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DOCK2 and phosphoinositide-3
kinase d mediate two
complementary signaling
pathways for CXCR5-dependent
B cell migration

Stefanie Wissmann1, Bettina Stolp2, Ana Marcos Jı́menez3

and Jens V. Stein1*

1Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg,
Switzerland, 2Department for Infectious Diseases, Integrative Virology, Center for Integrative
Infectious Disease Research, University Hospital Heidelberg, Heidelberg, Germany, 3Department of
Immunology, Biomedical Research Institute La Princesa Hospital, Madrid, Spain
Naive B cells use the chemokine receptor CXCR5 to enter B cell follicles, where

they scan CXCL13-expressing ICAM-1+ VCAM-1+ follicular dendritic cells

(FDCs) for the presence of antigen. CXCL13-CXCR5-mediated motility is

mainly driven by the Rac guanine exchange factor DOCK2, which contains a

binding domain for phosphoinositide-3,4,5-triphosphate (PIP3) and other

phospholipids. While p110d , the catalytic subunit of the class IA

phosphoinositide-3-kinase (PI3K) d, contributes to CXCR5-mediated B cell

migration, the precise interdependency of DOCK2, p110d, or other PI3K

family members during this process remains incompletely understood. Here,

we combined in vitro chemotaxis assays and in vivo imaging to examine the

contribution of these two factors during murine naïve B cell migration to

CXCL13. Our data confirm that p110d is the main catalytic subunit mediating

PI3K-dependent migration downstream CXCR5, whereas it does not

contribute to chemotaxis triggered by CXCR4 or CCR7, two other

chemokine receptors expressed on naïve B cells. The contribution of p110d
activity to CXCR5-driven migration was complementary to that of DOCK2, and

pharmacological or genetic interference with both pathways completely

abrogated B cell chemotaxis to CXCL13. Intravital microscopy of control and

gene-deficient B cells migrating on FDCs confirmed that lack of DOCK2

caused a profound migration defect, whereas p110d contributed to cell

speed and directionality. B cells lacking active p110d also displayed defective

adhesion to ICAM-1; yet, their migration impairment was maintained on ICAM-

1-deficient FDCs. In sum, our data uncover two complementary signaling

pathways mediated by DOCK2 and p110d, which enable CXCR5-driven naïve

B cell examination of FDCs.

KEYWORDS

B cell migration, CXCR5 (C-X-C motif chemokine receptor 5), intravital 2-photon
microscopy, phosphoinoside-3-kinase, DOCK2
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Introduction

Naïve follicular B cells are highly motile cells, which scan

ICAM-1+ VCAM-1+ follicular dendritic cells (FDCs) for the

presence of microbial antigen and the initiation of humoral

responses. The chemokine receptor CXCR5 is critical for naïve B

cell access to follicles, where FDCs, together with other stromal

cells such as marginal reticular cells, produce its only ligand

CXCL13 (1, 2). Furthermore, CXCR5 promotes together with

the ICAM-1 receptor LFA-1 dynamic B cell surveillance of FDCs

(3, 4). The lymphocyte-expressed guanine exchange factor

(GEF) DOCK2 is a key signaling molecule for Rac activation

and F-actin polymerization downstream of chemokine receptors

in lymphocytes. In the absence of DOCK2, in vitro T and B cell

migration towards homeostatic chemokines is strongly

compromised, although residual migration persists (5).

Accordingly, direct observation of peripheral lymph nodes

(PLN) using intravital twophoton microscopy (2PM)

uncovered that follicular accumulation and interstitial motility

are substantially reduced but not completely abolished in

DOCK2-/- deficient B cells (6).

DOCK family proteins contain two DOCK homology

regions (DHR), of which DHR1 is involved in phospholipid

binding for membrane localization and DHR2 mediates the GEF

activity (7–9). The DHR1 domain of DOCK2 binds the

phosohoinositide-3-kinase (PI3K) product phosphoinositide-

3,4,5-triphosphate (PIP3) as well as phosphatidic acid (PA). In

B cells, the relation between DOCK2 and PI3K activity remains

unclear to date. Whereas DOCK2 activity is not required for

PI3K activation (5) and PI3K inhibition does not affect DOCK2-

mediated migration in T cells (10), neutrophil-expressed

DOCK2 regulates migration through PIP3-dependent

membrane translocation and Rac activation (11). Along the

same line, the class IA p110d catalytic subunit is involved in B

cell chemotaxis towards CXCL13 not but CCL19, CCL21 and

CXCL12 (12), and regulatory subunits of class IA are required

for basal B cell motility in vivo (13). A potential participation of

class I catalytic subunits besides p110d during CXCR5-mediated

B cell chemotaxis has not been examined yet, despite evidence

for activation of additional class I PI3K family members

downstream of G-protein coupled receptors (14).

