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Background: Prostate cancer (PCa), a prevalent malignant cancer in males

worldwide, screening for patients might benefit more from immuno-/chemo-

therapy remained inadequate and challenging due to the heterogeneity of PCa

patients. Thus, the study aimed to explore the metabolic (Meta) characteristics

and develop a metabolism-based signature to predict the prognosis and

immuno-/chemo-therapy response for PCa patients.

Methods: Differentially expressed genes were screened among 2577metabolism-

associated genes. Univariate Cox analysis and random forest algorithms was used

for features screening. Multivariate Cox regression analysis was conducted to

construct a prognostic Meta-model based on all combinations of metabolism-

related features. Then the correlation between MetaScore and tumor was deeply

explored from prognostic, genomic variant, functional and immunological

perspectives, and chemo-/immuno-therapy response. Multiple algorithms were

applied to estimate the immunotherapeutic responses of two MeteScore groups.

Further in vitro functional experiments were performed using PCa cells to validate

the association between the expression of hub gene SLC17A4 which is one of the

model component genes and tumor progression. GDSC database was employed

to determine the sensitivity of chemotherapy drugs.

Results: Two metabolism-related clusters presented different features in

overall survival (OS). A metabolic model was developed weighted by the

estimated regression coefficients in the multivariate Cox regression analysis
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(0.5154*GAS2 + 0.395*SLC17A4 - 0.1211*NTM + 0.2939*GC). This Meta-

scoring system highlights the relationship between the metabolic profiles

and genomic alterations, gene pathways, functional annotation, and tumor

microenvironment including stromal, immune cells, and immune checkpoint in

PCa. Low MetaScore is correlated with increased mutation burden and

microsatellite instability, indicating a superior response to immunotherapy.

Several medications that might improve patients` prognosis in the MetaScore

group were identified. Additionally, our cellular experiments suggested knock-

down of SLC17A4 contributes to inhibiting invasion, colony formation, and

proliferation in PCa cells in vitro.

Conclusions: Our study supports the metabolism-based four-gene signature

as a novel and robust model for predicting prognosis, and chemo-/immuno-

therapy response in PCa patients. The potential mechanisms for metabolism-

associated genes in PCa oncogenesis and progression were further

determined.
KEYWORDS

prostate cancer, metabolism, prognostic model, immuno-/chemotherapy response,
immune infiltration
Introduction

Prostate cancer (PCa) accounts for one of the most prevalent

malignancies among males worldwide and ranks the second

highest cause of elderly male tumor-related deaths (1, 2). Most

patients with localized PCa receive standard therapy including

androgen deprivation therapy, radical prostatectomy or

radiotherapy, which leads to favorable cancer control (3, 4).

However, approximately 20-30% of patients will develop a

castration-resistant or biochemical recurrence (BCR), and such

patients are more likely to suffer metastases and cancer-specific

mortality (5). Therefore, exploring the tumor biomarker model

that can classify the subtypes of PCa and predictively determines

efficacious risk signatures remains crucial. Over the past few

decades, clinical-stage, prostate-specific antigens (PSA) and

Gleason scores were mainly employed to diagnose and

monitor the prognosis of PCa patients (6, 7). These clinic

pathological parameters do not possess favorable specificity

and sensitivity in assessing the prognosis of PCa patients (8,

9). Particularly, PSA has undergone some discredit for it might

bring overdiagnosis and overtreatment in adequately treated

patients through active surveillance (9). In this aspect, better

informative biomarkers are desperately required to evaluate the

increased risk of overall survival (OS).

PCa exhibits distinct statuses of metabolism from normal

tissues thereby supplying a novel approach to distinguish tumors

viametabolic differences. Recent research interpreted that specific

metabolisms are closely associated with PCa, for instance, citrate,
02
lipid and choline (10). A study reported urea cycle metabolites

increased in PCa utilizing capillary electrophoresis and mass

spectrometry (11). Studies demonstrated that PCa cells consume

large amounts of glucose during the metastatic stage (12, 13) and

highly glycolytic metabolism PCa patients showed a poor

prognosis (14). In addition, activation of glycolysis leads to

increased generation of lactic acid that facilitates several tumor-

accelerating procedures, such as stemness properties, cancer

invasion and metastasis, angiogenesis, inhibition of antitumor

immune response, and hypoxia resistance (15, 16). However, the

correlation between the metabolism gene signature and OS of PCa

is yet poorly defined. An understanding of the cellular metabolism

of PCa is essential in the prediction of prognosis and development

of potential metabolically targeted treatments.

