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Influenza A virus (IAV) is widely disseminated across different species and can

cause recurrent epidemics and severe pandemics in humans. During infection,

IAV attaches to receptors that are predominantly located in cell membrane

regions known as lipid rafts, which are highly enriched in cholesterol and

sphingolipids. Following IAV entry into the host cell, uncoating, transcription,

and replication of the viral genome occur, after which newly synthesized viral

proteins and genomes are delivered to lipid rafts for assembly prior to viral

budding from the cell. Moreover, during budding, IAV acquires an envelope

with embedded cholesterol from the host cell membrane, and it is known that

decreased cholesterol levels on IAV virions reduce infectivity. Statins are

commonly used to inhibit cholesterol synthesis for preventing cardiovascular

diseases, and several studies have investigated whether such inhibition can

block IAV infection and propagation, as well as modulate the host immune

response to IAV. Taken together, current research suggests that there may be a

role for statins in countering IAV infections and modulating the host immune

response to prevent or mitigate cytokine storms, and further investigation into

this is warranted.
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Introduction

Influenza A virus (IAV) is a member of the Orthomyxoviridae family that causes

seasonal outbreaks of respiratory infections in humans and animals. Influenza infections

can induce life-threatening conditions such as pneumonia, particularly in the elderly

(1, 2). Although influenza vaccines are available, even under the best conditions, when

circulating viruses match the viral strains used to make vaccines, vaccination only
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reduces the risks of illness by 40% to 60% (3). This is because

IAV mutates constantly, as the RNA-dependent RNA

polymerase (RdRP) used in IAV viral RNA (vRNA)

replication lacks proofreading activity (4, 5). Furthermore,

genome reassortment across different species also generates

IAV mutants that may be able to evade immune recognition

and cause severe disease in hosts (6, 7). This constant changing

of the virus poses a serious challenge to influenza vaccination

prevention strategies (8). As for treatment after IAV infection,

most mild to moderate infections are treated with a combination

of over-the-counter drugs that can include antipyretics,

analgesics, decongestants, antihistamines, and antitussives,

which provide relief from symptoms but do not attack IAV or

interfere with its propagation in any way (9). However, for

treatment of severe cases, or for treatment or prophylaxis

following confirmed exposure in groups at high risk of

postinfection complications, antiviral medications that target

the IAV life cycle can be used (10). These antivirals are

summarized in Table 1 and can be divided into five main

classes: M2 protein inhibitors (amantadine and rimantadine),

which disrupt the acidification of endosomes by blocking the M2

ion channel, thereby preventing the release of viral genomes to

the cytoplasm (16); neuraminidase (NA) inhibitors (oseltamivir,

zanamivir, laninamivir, and peramivir), which block the release

of viral progeny by inhibiting NA activity (17); acidic

endonuclease inhibitors (baloxavir marboxil), which inhibit

the endonuclease activity required for viral gene transcription
Frontiers in Immunology 02
in the IAV RNA-dependent RNA polymerase (RdRP) complex

(18); RNA polymerase inhibitors (favipiravir), which inhibit

RdRP activity (19); and membrane fusion inhibitors

(umifenovir), which block IAV from binding to and fusing

with host cell membranes (15). However, new therapeutic

approaches are constantly needed, as the high frequency of

IAV mutation and reassortment drives resistance to treatment

over time (20). One potential target is cholesterol (21, 22), which

is abundantly present in areas known as lipid rafts on host cell

membranes. Lipid rafts serve as hubs for cross talk and

coordination of many regulatory and signaling events (23),

and studies have shown that lipid rafts play important roles in

the IAV life cycle; moreover, lipid rafts also serve as platforms

for host immune responses. Interestingly, recent studies have

shown that statins, a class of cholesterol-synthesis inhibitors, can

act through cholesterol-dependent or -independent mechanisms

to disrupt several stages of the IAV life cycle, as well as mediate

host immune responses against IAV, and this may serve as a

novel therapeutic approach to influenza treatment (21, 24, 25).

In this review, the potential opportunities for statins at different

stages of the IAV life cycle and host immune response are

discussed, and current research is summarized to provide a

comprehensive overview of the evidence surrounding the use of

statins against IAV. Further research and examination of this

topic is warranted, as statins do not target specific components

of IAV, and mutational changes are less likely to confer

resistance to treatment. This may mark an important
TABLE 1 Antiviral drugs approved for use against influenza A viruses.

Class/drug Side effects Toxicity Approval Reference

M2 protein inhibitors: Block the M2 ion-channel to prevent the release of viral genomes to the cytoplasm

Amantadine Nausea, dizziness, insomnia Central nervous system, sleep, gastrointestinal
symptoms

US and multiple countries (now little used
due to resistance)

11

Rimantadine Insomnia, nausea, vomiting Central nervous system, sleep, gastrointestinal
symptoms

US and multiple countries (now little used
due to resistance)

11

Neuraminidase inhibitors: Inhibit neuraminidase activity to block the release of viral progeny

Oseltamivir Nausea, vomiting, diarrhea May correlate with sudden-onset type
neuropsychiatric reactions

US and multiple countries 12

Zanamivir Headaches, diarrhea, nausea Central nervous system, psychiatric symptoms,
gastrointestinal symptoms

US and multiple countries 13

Laninamivir Abnormal behavior, diarrhea,
nausea, dizziness

Central nervous system, psychiatric symptoms,
gastrointestinal symptoms

Japan 10

Peramivir Diarrhea, blurred vision, low
neutrophil count

Central nervous system, gastrointestinal symptoms US and multiple countries 10

Acidic endonuclease inhibitors: Inhibit the endonuclease activity required for viral gene transcription in the viral RdRP complex

Baloxavir
marboxil

Diarrhea, bronchitis,
nasopharyngitis

Central nervous system, gastrointestinal symptoms US and multiple countries 10

RNA polymerase inhibitors: Inhibit RdRP activity

Favipiravir Liver dysfunction, diarrhea, nausea Embryotoxicity in animal studies Japan 14

Membrane fusion inhibitors: Block IAV from binding to and fusing with host cell membranes