Here, we examined the migratory behavior of B cells

carrying mutations in DOCK2 and the catalytic site of p110d
(p110dD910A/D910A), in combination with PI3K-specific

pharmacological inhibitors, to dissect their contribution for

CXCL13-elicited motility. Among class I PI3K catalytic

subunits, we confirm a key contribution of p110d to CXCR5-

but not CXCR4 and CCR7-dependent migration. DOCK2 and

p110d activity comprised two complementary pathways for

CXCR5-triggered B cell migration, and inhibition of both

factors completely abolished chemotaxis. We corroborated our

in vitro findings using intravital imaging of interstitial B cell

scanning of FDCs. Finally, we found that while LFA-1 activity is
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reduced in the absence of catalytically active p110d, the

interstitial migration defect of p110dD910A/D910A B cells is

maintained on ICAM-1-deficient FDCs. In sum, our study

sheds light on intracellular signaling pathways governing

CXCR5-driven follicular B cell motility, a prerequisite for the

unfolding of humoral immune responses.
Results

p110d is the dominant class I PI3K
mediating B cell chemotaxis to CXCL13

The class I PI3K family member p110d contributes to

directed B cell migration towards CXCL13 (12). Using

Transwell assays, we confirmed a role for the catalytic activity

of p110d for in vitro chemotaxis of primary murine B cells

towards CXCL13, which was particularly evident at lower

chemokine concentrations (reduction of 48% at 100 nM and

33% at 250 nM CXCL13 for p110dD910A/D910A B cells as

compared to WT B cells, respectively; Figure 1A). To address

whether additional catalytic subunits might contribute to WT

and p110dD910A/D910A B cell migration, we performed

chemotaxis assays in presence of the p110b inhibitor TGX221,

the p110g inhibitor AS604850, the p110a/b/d/g inhibitor PI-103
and, as control, the p110d inhibitor IC-87114. These data

uncovered a decrease of WT B cell chemotaxis towards 100

nM CXCL13 only with PI-103 and IC-87114 (52% and 54%

inhibition, respectively), while none of the inhibitors had a

significant effect on p110dD910A/D910A B cell migration

(Figure 1B). These findings suggest that other class IA and IB

subunits do not substantially contribute to primary B cell

migration towards CXCL13. The promigratory signaling

function of p110d was restricted to CXCR5, since B cell

migration to CCR7 and CXCR4 ligands remained unchanged

by genetic or pharmacological inhibition of its activity

(Figures 1C, D), as reported (12). Similarly, CCR7-mediated

primary T cell chemotaxis was not reduced by genetic or

pharmacological inhibition of the catalytic activity of

p110d (Figure 1E).
DOCK2 and p110d comprise two
complementary pathways for CXCR5-
mediated B cell migration

We next examined the potential relationship of DOCK2 and

p110d during in vitro B cell chemotaxis towards CXCL13, given that

DOCK2 contains a PIP3 binding domain. In a first set of

experiments, we treated WT B cells separately or in combination

with IC-87114andCPYPP,whichblocks theGEFactivity ofDOCK2

bybinding to its catalyticDHR2domain(15).Thesedata showed that

DOCK2 and p110d comprised two complementary pathways for
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CXCR5-mediated chemotaxis, since only simultaneous treatment

with both inhibitors completely abolished migration (Figure 2A). A

blocking effect of CPYPP and IC-87114 was also observed for

CXCL13-induced migration of p110dD910A/D910A and DOCK2-/- B

cells, respectively (Figure 2A).

Since inhibitors are often not entirely specific, we generated

p110dD910A/D910A x DOCK2-/- mice to corroborate our findings

in a genetic model. Double-deficient mice were born at sub-
Frontiers in Immunology 03
mendelian ratios and showed growth retardation (not shown).