Here, we developed a metabolism-based four-gene model for

predicting prognosis and chemo-/immuno-therapy response

utilizing The Cancer Genome Atlas (TCGA-PRAD) and Gene

Expression Omnibus (GEO) dataset (GSE16560). Furthermore,

we performed cellular experiments to explore the correlation

between the SLC17A4 expression and the in vitro proliferation

and invasion phenotype of PCa cells.
Materials and methods

Data collection and preprocessing

We collected PCa gene expression data from several publicly

available databases. A total of 777 samples from PCa patients were
frontiersin.org
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enrolled in the study: 496 from TCGA-PRAD (training cohort)

and 281 from GSE16560 (validation cohort). The clinical and

RNA-sequencing (RNA-seq) data were obtained from The Cancer

Genome Atlas (TCGA, http://cancergenome.nih.gov). The

GSE16560 datasets were derived from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).
Identification of PCa MetaCluster

A published list of 2577 metabolism-associated genes was

acquired for subsequent clustering (17). Univariate Cox was

employed to filter the candidate genes (p< 0.01) and 46

candidate metabolic genes were screened for clustering in the

TCGA-PRAD cohort. PCa patients with distinct metabolic gene

profiles were stratified utilizing k-means algorithm, which

confirmed metabolic-associated patterns and classified patients

for further evaluation using the R “ConsensusClusterPlus”

package (18). Afterward, the correlation between the

MetaCluster and the collected 114 metabolic pathways was

calculated (19).
Establishment of metabolic
gene signature

The R “limma” package was adopted to identify differentially

expressed genes |(log FC)| > log2(1.5) & P < 0.05 was selected for

analysis (20). Subsequently, univariate Cox regression was

performed to determine prognostic MetaGenes (P< 0.01). We

then applied random survival forest algorithm through the R

“randomForestSRC” package to screen out the more valuable

MetaGenes with prognostic potential (variable relative

importance> 0.3) (21). The metabolic gene signature was

constructed based on all different combinations of prognostic

MetaGenes and weighted by their estimated regression

coefficients in multivariate Cox regression analysis. The final

metabolic gene signature named MetaScore was identified with

the highest 5 years-area under the curve (AUC). The

classification was conducted with model-based hierarchical

agglomerative clustering based on the Gaussian finite mixture

model (GMM) (22).
Validating the accuracy of the MetaScore

The MetaScore of the 496 PCa patients in the TCGA-PRAD

dataset was estimated, and then we stratified the PCa patients

into high- and low-MetaScore groups according to the best

cutoff. The Kaplan-Meier curve analyzed the associations

between OS and MetaScore. TimeROC was employed to verify

the efficiency and accuracy of the prognosis predictions of

MetaScore for 1-, 3- and 5-year. Univariate and multivariate
Frontiers in Immunology 03
cox regression analysis was employed on the MetaScore and

individual clinical variables including age and tumor stage of

patients (T and N).
Analysis of pathway enrichment and
functional annotation

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) related gene sets were obtained from the

MSigDB (23). Gene set enrichment analysis (GSEA) was

conducted using the R “clusterProfiler” package (24) and gene

set variation analysis (GSVA) was performed through the R

“GSVA” package (25).
Genomic alteration characteristics

We utilized GISTIC 2.0 (http://www.broadinstitute.org/

cancer/software/genepattern) to explore the somatic copy

number alternations (SCNAs) in PCa based on TCGA-PRAD.

Patients were categorized into low- and high-MetaScore groups.