Umifenovir Drug sensitization and allergies N/A Russia, China 15
fro
IAV, influenza A virus; N/A, not available; RdRP, RNA-dependent RNA polymerase; US, United States.
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paradigm shift in the decades-long arms race between humans

and IAV.
Statins: Mechanism of action and
antiviral properties

Statins, including atorvastatin, fluvastatin, lovastatin,

pitavastatin, pravastatin, rosuvastatin, and simvastatin (26–31),

are a class of drugs that block cholesterol synthesis through the

inhibition of hydroxyl methylglutaryl-coenzyme A (HMG-CoA)

reductase (26–31). Statins are now widely used in the primary

and secondary prevention of cardiovascular disease (32). In

addition, as the proliferation of many viruses requires

cholesterol and cholesterol-rich lipid rafts on host cell

membranes, the role of statins in countering viral infections

has been examined in several studies (26, 28, 30, 31, 33). For

instance, lovastatin has been shown to inhibit human

immunodeficiency virus (HIV) entry to host cells by blocking

the interaction between the cellular lymphocyte function-

associated antigen-1 (LFA-1) receptor and intercellular

adhesion molecule-1 (ICAM-1), which is present on the

envelope of HIV viral particles. The inhibition by lovastatin

decreases the propagation of HIV by 50% (28). Statins have also

been reported to reduce the risk of severe COVID-19 by 70%

(30). These findings suggest that statins may be useful in

countering viral infections.
Opportunities for disruption: The
structure and life cycle of IAV

IAV is an enveloped virus that contains a genome consisting

of eight single-stranded, negative-sense RNA segments (34).

These segments encode at least 10 viral proteins, including

hemagglutinin (HA); NA (35); the RdRP subunits PB1, PB2,

and PA; nucleocapsid protein (NP); matrix proteins (M1 and

M2); and non-structural proteins (NS1 and NS2) (1, 2, 36). The

vRNA segments wrap around NPs and are bound by RdRP to

form ribonucleoproteins (vRNPs), which are packaged within

the virion. During infection, IAV is internalized by endocytosis

through interactions between HA on the viral envelope with

sialylated host receptors on the plasma membrane (37, 38).

Following internalization of the virus, the low pH of the

endosome environment activates M2 pH-gated proton

channels on the viral envelope to acidify the viral interior,

which in turn causes dissociation of the M1 matrix protein

from the viral nucleoproteins (37, 38). The structure of HA is

also altered inside the acidified endosomes, which leads to the

fusion of the viral envelope with the endosomal membrane,

followed by the release of vRNPs to the cytoplasm (37, 38).
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After their release from virions, vRNPs are translocated to

the nucleus, where their attached RdRP facilitate vRNA

transcription and replication (36). IAV mRNA is then

exported to the cytoplasm and translated into viral proteins

(39). The vRNA is also used as a template for the synthesis of

positive-stranded complementary RNAs (cRNAs), which are

then used by RdRP as templates for vRNA replication (2, 40).

The newly replicated vRNA is then packaged with NP and RdRP

to form vRNPs, which are then exported to the cytoplasm

through M1 and Rab-dependent recycling endosomes (37, 41,

42). HA and NA are also transported to lipid rafts,

microdomains enriched with cholesterol, sphingomyelin,

glycolipids, glycoproteins, and receptors on the host cell

membrane, where they accumulate and facilitate viral particle

assembly (Figure 1) (43–47). In the final stage, progeny viruses

are assembled and released outside host cells by budding, and

NA subsequently cleaves off sialic acid from the cellular receptor

to prevent viral aggregation at the cell surface (37, 48, 49). Lipid

rafts play an important role in the budding process, and the

released virions are also coated in an envelope containing

embedded cholesterol from the host cell membrane (43, 44).

Given the prominent role of cholesterol and lipid rafts in the

IAV life cycle, previous research has sought to identify and

exploit opportunities where statins could make an impact on

IAV infection and propagation.
IAV internalization relies on
lipid rafts

Many viruses are known to enter host cells through

endocytosis and hijack endosomes for viral trafficking (50). It

is known that IAV infection is mainly mediated by the binding

of HA on the virion to clusters of sialyated glycoproteins or

glycolipids on the cell surface (51–53). Although several

glycoproteins, including epidermal growth factor receptor

(EGFR), liver/lymph node-specific intracellular adhesion

molecule-2 grabbing non-integrin (L-SIGN), and dendritic

cell-specific intercellular adhesion molecule-3-grabbing non-

integrin (DC-SIGN), have been shown to facilitate IAV

attachment on cell surface for entry, whether these molecules

are specific receptors for IAV uptake remain to be elucidated (54,

55). For example, a recent study has shown that IAV does not

directly bind to EGFR, but the binding of IAV with multivalent

sialic acid clusters can trigger EGFR activation (56). However,

the glycoprotein carcinoembryonic antigen-related cell adhesion

molecule 6 (CD66c or CEACAM6) has recently been identified

as a receptor for IAV infection (57), and further research will

undoubtedly identify more such interacting receptors in the

future. After binding to cellular receptors, IAV is taken up by

cells via either clathrin- or caveolin-dependent endocytosis,

which usually occurs at lipid rafts (Figure 1) (50, 58). Lipid
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rafts serve as a platform for the cross talk and coordination of

many regulatory proteins and signaling molecules, and

cholesterol plays a key role in lipid raft structure and function.

Several studies have shown that depletion of cholesterol from

lipid rafts or viral envelopes with methyl-b-cyclodextrin
(MbCD) prevents IAV attachment and reduces IAV

infectivity; however, IAV infectivity is restored after exogenous

cholesterol supplementation (Figure 1, Table 2) (55, 59–61).
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Moreover, sphingomyelin is known to coexist and interact with

cholesterol on the plasma membrane (73), and disruption of

sphingomyelin on lipid rafts with sphingomyelinases (SMase)

also prevents IAV attachment and viral internalization (74, 75).

