, plasma cells, naive

CD 4 T cells, M0macrophages, andM1macrophages. Moreover,

we performed ssGSEA for calculating the correlation coefficient

of these pathways with CSRS (Figure 6F) and filter out the
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pathways with a correlation coefficient greater than 0.6. Most of

these pathways, like the p53 signaling pathway, JAK-STAT

signaling pathway, and ECM receptor interaction had a

positive relationship with CSRS. Moreover, a major positive

correlation was observed between CSRS and necroptotic score

(P = 1.35e-33, R = 0.5) (Figure 6G). Finally, the link between the

age of the patients and CSRS was measured and a major positive

association was observed between CSRS and age (P =0.013, R =

0.11) (Figure 6H).
Differences in immunotherapy/
chemotherapy efficacy between different
CSRS groups

The differences in immunotherapy sensitivity across patients

in different CSRS groups in the TCGA–LGG cohort were

investigated further. The difference in immune checkpoint

expression between the two CSRS groups was first compared
A B

D

E

F

G H

FIGURE 6

Differences in immune/pathway properties between different CSRS groups. (A) Proportion of immune cells in the TCGA–LGG cohort;
(B) Proportion of immune cells in the CGGA cohort; (C) Proportion of immune cells in the TCGA–LGG cohort measured using the ESTIMATE
software; (D) Proportion of immune cells in the CGGA cohort calculated using the ESTIMATE software; (E) Correlation analysis of 22 immune
cells with cellular CSRS in the TCGA–LGG cohort; (F) Correlation analysis outcomes of KEGG pathways with a correlation coefficient greater
than 0.6 with CSRS; (G) Correlation analysis of CSRS with prognosis-related CSRS in the TCGA–LGG cohort; (H) Correlation analysis of age with
prognosis-related CSRS in the TCGA–LGG cohort. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.982033
(Figure 7A). The expression of most immune checkpoint genes

differed between the two CSRS groups. Immune checkpoint gene

expression was found to be considerably higher in the high-

CSRS groups than in the low-CSRS groups. Following that, the

immunotherapy efficacy differences between the two CSRS

groups were compared. The TIDE program was used to

evaluate the clinical effects of immunotherapy on the two

categories of patients. No significant differences in MDSC,

dysfunction, exclusion, or TIDE scores were found in the

TCGA–LGG cohort, as illustrated in Figure 7B. The response

of patients in the two CSRS groups in the TCGA–LGG cohort to

traditional chemotherapy medications such as Temozolomide,

Bleomycin, Cisplatin, Cyclopamine, and Bleomycin, as well as

targeted therapies such as A-443654, AZD6482, and GDC0941,

was also studied. Cisplatin, A-443654, and Bleomycin were more

sensitive in the high-CSRS group, whereas AZD6482,

Cyclopamine, and GDC0941 were more sensitive in the low-

CSRS group (Figure 7C).
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CSRS–nomogram improves the
accuracy of patient prognosis and
survival prediction

Univariate and multivariate Cox regression analyses of CSRS

and clinicopathological features in the TCGA–LGG cohort

revealed that CSRS was the most important prognostic predictor,

with age being an independent prognostic factor (Figures 8A, B).

Following that, a nomogram including CSRS and age was created

(Figure 8C). The most significant impact on survival prediction

was CSRS. The calibration curve was used to further assess the

model’s prediction accuracy (Figure 8D). Furthermore, the one-,

three-, and five-year prediction calibration curves nearly coincided

with the standard curve, indicating that the nomogram performed

well in terms of prediction. Furthermore, decision curve analysis

(DCA) was used to verify the model’s robustness, and both CSRS

and nomogram yielded much more advantages than the extreme

curves. Furthermore, when compared to age, both the nomogram
A

B

C

FIGURE 7

Differences in immunotherapy/chemotherapy effectiveness among two different CSRS groups. (A) Differentially expressed immune checkpoints
between two CSRS groups in the TCGA–LGG cohort; (B) Differences in TIDE analysis outcomes among two CSRS groups in the TCGA–LGG
cohort; (C) Box plots of the estimatedIC50 for Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A-443654, AZD6482, GDC0941, and
Bleomycin in TCGA–LGG cohort. (ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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and the CSRS had a better ability to predict prognosis

(Figures 8E, F).
Discussion

In clinical practice, the long-term efficacy of LGG therapy

has been a significant issue due to the instability of LGG and the

complexity of TME. Therefore, we need to develop and optimize

the appropriate therapeutic interventions urgently. With the

development of microarray technology and RNA-seq, many

research studies have used gene expression profiles to

categorize tumors. Predictive models according to gene

expression profiles using mathematical and statistical modeling

techniques have tremendous clinical potential. Cells undergo

different types of senescence depending on the type of stress and/

or stimulus, including stress-induced premature senescence

(SIPS), oncogene-induced senescence (OIS), replicative

senescence (RS), paracrine senescence (PS), treatment-induced

senescence (TIS) and epigenetics-induced senescence (EIS) (24).

Senescent cells collect in various organs and tissues with different

physiological and pathological functions (25). Many preclinical

studies prove that chemotherapy and radiotherapy cause

senescent cells to accumulate in normal tissues as well as

tumors. Though, senescent cells in tumors can partially

stimulate metastasis, tumor recurrence, and resistance to
Frontiers in Immunology 12
therapy by expressing a secretory phenotype linked with aging.