Owing to the difficult breeding, we could isolate cells from these

mice for only limited amounts of chemotaxis assays. In these

experiments, residual migration of DOCK2-/- B cells to 250 nM

CXCL13 was abolished when p110d activity was additionally

compromised (Figure 2B). Taken together, these data suggest

that DOCK2 and p110d act in largely non-overlapping pathways

downstream of CXCR5 signaling.
BA

FIGURE 2

p110d and DOCK2 comprise two complementary pathways for B cell migration to CXCL13. (A). Normalized chemotaxis of WT, p110dD910A/D910A and
DOCK2-/- B cells to 100 nM CXCL13 in presence of DOCK2 and p110d inhibitors using Transwell assays. (B). Chemotaxis of DOCK2-/- and DOCK2-/- x
p110dD910A/D910A B cells to 100 and 250 nM CXCL13. Data in A and B are shown as mean ± SEM pooled from 2-5 experiments performed in duplicates
and analyzed using ANOVA with Tukey’s post-test (A) or an unpaired student’s t-test (B). *p < 0.05; **p, < 0.01; ***p < 0.001.
B

C D E

A

FIGURE 1

B cell migration to CXCL13 but not CCL21 or CXCL12 is mediated by p110d activity. (A). Chemotaxis of primary murine WT and p110dD910A/D910A

B cells to 100 and 250 nM CXCL13 using Transwell assays. (B). Chemotaxis of WT and p110dD910A/D910A B cells to 100 nM CXCL13 in presence of
subunit-specific PI3K inhibitors. (C). Chemotaxis of WT and p110dD910A/D910A B cells to 100 nM CCL21 in presence or absence of p110d inhibitor.
(D). Chemotaxis of WT and p110dD910A/D910A B cells to 100 nM CXCL12. (E). Chemotaxis of primary murine WT and p110dD910A/D910A T cells to
100 nM CCL21. Data in (A–D) are shown as mean ± SEM pooled from 3-5 independent experiments (E: 2 independent experiments) performed
in duplicates and analyzed using unpaired t-test (A, D) or ANOVA with Dunnett’s test for “control + chemokine” conditions (B, C, E). *p < 0.05;
**p < 0.01; ***p < 0.001.
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p110d activity contributes to B cells
speed and directionality during follicular
migration

CXCR5 is required for B cell entry to B cell follicles (1),

where it contributes to fast motility (4). This motility is in large

part driven by DOCK2-mediated Rac activation, since DOCK2-/-

B cells show substantially reduced interstitial movement (6).

Using 2PM of popliteal PLN containing adoptively transferred B

cells (4), we confirmed a substantial drop in mean speeds in

DOCK2-deficient B cells (from 7.9 ± 4.7 to 4.0 ± 2.9 µm/min for

WT and DOCK2-/- B cells, respectively; Figure 3A). This decline

in speed was accompanied by broader turning angles and a low

motility coefficient (MC), a proxy for a cell’s ability to scan an

area (20.7 and 3.6 µm2/min for WT and DOCK2-/- B cells,
Frontiers in Immunology 04
respectively; Figures 3B, C), in line with our previous

observations (6).

We then examined whether p110d contributed to B cell

scanning of B cell follicles in vivo. In contrast to DOCK2-/- B

cells, WT and p110dD910A/D910A B cells accumulated efficiently

in B cell follicles (Figure 3D; Supplemental Movie 1). However,

p110dD910A/D910A B cells moved with decreased speeds and less

directionality compared to WT B cells, as measured by

meandering index and turning angle distribution (Figures 3E-

G). As a result, p110dD910A/D910A B cells had an approximately

50% reduction of their MC compared to WT B cells (Figure 3H).

In contrast, interstitial p110dD910A/D910A T cell migration speeds

were similar to those of WT T cells (Figure 3I). These data

support a contribution of p110d activity to B cell motility along

the FDC network inside B cell follicles.
FIGURE 3

p110d contributes to B cell scanning in follicles. (A, B). Average track speeds and (A) and tuning angle distribution (B) of WT and DOCK2-/- B
cells. (C). Mean displacement versus time of WT and DOCK2-/- B cells. The motility coefficient (MC) is indicated. (D). 2PM image from the FDC
(white)-positive B cell follicle containing WT (green) and p110dD910A/D910A (blue) B cells after adoptive transfer in WT recipients. The boxed area
is shown magnified for the 0 and 2 min time points, with WT B cell tracks shown in white and p110dD910A/D910A B cell tracks shown in red.
Number of tracks analyzed: WT, n = 708; p110dD910A/D910A, n = 835; DOCK2-/-, n = 104. Scale bar, 40 µm. (E–G). Average track speeds (E),
meandering index (F) and tuning angle distribution (G) of WT and p110dD910A/D910A B cells. (H). Mean displacement versus time of WT and
p110dD910A/D910A B cells. (I). Average track speeds of WT and p110dD910A/D910A T cells (n= 298 and 370 tracks, respectively) in intravital imaging of
lymphoid tissue. Data from one (A, B), two (I) or 5 (E–H) independent experiments (= recipient mice) and analyzed by an unpaired t-test (A, E, I)
or Mann-Whitney test (B, F, G). ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982383
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wissmann et al. 10.3389/fimmu.2022.982383
Reduced speed and directionality of
p110dD910A/D910A B cells are maintained in
the absence of stromal ICAM-1