In addition, cholesterol is known to modulate IAV

trafficking, and depletion of cholesterol disrupts IAV transport

after cellular entry (60, 62, 64, 76). Mehrbod et al. (62) showed

that simvastatin prevents RhoA prenylation, which is key to
FIGURE 1

Effect of statins on the IAV life cycle and the host immune response. Influenza A virus (IAV) binds to sialylated host receptors at lipid rafts on the
plasma membrane to initiate endocytosis for cellular entry. After internalization, acidification within the endosome causes the structural
alteration of hemagglutinin (HA), which leads to the fusion of the viral envelope with the endosomal membrane and the release of viral
genomes to the cytosol. Viral genomes are then transported to the nucleus for transcription and replication of viral RNA (vRNA). Several
cholesterol biosynthesis regulators or inhibitors are known to be involved in the infection process: Methyl-b-cyclodextrin (MbCD) prevents IAV
attachment; simvastatin reduces the efficiency of viral genome transport to the nucleus; fluvastatin and atorvastatin reduce IAV infectivity; and
interferon-induced transmembrane protein 3 (IFITM3) inhibits the release of viral genomes from the endosome to the cytosol. Incoming single-
stranded vRNA, double-stranded RNA intermediates that are formed during vRNA transcription and replication, and newly synthesized vRNA are
recognized by immunosensors that can subsequently activate innate immunity, including toll-like receptor 3 (TLR3) and TLR7/TLR8 within the
endosome, and retinoic acid-inducible gene I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5), which interact with MyD88, TRIF, and
mitochondrial antiviral signaling protein (MAVS) in the mitochondria. All TLRs and intracellular RIG-I initiating signals activate TANK-binding
kinase 1 (TBK1) and the nuclear factor (NF)-kB/IkB complex, leading to the translocation of interferon regulatory factor-3 (IRF-3)/IRF-7 and NF-
kB from the cytosol to the nucleus to induce the expression of interferons (IFNs), interferon-stimulated genes (ISGs), and proinflammatory
cytokines. Following the maturation of proinflammatory cytokines induced by the nucleotide-binding oligomerization domain (NOD)-like
receptor family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome, inflammatory cytokines, tumor necrosis factors (TNFs), and IFNs are
secreted extracellularly as the first wave of a cytokine storm. These secreted defense molecules are recognized by interferon-a receptors
(IFNARs), interferon-g receptors (IFNGRs), and TNF receptors (TNFRs) on neighboring cells, macrophages, natural killer (NK) cells, CD8+ T cells,
or Th2 cells, which act to amplify innate immune signaling against IAV infection. Damage-associated molecular patterns (DAMPs) released from
damaged or dying cells, including macrophages that take up the aggregated viral PB1-F2 protein, are recognized by TLR4. In addition, IAV M2
embedded in the trans-Golgi network (TGN) changes proton flux, which then activates NLRP3 complexes to induce the second wave of a
cytokine storm. Atorvastatin, simvastatin, fluvastatin, and MbCD are capable of depleting or preventing the expression of IFNAR, IFNGR, and
TNFR at lipid rafts, resulting in the stimulation of innate responses. T-cell receptors (TCRs) or B-cell receptors (BCRs), respectively presented at
lipid rafts on T cells or B cells, are depleted by atorvastatin and simvastatin. IAV exploits the cholesterol recycling process to deliver newly
synthesized vRNAs to lipid rafts on the plasma membrane for viral assembly through PB2–Rab11 interactions. U18666A and Annexin-A6, which
retain and accumulate cholesterol in late endosomes to reduce the amount of cholesterol at lipid rafts, can decrease IAV production. Lovastatin,
which depletes the cholesterol component on plasma membranes, prevents the trafficking of HA to the plasma membrane and alters the
composition of cholesterol incorporated into viral particles.
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arrangement of the actin cytoskeleton for endosome trafficking,

and results in inefficient transport of viral genomes into the

nucleus for replication (Figure 1). Fluvastatin and atorvastatin

treatment also reduces vRNA replication and viral protein

synthesis (Figure 1) (63, 64). These findings show that

cholesterol is critical to IAV binding and entry to host cells,

and preliminary studies show that statins may be able to disrupt

this process and prevent IAV proliferation (63, 64).
IAV assembly and budding require
lipid rafts

Following their glycosylation in the trans-Golgi network (TGN),

HAandNAare transported toandaccumulateat lipid rafts (Figure1)

(77, 78). An electronmicroscopy study showed that the cytoplasmic

tails of HA andNA interact with the glycosphingolipid GM1 at lipid

rafts, forming a structure called the budozone, where IAV budding

occurs (44) (Figure 1). Substituting the amino acids in HA that are

required for interaction with GM1 not only changes the amounts of

HAon theviral particlesbut also reduces thenumberof IAVparticles

budding through lipid rafts (43).

Cholesterol is an essential component of lipid rafts (60), and

the availability of cholesterol in lipid rafts has been shown to be

critical to IAV replication. It has been shown that IAV

production is significantly reduced after treatment with a
Frontiers in Immunology 05
cholesterol transport inhibitor, U18666A (Figure 1), and

treatment of IAV-infected cells with Annexin A6, which

causes retention and accumulation of cholesterol in the late

endosomes to reduce cholesterol levels at lipid rafts, similarly

reduces IAV production (Figure 1; Table 2) (65–67). During

budding, cholesterol is also incorporated into the IAV envelope,

constituting up to 44% of lipids, or 12% of the total mass of an

IAV virion (60). Previous studies have shown that using

lovastatin to reduce intracellular cholesterol and deplete lipid

rafts not only influences the trafficking of HA to the plasma

membrane but also alters the composition of cholesterol

incorporated into the viral particles (Figure 1) (21, 25, 47).

Cholesterol in the endosomal membrane is acquired from

the plasma membrane during endocytosis (79), and this

endosomal cholesterol is recycled back to the plasma

membrane by Rab11 (Figure 1) (80). IAV appears to exploit

this cholesterol-recycling process to deliver vRNPs to lipid rafts

on the plasma membrane for viral assembly, as PB2, a

component of vRNP, has been shown to interact with the

Rab11-cholesterol complex (Figure 1; Table 2) (68, 69).

Furthermore, knockdown in the expression of Rab11 by

shRNA, or expression of a mutant Rab11 that decreases the

efficiency of cholesterol recycling back to the plasma membrane,

was shown to reduce the amount of vRNPs conveyed to lipid

rafts (Figure 1; Table 2) (68, 69). This indicates the importance

of the cholesterol-recycling process to IAV maturation.
TABLE 2 Effects of molecules that deplete cholesterol, prevent cholesterol biosynthesis, or inhibit cholesterol trafficking, and ISGs on
IAV infection.