The specific genomic enrichment, copy number alternations

(CNAs), and the threshold copy number (CN) at alteration

peaks related to MetaScore were detected. We used “maftools” R

package for the analysis of somatic mutations. Subsequently,

tumor mutation burden (TMB) (26) was calculated based on the

TGCA-cohort somatic mutations to evaluate the mutation status

between different MetaScore groups.
Estimation of immune infiltration and
immune checkpoint

R “IOBR” package was used for immune infiltration

assessment (27). CIBERSORT algorithm (28), MCPcounter

algorithm (29), ssGSEA algorithm (30), and TIMER algorithm

(31) were employed to evaluate the relative fraction of the

immune cell in the TCGA-PRAD cohort. ESTIMATE

algorithm was applied for calculating the ESTIMATE score

and tumor purity (32). The correlations between MetaScore

groups and immune checkpoint expression were analyzed.
Prediction of immunotherapy for
PCa patients

The IMvigor dataset was downloaded from a freely available

database, which included installed software and R

“IMvigor210CoreBiologies” package (http://research-pub.gene.

com/IMvigor210CoreBiologies). Immunotherapy predictive value

of the four-gene model was verified in multi-datasets [GSE35640

(anti-recMAGE A3, metastatic melanoma and non-small-cell lung
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cancer), GSE78220 (anti-PD-1, melanomas), and GSE91061 (anti-

CTLA4 and ant-PD1, advanced melanoma)]. Survival probability

for PCa patients with high- and low-MetaScore in the IMvigor and

GSE78220 cohort was investigated. Wilcoxon test was performed in

Microsatellite instability (MSI) (33) to describe the differences in

immunotherapeutic response between MetaScore groups.
Prediction of chemotherapy response

The chemotherapeutic response in PCa patients was assessed

using the Genomics of Drug Sensitivity in Cancer database

(GDSC, https://www.cancerrxgene.org) by R “oncoPredict”

package (34). PCa patients’ drug sensitivity in PRISM and

CTRP2.0 was measured by R “pRRophetic” package (35).
Cell culture and transfection

The prostate cancer cell lines PC3 and DU145 were employed

to explore the effect of SLC17A4 on PCa. PC3 cells and DU145

cells were cultured in RPMI 1640 medium (Biological Industries)

with 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin (Beyotime Biotechnology, China). Cultures were

done in a 37°C humidified incubator with 5% CO2. The cells

were digested and passed with a ratio of 1:6 upon attaining 80%

density. Each experiment was performed in triplicate. Specific

siRNAs targeting SLC17A4 were designed and synthesized from

Sangon Biotech (Shanghai, China). The transfection was

conducted using Lipofectamine 2000 (Invitrogen, USA)

according to the manufacturer’s instructions. Briefly, cells were

transfected in 24-well plate in a total amount of 5 ml (20 mM)

siRNA-NC or siRNA-SLC17A4 (si-RNA-626 or si-RNA-1080)

with 5 ml of lipofectamine 2000. Then, the medium was changed

after 6 h of transfection and samples were collected for subsequent

assays after 48 h incubation.
RNA isolation and RT-qPCR

The total mRNA was extracted from transfected cells by the

TRIzol solution (Thermo Fisher, USA). The mRNA reverse

transcription kit was purchased from Cwbio (China) for reverse-

transcription of mRNA to cDNA. The primers sequences of

GAPDH were ACAGCCTCAAGATCATCAGC (Forward),

GGTCATGAGTCCTTCCACGAT (Reverse). The primers of

SLC17A4 were GCACTCTTCCTCCCTCAGTA (Forward),

ATTCATCCACTATCCCTTTCCTG (Reverse). The cycling

conditions were as follows: 95° for 10 min, followed by 40 cycles

at 95° C for 15 s and 60° C for 30 s. GAPDH was employed as an

internal control to normalize the relative mRNA expression levels.
Frontiers in Immunology 04
Antibodies and western blot

The total protein concentration was quantified by the BCA

method. Proteins were separated by 10% SDS-PAGE and then

they were transferred from the gel to an NC membrane. The

membrane was incubated overnight at 4 °C with primary

antibody SLC17A4 (0.5µg/ml, Thermo Fisher, USA) and b-
actin (1: 5000, ProteinTech, USA) after being blocked for 1.5

h. Signals were detected by ECL reagent after incubation with the

corresponding secondary antibody.
CCK-8 assay

The Cell Counting Kit-8 (DOJINDO, Japan) was employed

to evaluate cell proliferation. The transfected PC3 and DU145

cells with 1000 cells/well were inoculated in 96-well plates. CCK-

8 solution (10 ml) was added to each well, and cell proliferation

was measured at 24, 48, and 72 h.
5-ethynyl-2’-deoxyuridine assays

The transfected PC3 and DU145 cells were plated into a 20

mm round coverslip. The operations were performed following

the instruction manual using the EdU Cell Proliferation Assay

Kit (Ribobio, China).
Transwell assay

The upper chambers of the Transwell contain a membrane

(8-mm pore; Corning, USA) that was placed into 6-well plates.