In addition to CXCR5, LFA-1 contributes to B cell motility

on ICAM-1+ VCAM-1+ FDCs, whereas a4 integrins play no

detectable role (16). In line with this, b2 integrin-dependent in

vitro leukocyte migration requires Syk-mediated p110d
translocation to the leading edge (17). Given the comparable

impact of defective LFA-1 and p110d activity on dynamic B cell

motility parameters, we examined whether p110d activity

mediated its promigratory effect via LFA-1 activation. In

support of this, an analysis of CXCL13-triggered in vitro

adhesion to FDC-expressed adhesion molecules uncovered a

reduction in p110dD910A/D910A B cell binding to ICAM-1 but not

VCAM-1 (Figures 4A, B). Again, this adhesion defect was

restricted to B cells, since p110dD910A/D910A T cell adhesion to

ICAM-1 was not impaired (Figure 4C). We transferred WT and

p110dD910A/D910A B cells into ICAM-1-/- recipients, the main

stromal LFA-1 ligand used by B cells in lymphoid tissue (16). We

hypothesized that WT and p110dD910A/D910A B cells would show

similar migration speeds if p110d exerted its promigratory effect

via LFA-1. However, we still observed reduced migration speeds,

meandering index and increased turning angles in p110dD910A/
D910A B cells compared to WT B cells (Figures 4D–F). As a

consequence, their MC remained lower than the one of WT B
Frontiers in Immunology 05
cells (Figure 4G). These data suggest that the migration defect of

p110dD910A/D910A B cells is largely independent of LFA-1-

mediated adhesion to the FDC network. In sum, our data

uncover a role for p110d activity during B cell migration in

lymphoid tissue, which is less pronounced than the effect caused

by absence of DOCK2.
Discussion

CXCR5-driven B cell chemotaxis to CXCL13 is critical for

the development of humoral immune responses, as it enables

efficient surveillance of FDCs and the proper formation of

germinal centers (1, 18, 19). Here, we examined the

intracellular wiring of CXCR5 that transmits biochemical

input into a promigratory response. Our in vitro chemotaxis

assays confirmed a critical role for the Rac GEF DOCK2 in

mediating robust B cell chemotaxis to CXCL13, while p110d
participates in a complementary signaling module. These

observations were recapitulated in vivo, suggesting the

existence of two signaling pathways underlying CXCL13-

mediated motility. The requirement of a PI3Kd-dependent
signaling module appears restricted to CXCR5, since migration

to CXCR4 and CCR7 ligands was not impaired.

Intravital imaging has uncovered that B cell adhesion in PLN

high endothelial venules (HEV) is more strongly attenuated by
B C D E

F G

A

FIGURE 4

p110d mediates interstitial B cell motility independent of ICAM-1. (A, B). Adhesion of WT and p110dD910A/D910A B cells to ICAM-1 (A) or VCAM-1
(B) measured 3 min after CXCL13 addition. (C). Adhesion of WT and p110dD910A/D910A T cells to ICAM-1 measured 3 min after CCL21 addition.
Values in A-C are normalized to the number of adhered cells in wells with chemokine addition. (D–F). Average track speeds (D), meandering
index (E) and turning angle distribution (F) of WT and p110dD910A/D910A B cells in ICAM-1-/- recipients. Number of tracks analyzed: WT, n = 490;
p110dD910A/D910A, n = 427. (G). Mean displacement versus time of WT and p110dD910A/D910A B cells in ICAM-1-/- recipients. The motility
coefficient (MC) is indicated. Data in (A–C) are from 3-6 and in (D-F) from 2 independent experiments and analyzed using unpaired t-test with
Welch correction (A–C), unpaired t-test (D) and Mann-Whitney test (E, F). *p < 0.05; **p < 0.01; ***p < 0.001.
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the absence of DOCK2 as compared to adhesion in Peyer’s patch