Molecule/
ISG

Functions Effects on IAV References

Depletion of cholesterol

MbCD Depletion of cholesterol from plasma membranes and viral
envelopes

Prevention of IAV attachment for cellular entry Reduction of IAV
infectivity

55, 59–61

Prevention of cholesterol biosynthesis

Simvastatin Prevention of RhoA prenylation Inefficient transport of viral genomes into the nucleus for
replication

62

Lovastatin Reduction of cholesterol biosynthesis Blocks HA trafficking to the plasma membrane Alteration of
cholesterol composition on IAV

21, 25, 47

Fluvastatin/
atorvastatin

Reduction of cholesterol biosynthesis Reduction of vRNA replication and viral protein synthesis 63, 64

Inhibition of cholesterol transport

U18666A Prevention of cholesterol shuttling from late endosomes to the
plasma membrane

Reduction of IAV production 65–67

Annexin-A6 Prevention of cholesterol shuttling from late endosomes to the
plasma membrane

Reduction of IAV production 65–67

Rab11 Complex formation with cholesterol
Interaction with PB2 of vRNPs to deliver vRNPs to lipid rafts

Enhancement of cholesterol recycling for IAV packaging
Facilitation of vRNP delivery to lipid rafts

68, 69

ISGs regulating shuttle of cholesterol between organelles

IFITM3 Prevention of cholesterol trafficking from the ER to late endosomes Inhibition of fusion pore formation to release IAV genomes to the
cytosol

65, 70–72
fr
ER, endoplasmic reticulum; HA, hemagglutinin; IAV, influenza A virus; ISG, interferon-stimulated gene; vRNA, viral RNA; vRNPs, viral ribonucleoproteins.
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Lipid rafts are important for IAV
recognition by immunosensors

Many immunosensors, including toll-like receptors (TLRs)

and c-type lectin receptors (CLRs), which are known as pattern

recognition receptors (PRRs; 81), are localized at lipid rafts,

where they detect viral infection and trigger defense machinery

for viral clearance (Figure 1) (82, 83). In addition to PRRs on the

plasma membrane, there are intracellular PRRs, such as RIG-I-

like receptors (RLRs), which detect intracellular pathogens (84).

After IAV infection, host cells utilize both types of PRRs to

recognize either viral proteins or genomes and activate the

immune response accordingly to defend against invasion (85,

86). Considering that the depletion of lipid rafts will not only

decrease IAV production but also may affect immune responses

against IAV infection (64, 87, 88), it is important to consider the

role of statins in this context as well. Therefore, in this section,

the main types of PRRs involved in IAV infection will be

presented, and the impact of statins on PRRs and PRR-

mediated immune responses will be discussed.
Toll-like receptors

At least 10 different types of TLRs have been identified to

date, all of which are capable of recognizing either extracellular

or intracellular pathogen‐associated molecular patterns to

trigger the secretion of proinflammatory cytokines and

interferons (89–92). TLR1, TLR2, TLR4, TLR5, and TLR6 are

present in lipid rafts on the cell surface, and their signaling is
Frontiers in Immunology 06
triggered by extracellular microorganisms and ligands (93–95).

TLR3, TLR7, TLR8, and TLR9 are present on the cytosolic

organelles and engage with either foreign ligands that are

imported across plasma membrane barriers, or newly

synthesized pathogenic components (85, 96, 97). However,

some TLRs are found to shuttle between the plasma

membrane and the cytosolic organelles to recognize incoming

pathogens (95). For instance, TLR3 and TLR9 are transported to

the cell surface to recognize extracellular pathogens, while

cytosolic forms of TLR2 and TLR4 are found in the cytoplasm,

TGN, endoplasmic reticulum (ER), or nucleolus, where they are

known to engage the HA of measles virus, the glycoprotein B

(gB) of herpes simplex virus (HSV), the F protein of respiratory

syncytial virus (RSV), or the envelope protein of mouse

mammary tumor virus (MMTV) (97–99).

After internalization of IAV through endocytosis, vRNPs are

released to the cytosol following the acidification of endosomes

and fusion of the viral envelope with endosomal membranes

(100). The IAV genome is recognized by several TLRs, including

TLR3, TLR7, and TLR8 (Table 3) (85, 96, 108), among which

endosomal TLR7 and TLR8 serve as the first immunosensors for

incoming vRNPs (96). TLR7 recruits MyD88 to induce

proinflammatory cytokines and chemokines such as tumor

necrosis factor-a (TNF-a), interleukin-6 (IL-6), and IL-1b and

can further promote type I interferon release, dendritic cell (DC)

maturation, and antiviral immunity (Figure 1) (109, 110). In

addition, TLR3 senses IAV double-stranded RNA (dsRNA)

intermediates formed during IAV transcription and vRNA

replication within the endosome, and binding of the dsRNA to

TLR3 triggers the expression of IFN-b and proinflammatory

cytokines (Figure 1) (85). As TLR3-defective mice produce
TABLE 3 Immunosensors and receptors embedded in lipid rafts for IAV recognition.

Immunosensors Recognition Statins Effects References

TLRs

TLR3 dsRNA (IAV) N.D. N.D. 85

TLR4 DAMPs
(IAV-infected cells)

Atorvastatin,
simvastatin

Depletion of TLR4 from lipid rafts by atorvastatin 101, 102

TLR7/8 ssRNA (IAV) N.D. N.D. 96

CLRs

DC-SIGN/L-SIGN IAV N.D. N.D. 54

Langerin IAV N.D. N.D. 103

TNFRs

TNFR1 TNF-a N.D. N.D. 104

IFNARs

IFNAR1 Type I interferon Simvastatin,
atorvastatin

Prevention of IFNAR1 expression and endocytosis for initiating innate immune responses 105