Moreover, senescent cells in normal tissues can worsen the side

effects caused as a result of certain chemotherapies or radiation.

Therefore, cellular senescence can be an important target for the

treatment of cancer due to its several roles (26).

506 and 408 LGG samples were acquired from TCGA and

CGGA, respectively, for this study. Based on the expression of

115 prognosis-related CSRGs, HCC samples from each cohort

were divided into three subtypes, with significant differences in

OS between the three subtypes. The clinicopathological, genetic,

route, and immunological aspects of the three subgroups were

then compared. The C1 subtype had a worse prognosis, had the

largest prevalence of TP53 gene alterations, and had a significant

degree of immune cell infiltration, with a large proportion of

them in the G3 stage. Immunomodulatory and cell cycle

pathways were also active in these patients. As a result, CSRGs

may be important in the immunosuppressive microenvironment

and TME. Finally, differential analysis of and LASSO found a

total of six prognosis-related CSRGs, including TMSB4X, CDK6,

FOXM1, IGFBP5, ITGB4, and IGFBP3.

CDK6 is a major component of the cell cycle that drives the

transition from the G1 to the S phase by phosphorylating and

inactivating the retinoblastoma protein (27). Activation of the

YAP–CDK6 pathway may slow down the aging of the brain as

well as the resulting neurodegenerative diseases (28). Dysregulated

CDK6 promotes the senescence bypass during tumorigenesis and
A
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D E
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C

FIGURE 8

Developing the nomogram according to CSRS. (A, B) Univariate and multivariate Cox analysis of CSRS and clinicopathological properties;
(C) Constructing a Nomogram model; (D) One-, three-, and five-year calibration curves for the nomogram; (E) Decision curve for the
nomogram; (F) Prognosis-related AUC predicted by different clinical variable ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.982033
progression and its inhibition restores the senescence response in

tumor cells (29). Akt/Fox M1 signaling pathway-mediated

MYBL2 upregulation promotes the progression of human

glioma (30) and is a probable candidate gene for molecular

targeted therapy and a biomarker for glioma-related radiation

therapy. In breast cancer, FOXM1 has a role in response to DNA

damage, genotoxic drug resistance, and DNA damage-induced

senescence (31). IGFBP-5 is elevated during cellular senescence in

response to the tumor suppressor p53 activation; this mechanism

mediates interleukin-6/gp130-induced PS of human fibroblasts,

irradiation-induced PS of human endothelial cells, and RS of

human endothelial cells independent of IGF-I and IGF-II (32).

ITGB4 is a structural adhesion molecule and clears airway

epithelial cells by activating the p53 pathway in vitro and in

vivo, and its deficiency results in senescence (33). Interfering with

the NTN4-ITGB4 connection or using inhibitors of the AKT

pathway concurrently with temozolomide may protect against

temozolomide-induced senescence in glioblastoma and improve

therapeutic efficiency (34). IGFBP3 is a hypoxia-inducible gene

that regulates multiple cellular processes, such as senescence,

apoptosis, cell proliferation, and EMT (35). Domenico et al.

identified IGFBP-3 as one of the genes linked with senescence

genes in human gliomas (36). Though the link between the

progression of TMSB4X and LGG was not reported, and it is

required to explore in detail.

Based on prognosis-related SCRGs, a clinical prognostic

CSRS model was developed in this work. The model exhibited

great robustness and sustained prediction accuracy in

independent datasets, regardless of clinicopathological features.

Furthermore, this model exhibited a high prediction accuracy

and excellent survival prediction power, demonstrating

significant efficacy in predicting the OS of LGG patients and

describing the clinical characteristics of distinct individuals. The

CSRS algorithm assigned each sample a unique risk score and

divided patients into different risk groups. Patients in the high-

CSRS group had a worse prognosis than those in the low-CSRS

group, confirming our hypothesis. Furthermore, in the

TCGA–LGG and CGGA cohorts, significant differences in the

distribution of CSRS were detected amongst clinicopathological

feature groupings. Patients in the high-CSRS group had a

considerably higher “ImmuneScore” than those in the low-

CSRS group, and the expression of most immune cells differed

significantly between the two groups. Cisplatin, A-443654, and

Bleomycin sensitivity were also higher in the high-CSRS group.
Conclusion

The identification of three cell senescence-related molecular

subtypes helped to understand the crosstalk between cell

senescence and LGG development. Cell senescence had an

association with activated tumor-related pathways and

immune infiltration. Cell senescence was highly associated
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with unfavorable prognosis, which may contribute to LGG

development. High cell senescence score was significantly

correlated with poor prognosis and high CSRS score. In

addition, the CSRS model, a classifier, was constructed and

verified. This model exhibited great robustness and stable

prediction performance in independent datasets, regardless of

clinicopathological features. Furthermore, this model exhibited a

high prediction accuracy and significant survival prediction

power, which aids in prognosis prediction and the selection of

optimal treatment for patients. Overall, the synergistic effect of

pro-and anti-aging therapies in cancer can be used to design

novel therapeutic techniques.
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