(PP) HEV, although in both cases there is a significant reduction

in B cell attachment (10). In contrast, lack of PI3Kd activity

mainly affects B cell homing to mesenteric lymph nodes (MLN)

and PP, while these cells show normal homing to PLN (12). This

may be due to the fact that CXCR5 plays a more prominent role

for B cell homing to MLN and PP as compared to PLN, where

CCR7 and CXCR4 play compensating roles (20, 21). Thus, the

cooperative action of DOCK2 and PI3Kd activity appears to

extend to CXCR5-driven B cell entry into secondary

lymphoid organs.

The parallel occurrence of a major, DOCK2-dependent

pathway and a minor PI3K-dependent pathway in B cells

mirrors observations made in naïve T cells. In T cells, the class

IB p110g isoformmediates DOCK2-independent migration via a

pathway involving the PIP3-binding pleckstrin homology (PH)-

domain containing Tec family kinase Itk (6, 10, 12, 22).

Accordingly, DOCK2-/- x p110g-/- T cells show no residual

migration to CCL21 (10). In combination with the lack of

p110d involvement during naïve T cell migration in vitro and

in vivo, our data support a model where p110g and p110d
catalytic subunits contribute to T and B cell motility in a

subset-specific manner. Of note, during CD4+ T cell

differentiation to follicular helper T cells (TFH), p110d signals

downstream ICOSL induce TFH precursor migration into the B

cell follicles (23), suggesting context-specific roles for PI3K

family members during lymphocyte positioning within

lymphoid organs.

It remains incompletely understood how p110d signaling

contributes mechanistically to B cell migration downstream

CXCR5, although Rac activation is likely to be required (24).

A conceivable scenario is that PI3Kd activates the B cell

homologue of Itk, the PH-domain-containing Btk (25). In

ch ron i c l ymphocy t i c l eukemia (CLL) c e l l l i n e s ,

pharmacological blockade of either p110d or Btk reduces

migration to CXCL13 (26, 27). Btk is linked to Vav

phosphorylation, leading to downstream WASP activation and

F-actin remodeling (28).

Unexpectedly, we found that the defect of p110dD910A/D910A

B cell was maintained in lymphoid microenvironment lacking

stromal ICAM-1, despite the known involvement of Syk-p110d
signaling during b2-integrin-mediated migration on 2D surfaces

(17). A plausible explanation is that akin to naïve T cell

migration within lymph node parenchyma, the main role for

LFA-1 might be for generation of traction forces without

inducing substantial adhesion (29). In the 3D confined

environment of lymphoid tissue, substrate adhesion is

externally enforced by juxtaposed cells, thus compensating for

reduced LFA-1 activity.

The robust DOCK2-driven migration of p110dD910A/D910A B

cells to CXCL13 raises the question whether PI3K-mediated

signaling has additional roles beyond promoting cell motility.
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Another open point is whether PI3Kd signaling might be

involved in signal transduction downstream GPR183, although

this receptor appears to have an inhibitory effect on CXCR5-

mediated migration (4). In T cells, Itk contributes to

homeostasis, suggesting a role for PI3K-dependent signaling in

maintaining peripheral T cell numbers (22). Similarly, it is

conceivable that CXCR5-mediated PI3K activation contributes

to B cell homeostasis, in line with the well-documented role of

this pathway for survival (30). In addition, the selective

integration of p110d signaling downstream CXCR5, but not

other receptors for homeostatic chemokines, might facilitate B

cell activation by feeding into the BCR-triggered PI3K-Btk

signaling axis. A similar costimulatory signaling pathway was

reported for CCL21 during T cell activation (31).

In sum, our data uncover dual signaling pathways mediating

physiological CXCR5-triggered B cell motility that underpins

rapid detection of cognate antigens presented on FDCs. Given

that small tyrosine kinase inhibitors targeting p110d and Btk are

widely used in the treatment of leukemias (32–34), it is of clinical

interest to understand potential implications on the patients’

immune system.
Materials and methods

Mice

Six to 12-week-old male and female DOCK2-/- (5), p110dD910A/
D910A (35), DOCK2-/- x p110dD910A/D910A and ICAM-1-/- (36) mice