IFNGR Type II interferon MbCD Depletion of IFNGR in lipid rafts 106

IFNLR Type III interferon N.D. N.D. 107
fr
CLRs, C-type lectin receptors; DAMPs, damage-associated molecular patterns; DC-SIGN, dendritic cell-specific ICAM3-grabbing non-integrin; dsRNA, double-stranded RNA; IAV,
influenza A virus; IFNAR, interferon-a receptor; IFNGR, interferon-g receptor; IFNLR, interferon-l receptor; L-SIGN, liver/lymph node-specific intercellular adhesion molecule-3-
grabbing integrin (also known as DC-SIGN-R); MbCD, methyl b-cyclodextrin; N.D., not determined; ssRNA, single-stranded RNA; TLRs, toll-like receptors; TNF-a, tumor necrosis factor-
a, TNFRs, tumor necrosis factor receptors.
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significantly few cytokines after IAV infection, TLR3 is believed

to play a critical role in IAV clearance (111). In contrast to TLR7

and TLR3, TLR4 is present on the cell surface and detects IAV

infection by recognizing S100A9, which is a damage-associated

molecular pattern (DAMP) secreted by macrophages after IAV

infection (Figure 1) (108). Preliminary evidence shows that

depletion of TLR4 from lipid rafts by atorvastatin and

simvastatin may reduce IAV clearance (Figure 1; Table 3)

(101, 102), although further research is needed to better

understand the extent of such effects.
C-type lectin receptors

Another group of immunosensors in lipid rafts that are

known to influence IAV infection are CLRs, which are

transmembrane glycoproteins expressed by monocytes,

macrophages, DCs, and Langerhans cells (LCs; 112–114).

CLRs are recruited to lipid rafts and function as PRRs against

the glycans of glycoproteins on pathogens (115). CLRs have been

found to be important for IAV infection (54, 103), and several

studies have shown that CLRs such as DC-SIGN, L-SIGN (also

known as DC-SIGN-R), and langerin can facilitate IAV infection

(Table 3) (54, 103). Londrigan et al. (54) showed that IAV is

recognized and internalized through DC-SIGN and L-SIGN on

Lec2 Chinese hamster ovary cells, which lack sialic acid-

modified glycoproteins that are usually recognized by IAV and

mediate infection. Moreover, Ng et al. (103) showed that the

internalization of IAV is mediated through the binding of HA to

langerin, suggesting that CLRs can function as receptors for IAV

infection. The effect of statins on CLRs remains unclear, and

further research is needed to ascertain if statins can interact with

CLRs and disrupt their facilitating effect on IAV infection.
Intracellular sensors

In addition to PRRs that are embedded on the cell surface,

many intracellular soluble PRRs such as NOD-like receptors

(NLRs) recognize IAV to trigger innate immunity (81, 116, 117).

At the early stage of IAV infection, proteins encoded by

interferon-stimulated genes (ISGs), such as serine/threonine

kinase protein kinase R (PKR), trigger the formation of stress

granules when newly synthesized uncapped vRNA and retinoic

acid-inducible gene-I (RIG-I) are recruited (118). Following the

recognition of uncapped vRNA, RIG-I is activated and

subsequently induces the polymerization of mitochondrial

antiviral signaling protein (MAVS) on the outer mitochondrial

membrane (Figure 1) (119). As MAVS preferentially

oligomerizes at the sites of mitochondria with high cholesterol

content (120), this oligomerization may be modulated by

cholesterol as well. RIG-I-MAVS signaling leads to either the

activation of nuclear factor-kB (NF-kB) through TNF receptor-
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associated factor (TRAF)-3, TRAF-6, and receptor-interacting

protein 1 (RIP-1) or the phosphorylation and activation of

interferon regulator factor (IRF)-3 and IRF-7 via TRAF3

(121–124). Activated IRF-3/IRF-7 and NF-kB subsequently

translocate to the nucleus to activate the expression of IFNs,

ISGs, and proinflammatory genes, including those encoding IL-

1b and IL-18 (Figure 1) (117, 123, 125, 126). Following secretion,
IFNs bind to the receptors on the cell surface of IAV-infected

cells or their neighbor cells to activate the JAK-STAT pathway,

which induces the expression of ISGs to act against IAV

infection (Figure 1) (127, 128). Similar to RIG-I, melanoma

differentiation-associated gene 5 (MDA5) is also activated by

IAV dsRNA intermediates and then recruited to the outer

mitochondrial membrane to trigger the IRF-3/IRF-7 and NF-

kB signaling pathway, which in turn promotes the expression of

IFN, ISGs, and proinflammatory genes (Figure 1) (129–133).

Similarly, two major NOD-like receptor (NLR) molecules,

nucleotide-binding oligomerization domain 2 (NOD2) and

NOD-, leucine-rich repeat (LRR)-, and pyrin domain-

containing protein 3 (NLRP3), serve as PRRs upon IAV

infection (134, 135). NOD2 recognizes IAV single-stranded

RNA (ssRNA) and triggers the activation and translocation of

IRF-3/IRF-7 and MAPK, by respectively recruiting the adaptor

proteins, MAVS and RIPK2, to induce IFN-a/b and

proinflammatory cytokine production (135); NLRP3 is also a

critical component of the inflammasome, which induces the

secretion of IL-1b and IL-18 and triggers a cytokine storm upon

IAV infection (Figure 1) (134, 136).

Recognition of incoming or newly synthesized IAV genomes

by either transmembrane or intracellular PRRs activates innate

immunity and initiates the expression of first-wave IFNs, ISGs,

chemokines, and proinflammatory cytokines, which stimulate

immune cell infiltration to activate the expression of second-

wave cytokines for IAV clearance. However, innate immunity

may cause uncontrolled and excessive release of inflammatory

cytokines to result in acute respiratory distress syndrome

(ARDS), also known as a cytokine storm (Figure 1) (137)

(Please also see the section, “IAV-induced inflammation and

cytokine storms”). Lipophilic statins have been reported to exert

a number of pleiotropic effects on the NLRP3 complex, acting to

reduce inflammatory activity (138). This may have an effect in

preventing or mitigating cytokine storms, which are a major

cause of morbidity and mortality in severe influenza

infections (139).
Immunosensor activation of the
immune response against IAV

Immunosensors stimulated by infection trigger signaling to

activate the expression of IFNs, TNFs, cytokines, and ISGs (140–

143) . These defense molecules then interact with
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immunoreceptors, including TNF-a receptors (TNFRs) and

interferon receptors (IFNRs), to induce immunosignaling

cascades against pathogens (127, 144).
Tumor necrosis factor receptors

TNF-a is a proinflammatory cytokine that is upregulated

after IAV infection (145) and is secreted from infected cells to

trigger warning signals in neighboring cells via binding to

TNFR1 or TNFR2 on cell surfaces (Figure 1; Table 3) (146).