on the C57BL/6 backgroundwere bred at theUniversity of Bern and

Fribourg. Sex-and age-matched C57BL/6 mice (Harlan, The

Netherlands) were used as WT lymphocyte donors or recipient

mice. All experiments were performed in accordance with federal

animal experimentation regulations and approved by the

corresponding cantonal committee.
Isolation and labeling of primary
lymphocytes

B or T cells from PLN, MLN and spleen were purified by

negative immunomagnetic cell sorting according to

manufacturer’s instructions (Dynal or Stemcell technologies;

purity of >95%). For intravital imaging experiments, purified B

or T cells (5 x 106) from C57BL/6 or genetically modified mice

were fluorescently labeled for 15 min at 37°C with Cell Tracker

blue (20 µM final concentration), Cell Tracker orange (5 µM),

Cell Tracker green (3 µM) or CFSE (2.5 µM), washed and

injected intravenously into sex-matched C57BL/6 recipient

mice, together with 10-15 µg Alexa633-conjugated MECA-79

to label high endothelial venules. Dyes were switched between

experiments to control for non-specific effects.
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Chemotaxis

CCL21 and CXCL12 were from Peprotech, and CXCL13 was

purchased from R&D systems. Chemotaxis assays were carried out

using Transwell chambers (5 µm pore size; CoStar) adding 100 µl

cell suspension (5 x 106 cells/ml) in complete medium (RPMI/10%

FCS/standard supplements) to the top chamber and indicated

amounts of chemokine in the bottom chamber. After 2 h at 37°C,

7% CO2, the percentage of migrated cells was calculated by flow

cytometry after comparing with a precalibrated bead standard

(Sigma-Aldrich) and correcting for variations in input

concentrations. The DOCK2 inhibitor CPYPP (Selleck) was used

at 40 µM throughout the chemotaxis assay (15). The isoform-

specific PI3K inhibitors TGX221 (0.1 µM final conc.; Tocris), PI-

103 (1 µM; Tocris), AS604850 (1 µM; Selleck),and IC-87114 (0.5

µM; Selleck) were present throughout the chemotaxis assay.
Adhesion assay

Adhesion assays were performed as described (10). In brief,

purified B or T cells were allowed to settle on 8-well-slides coated

with 1.5 µg/ml murine ICAM-1 or 2.5 µg/ml VCAM-1 (R&D

Systems). Chemokine was added at a final concentration of 1 µM

for 3 min. Slides were rinsed with PBS to wash off unbound cells,

fixed in glutaraldehyde, and the number of adherent cells was

determined at the site of chemokine addition.
Twophoton intravital microscopy

Fluorescently labeled WT and genetically modified B cells

were adoptively transferred into WT or ICAM-1-/- recipients 12-

48 h before 2PM recording. In some experiments, PE-conjugated

anti-CD35 mAb (0.5 µg in 10 µl PBS/mouse) was injected into the

footpad 12 h before 2PM to label the FDC network of the draining

popliteal PLN. Recipient mice were surgically prepared to expose

the right popliteal PLN, which was kept at 36-38°C. Mice were

then transferred to an Olympus BX50WI fluorescence microscope

attached to a 2PM scanner (TrimScope system, LaVision Biotec,

Bielefeld, Germany) equipped with an 20X objective (Olympus,

NA 0.95). For four-dimensional analysis of cell migration, 8-16 z-

stacks (spacing 4 µm) of 200-300 µm x-y sections were acquired

every 20 s for 20 to 30 min, with typically 3-4 distinct areas

recorded per preparation. Image sequences were transformed into

volume-rendered four-dimensional movies using Volocity (Perkin

Elmer) or Imaris (Bitplane), which was also used for semi-

automated tracking of cell motility in three dimensions. From x,

y and z coordinates of cell centroids, parameters of cellular

motility were calculated as described previously. In brief, the

track speed is depicted as average speed, with each dot

representing one track. Owing to the large number of tracks,
Frontiers in Immunology 07
they are shown as box and whisker plots with whiskers covering 1-

99% of data points. For turning angles and motility coefficients, we

usedMatLab scripts kindly provided by Dr. SarahHenrickson and

Prof. Ulrich H. von Andrian (Harvard University, Boston, USA).

In some experiments, purified WT and p110dD910A/D910A T cells

were transferred into WT recipients and their migratory behavior

was analyzed in the T cell area as above.
Statistical analysis

The student’s t-test or ANOVA were used to determine

statistical significance (Prism, GraphPad). Statistical significance

was set at p < 0.05.
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