The secreted TNF-a also attracts immune cells and stimulates

infiltration (147). In addition, release of TNF-a from vesicles

through fusion with the plasma membrane is mediated by the N-

ethylmaleimide-sensitive factor attachment protein receptor

(SNARE) complex, which is enriched at lipid rafts (148).

MbCD treatment to deplete cholesterol at lipid rafts reduced

the secretion of TNF-a, and Legler et al. (104) further showed

that TNFR1 translocates to lipid rafts, where it associates with

the serine/threonine kinase RIP, TRADD, and TRAF2 as a

signaling complex. Depletion of lipid rafts by MbCD abrogates

TNF-a-mediated NF-kB activation, suggesting that TNFR1

assembly at lipid rafts is essential for NF-kB activation during

IAV infection. Embedded TNFR2 in the lipid rafts of CD8+ T

cells is essential for interaction with TNF-a and induction of the

immune response against IAV infection; however, excessive

TNFR2 expression can lead to cytokine storms that may cause

severe and lethal lung injury (149).
Interferon receptors

Three types of interferon receptors, IFN-a receptors

(IFNARs), IFN-g receptors (IFNGRs), and INF-l receptors

(INFLRs), can recognize their respective IFNs when these are

released from immune cells or pathogen-infected cells (Figure 1;

Table 3) (150–152). IFN-a/b is expressed in immune cells,

including macrophages, alveolar cells, DCs, and inflammatory

monocytes, while IFN-g is expressed by NK cells and cytotoxic T

cells (CTLs) (153–155). This recognition process triggers

immunopathology during a cytokine storm. IFNLRs are

present on mucosal epithelial cells and recognize IFN-l, which
is typically released from myeloid cells, epithelial cells, and DCs

(Figure 1) (107). Reduction of cholesterol with MbCD is known

to disrupt localization and assembly of IFNGR at lipid rafts

(106), while depletion of cholesterol by simvastatin and

atorvastatin prevents IFNAR1 expression and endocytosis

(Figure 1; Table 3) (105).

During IAV infection, IFNs are produced and released from

IAV-infected cells after recognizing IAV ssRNA or dsRNA (85,

109), and when these IFNs bind with their respective receptors,

both IFNARs and IFNGRs are recruited to lipid rafts and

internalized through endocytosis (Figure 1) (156). This
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interaction induces the recruitment and phosphorylation of

the JAK-STAT and tyrosine kinase 2 (TYK2) pathways (150,

157). Following the recruitment and autophosphorylation of

STAT1/2 (158), phosphorylated STAT1/2 forms a transcription

factor complex with IRF-9, termed IFN-stimulated gene factor 3

(ISGF3; 159), which translocates from the cytosol to the nucleus

and binds to IFN-stimulated response elements (ISREs) in the

ISG promoters to initiate the transcription of genes against viral

infection (160, 161). Among ISGs activated by viruses, IFN-

induced transmembrane protein 3 (IFITM3) has been reported

to restrict the replication of dengue virus, West Nile virus,

coronavirus, and IAV (72, 162). In the early stages of IAV

infection, IFITM3 is upregulated after activation by IFN

signaling (Figure 1) (Table 2). IFITM3 prevents the transport

of cholesterol from ER to late endosomes, thus affecting fusion

with the IAV envelope, and also blocks the formation of fusion

pores to disrupt the release of vRNPs (Figure 1; Table 2) (65, 70–

72). Several recent studies have shown that statins can inhibit

IFN signaling and activity (87, 105), likely through the inhibition

of IRF-3 and JAK/STAT signaling in macrophages (105), and the

impact of this on the host antiviral response is worthy of further

investigation. Interestingly, a study of gammaherpesvirus

infection showed that type I interferon counters the antiviral

effects of statins derived through the reduction of cholesterol,

and therefore the reported inhibition of IFN activity by statins

may be expected to enhance their cholesterol-dependent

antiviral activity (163).
Lipid rafts serve as a platform for
the host adaptive immune response
against IAV

Although innate immune responses are known to limit IAV

replication and transmission (86, 109, 145, 164), IAV clearance

requires substantial activation, clonal expansion, recruitment,

and acquisition of effector immune cells at the respiratory tract,

as part of the adaptive immune response (165–167). However,

activated adaptive immunity can lead to excessive inflammatory

responses that are prone to induce cytokine storms and cause

severe or fatal lung injury (168, 169). Therefore, a well-

controlled adaptive immune response is essential to avoid

triggering cytokine storms (170, 171).

After IAV infection, B-cell receptors (BCRs) on mature B

cells interact with antigens presented on antigen-presenting cells

(APCs) and then translocate to lipid rafts, where they recruit co-

stimulatory factors to trigger downstream activating signals

(Figure 1) (172–174). Antigens recognized by BCR are then

internalized through BCR-mediated endocytosis and processed

within major histocompatibility complex class II (MHCII)-

containing lysosomes; ultimately, the processed antigens are

presented on the cell surface (172–174). The presented
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antigens on the MHCII of B cells are recognized by T-cell

receptors (TCRs) of CD4+ T cells, leading to expression of the

surface protein CD40L, as well as the cytokines IL-4 and IL-21,

to enable activation of B cells via the interaction with CD40 and

cytokine receptors on B cells (175, 176). In this way, B cells

present antigens to stimulate CD4+ T cells, and this in turn

enables the activation of B cells and the synthesis of antigen-

specific antibodies (177, 178). In the case of IAV infection, the

assistance from CD4+ T cells enables B cells to mature as

plasmablasts (PBs) at germinal centers (GCs), and the matured

B cells then produce antibodies targeting the surface HA or NA

on IAV virions, thereby preventing IAV infection or egress

(179–181). Mature B cells also produce anti-M2 antibodies to

prevent IAV production (182). Moreover, secreted antibodies

against IAV can also serve to mediate antibody-dependent cell-

mediated cytotoxicity (ADCC) through NK cells, macrophages,

gd T cells, and leukocytes (183, 184).

In addition to antibodies generated by B cells, T cells can also

play a critical role in preventing IAV infection (165). T cells

differentiate in the thymus into CD4+ T and CD8+ cells (185),

which subsequently differentiate further into cytotoxic T cells

(CTLs) after recognizing IAV-associated antigens presented on

major histocompatibility complex class I (MHCI) molecules on

DCs (185). Activated CTLs recognize IAV-infected cells, and in

response, they produce cytokines (TNF-a/b, IFN-g, and IL-2)

and cytotoxic granules containing granzymes and perforin,

which induce the formation of pores on CTL-targeted cells

and restrict IAV replication (186). CTLs also induce apoptosis

of IAV-infected cells by delivering granzymes through perforin-

mediated pores and secreting cytokines such as TNF, Fas ligand

(FasL), and TNF-related apoptosis-inducing ligand (TRAIL) to

recruit death receptors (187, 188); however, CTL infiltration in

respiratory tracts often causes excessive production of

proinflammatory cytokines by respiratory cells or immune

cells recruited to the airways, and severe injury of lung tissues

may follow as a result (168, 189). IFN-g and TNF-a secreted by

CD8+ T cells are known to enhance the release of lung epithelial

chemokines, which promote inflammatory cell infiltration, lung

pathogenic injury, and apoptosis of IAV-infected or non-

infected lung epithelial cells, thereby raising the risk of severe

cytokine storms (168, 189, 190). It has been shown that

treatment with anti-IFN-g significantly reduced lung

pathology, inflammatory cell infiltration, and mortality of

mouse models infected by IAV, indicating that IFN-g is a key

molecule involved in the development of a cytokine storm.

Statins are known to inhibit the production of several

inflammatory cytokines (87, 102, 105) and may serve to

modulate the cytotoxic activity of CD8+ T cells during IAV

clearance. Unlike CD8+ T cells, CD4+ T cells are activated by

antigens presented on MHCII molecules, followed by the

binding of CD40L to CD40 on APCs such as DCs (191).

Activated CD4+ T cells facilitate B-cell activation and antibody

production (192) and can also differentiate into various
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subtypes, depending on the co-stimulatory cytokines received

from the microenvironment (193–196).

Similar to BCRs, TCRs are located at non-raft regions during

the resting state but are translocated to lipid rafts following T-

cell activation (Figure 1) (197, 198). After TCRs recognize

antigens presented on MHCs present on APCs, TCRs interact

with the CD4- or CD8-lymphocyte-specific protein tyrosine

kinase complex (199) to initiate the T-cell activation signaling

cascade (200, 201). Failure of the Src-family kinase Lck to

localize to lipid rafts (202), depletion of lipid rafts by

atorvastatin (203), or reduction of intracellular cholesterol by

simvastatin and atorvastatin (204) can abort the activation of

adaptive immune responses. During the activation of T and B

cells, several co-stimulatory factors, including CD40, CD83, and

CD86, also localize to lipid rafts and are required for T-cell and

B-cell activation (205, 206). Shimabukuro-Vornhagen et al.

(204) showed that simvastatin and atorvastatin inhibit B-cell

activation and proliferation by downregulating the expression of

CD40 and other co-stimulatory factors such as CD80 and CD86,

and MHCII, in a dose-dependent manner. Additionally, statins

can reduce the expression of CD40, CD83, and CD86, as well as

the secretion of IL-6, IL-8, IL-12, and TNF-a by DC, resulting in

the inhibition of DC-induced T-cell proliferation and activation

(207). These studies show that lipid rafts serve as a platform to

regulate adaptive immune responses (173, 197, 206, 208), and

the modulation of lipid rafts with statins may represent a

promising approach to manage the adaptive immune response

to IAV infection.
IAV-induced inflammation and
cytokine storms

Inflammation is an innate immune response that protects

cells from IAV infection (134, 209). Inflammasome formation is

tightly regulated by two sequential signals, a priming signal and

an activating signal (210–214). Inflammasome components (e.g.,

NLRP3) and proinflammatory cytokines are upregulated by NF-

kB signaling via TLRs, RLRs, TNFR1, and IL-1 receptors, which

serve as a priming signal (Figure 1) (210, 215, 216). DAMPs

released from damaged or dying cells infected by IAV are then

sensed by NLRP3, and this triggers the activating signal

(Figure 1) (108, 134). A variety of molecules can serve as

DAMPs, including IAV ssRNAs that stimulate the release of

IL-1b, IAV M2 embedded in the TGN that can alter proton flux,

and aggregated PB1-F2 derived from dying infected cells that are

taken up by macrophages and transported to lysosomes (136,

217). Activated NLRP3 recruits an adaptor, ASC (apoptosis-

associated speck-like protein containing a caspase recruitment

domain (CARD), also known as PYCARD), along with caspase

1, to activate inflammatory caspases and promote the

maturation of IL-1b and IL-18 (Figure 1); this process also
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stimulates pyroptosis, which is a rapid, inflammatory form of

lytic programmed cell death induced after infections (217–221).

Following internalization of IAV by host cells, the virus is

recognized by TLRs, CLRs, or RLRs, which initiate the innate

immune response within infected cells to release cytokines (81).

These cytokines are in turn recognized by NK cells, CD8+ T cells,

Th2 cells, macrophages, and neutrophils, resulting in the

stimulation and production of a second wave of cytokines,

which ultimately enhance the release of lung epithelial

chemokines (168, 222–225) (Please also see the section, “Lipid

rafts serve as a platform for the host adaptive immune response

against IAV”). The chemokines aggravate apoptosis of lung cells

but can also increase inflammatory cell infiltration to promote

IAV clearance (154, 226). However, when the production of

proinflammatory cytokines, including TNF-a, IFN-a/b, IL-6,
and IL-1b, becomes excessive and spirals out of control, or if

anti-inflammatory factors fail to curb the growing inflammatory

response, a cytokine storm develops (Figure 1). The condition

often causes severe or fatal lung injury (168, 169, 227, 228).

Therefore, cytokine dysregulation is regarded as a major

pathophysiological mechanism in IAV infection, with

potentially fatal consequences, as seen in the 1997 H5N1

Hong Kong avian influenza epidemic and the 1918 influenza

pandemic (229, 230). Inhibition of the excessive inflammatory

responses driven by a cytokine storm is considered to be an

effective approach in preventing fatal IAV infections (231, 232).

Several therapies, including the TNF-a inhibitor etanercept, the

sphingosine analog AAL-R, and tyrosine kinase inhibitors such

as ponatinib, have been assessed for efficacy in blocking IAV-

induced cytokine storms (233–237). Statins have also been

shown to inhibit the production of inflammatory cytokines,

including TNF-a, IFN-g, and IL-6 or IL-8 (62, 64), and these

effects may have utility in preventing cytokine storms and fatal

IAV infections (Figure 1) (234).
The clinical potential of statins in
IAV treatment

Statins have been shown to prevent IAV propagation and

transmission in cell culture and animal studies (62, 63, 209),

suggesting that there may be a role for statins in the treatment of

IAV infection. Several studies show benefits of statin use during

IAV infection, including a 40% reduction in the risks of

pneumonia death caused by IAV infection (238), reduction of

fatal IAV infection cases in hospitalized IAV-infected inpatients

during the 2007–2008 epidemic season (239), and reduced risk

of developing influenza-associated pneumonia in patients

regularly taking statins to prevent cardiovascular disease (240).

This was also noted in a study by Brassard et al. (241), who

analyzed the records of approximately 10,000 patients in the UK

Clinical Practice Research Datalink and found that regular use of
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statins significantly lowered hospitalization and mortality rates

during IAV infection. Recently, a meta-analysis on statin efficacy

in IAV infection also found that the use of statins significantly

reduced influenza prevalence among both flu-vaccinated and

unvaccinated subjects and was associated with significantly

reduced mortality after IAV infection, including both 30- and

90-day mortality after diagnosis of infection (242). This suggests

that statins can indeed have a positive clinical impact on both

preventing IAV infection and mitigating the severity of disease

after infection.

However, many other studies have failed to confirm that

statins provide substantial protection from IAV infection. In a

retrospective cohort study that examined patients from

administrative healthcare databases in Ontario from a 10-year

period (1996 to 2006), statins were found to provide slight

protect ive effects against IAV-induced pneumonia

hospitalization, 30-day pneumonia mortality, and all-cause

mortality among approximately 2 million people aged 65 and

older (243). A single-center retrospective study investigating

statin uses and outcome in hospitalized patients during the 2009

influenza pandemic found that the use of statins lowered the

number of cases with severe or lethal lung injury, but the benefits

of statin treatment on the reduction of fatal infections was not

statistically significant (244). Izurieta et al. (245) analyzed about

1,400,000 patients prescribed with statin treatment but did not

find any benefits regarding IAV infection. Cutrell et al. (246) also

did not find any positive correlation between statin usage and

the reduction of acute illness caused by IAV infection. Similarly,

Brett et al. (247) found that statins had no effect on the reduction

of severe illness caused by IAV infection.

In light of the complex factors involved in these observational

clinical studies, Izurieta et al. (245) studied whether statins could be

used against IAV infection in mice under well-controlled etiology

and pathology conditions. However, the study showed that statins

provided only marginal inhibitory effects on protection from IAV

infection. In a similar mouse model system, Belser et al. (248)

showed that simvastatin reduced levels of IFN-g, IL-10, and TNF-a,
all cytokines known to be involved in lung infiltration, but the

survival rate of the mice did not increase after infection. In a similar

study, Radigan et al. (249) found that rosuvastatin did not increase

the survival of infected experimental animals. The lack of increase in

survival rates following treatment might be due to the use of high

titers of IAV in these studies, which caused rapid death in the

animal models studied and may not have allowed sufficient

exploration of the benefits of statins against IAV infection.
Future perspectives

The inconsistency of clinical benefits for statin use in the

treatment of severe influenza infection may be multifactorial,

being partly due to the variation in timing and duration of statin
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administration between participants, and partly due to

the differences in pathogenic mechanism(s) of pneumonia

induced by viral, bacterial, or other pathogens, course of acute

respiratory infection, vaccination against IAV infection, and

other risk factors, such as chronic or cardiovascular diseases

(241). Moreover, statins may also affect innate and adaptive

immunity (102, 203), and thus any antiviral benefit from statin

treatment may be offset by these effects on the innate immune

response. Therefore, comprehensive observational studies on

individuals who do not regularly use cardioprotective statins

or immunomodulatory agents should be conducted, to provide

better information on the therapeutic potential of statins.

Interestingly, Karlsson et al. (250) found that simvastatin

reduced symptoms of IAV-induced pneumococcal pneumonia

in obese mice, suggesting that lipid metabolic status may

influence the protective capability of statins in IAV-associated

respiratory diseases.

From another perspective, the triggering of cytokine storms

can be influenced by age, gender, and pregnancy (251). The risk

of developing secondary bacterial infections after IAV infection

ranges from 2% to 65% (252) and is closely associated with

obesity, as excess lipids in obese individuals can increase the

number of leukocytes and monocytes in the blood, upregulate

activating interactions between B cells and T cells, and raise the

number of Th1 and Th17 cells (253). These changes often lead to

chronic cell infiltration and inflammation, which can heighten

the risk of cytokine storms during IAV infection (254). A phase 2

clinical trial (ClinicalTrials.gov Identifier: NCT02056340)

conducted from October 2013 to June 2018 at Beth Israel

Deaconess Medical Center showed that atorvastatin treatment

of inpatients diagnosed with IAV infection but without statin

pretreatment or liver- or cardiovascular-associated diseases

significantly reduced levels of the inflammatory cytokine IL-6,

which may help to prevent the occurrence of cytokine storms

(30). These promising findings offer hope regarding the use of

statins to prevent excess mortality in IAV pandemics.
Concluding remarks

There is no solid clinical evidence to support the benefits of

treating severe influenza illness with statins as yet, but data from

some observational cohorts suggest that statin therapy is

associated with a reduction in poor outcomes and mortality.

The efficacy of statins in influenza management should be

examined in larger double-blind, placebo-controlled, and

randomized trials for hospitalized statin-naïve patients with

IAV infection, and the metabolic status of patients should be

taken into account as a key variable in future studies. Clinicians

should also be mindful of the effects on immunity when

weighing the benefits and risks of prescribing statins to patients.
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