Next, the upper chamber was inoculated with 100 ml cell

suspensions (2*106 cells/ml) maintained in a serum-free

medium, and the lower chamber was filled with a 500 ml
culture medium supplemented with 10% FBS. After 48 h of

culture, the invasion cells were fixed (4% Paraformaldehyde) and

stained (0.1% Crystal Violet).
Colony formation assay

The transfected PC3 and DU145 cells were seeded into 6-

well plates (200 cells/well) and then incubated for 2 weeks. The

colonies were then fixed for 15 min with 4% Paraformaldehyde

solution (1 ml/well) and stained for 30 min with crystal violet

reagent (Solarbio, China). The stained colonies were

photographed and computed.
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Statistical analysis

The Shapiro–Wilk test was employed to detect whether the

variables were normally distributed. The Wilcoxon test and

Kruskal-Wallis test was utilized to compare the non-normally

distributed data between the two groups and multiple groups,

respectively. Unpaired Student’s t-test and one-way analysis of

variance (ANOVA) was used to compare normally distributed

variables between the two groups and multiple groups,

respectively. The Kaplan-Meier survival plots were used to

estimate OS between two groups using the R package

“survminer”. The Cox regression for survival analysis was

performed by R package “survival”. Time-dependent receiver

operating characteristic (ROC) curves were plotted using the R

package “timeROC”. All heatmaps were conducted through R

“ComplexHeatmap” package. The data were mainly visualized

using ggplot2 R software. All the tests were two-sided, and P<

0.05 was considered statistically significant.
Results

K-means algorithm identifies two
metaClusters in PCa

Flowchart Figure 1A comprehensively described our study.

In order to characterize metabolic heterogeneity within PCa, 46

candidate metabolic genes were confirmed for clustering using

univariate cox regression. By conducting consensus clustering

on the gene expression pattern of candidate genes, two resulting

clusters were defined, MetaCluster 1 and MetaCluster 2. The

heatmap for the expression of the 46 metabolic identified hub

genes of the 496 patients is shown in Figure 1B. Notably,

significant prognostic differences were observed between the

two subclusters, with shorter OS for MetaCluster 2 than

MetaCluster 1 (P < 0.001, Figure 1C). Furthermore, the

correlation analyses between MetaCluster and the activity of

114 identified metabolic pathways were presented in Figure S1

and Table S1. Results revealed distinct metabolic patterns

between MetaCluster 1 and MetaCluster 2.
The model constructed by multivariate
cox regression analysis

The identified candidate metabolic genes (absolute (log fold

change) > log2(1.5) & P < 0.05) were showed by Volcano plot

(Figure 2A). After analyzing the selected gene with univariate

cox regression, 48 prognostic genes were achieved: 32 increased

in Hazard Ratio and 16 reduced in Hazard Ratio (Figure 2B). We

constructed a prognostic model containing nine genes. The

development of a random survival forest model and the
Frontiers in Immunology 05
importance of nine variables are exhibited in Figures 2C, D

Subsequently, the Gaussian mixture model (GMM) combined

with ROC curves was established to evaluate the predictive

ability of the signatures by calculating the AUCs, the highest

AUC as our model to predict the OS of PCa patients was selected

from the eight clusters (Figure 2E). Hence, we finally established

a prediction signature comprising four genes (NTM, GAS2,

SLC17A4, GC), heatmap for the four-gene signature is shown

in Figure 2F. MetaScore = 0.5154*GAS2 + 0.395*SLC17A4 + (-

0.1211*NTM) + 0.2939*GC.

Patients were classified into the high- and low-MetaScore

groups according to the best cutoff value of the metabolic score,

termed as MetaScore, which was calculated by the four-gene

signature. We then ranked the samples using MetaScore in the

training cohort and internal validation cohort. The relevance

between survival probability and MetaScore of patients was

explored (Figure 3A). The survival analysis revealed that

patients with low-MetaScore related to a better OS. What`s

more, the predictive ability of MetaScore signature was validated

in the GSE16560 cohort (Figure S2). The 1-, 3-, and 5-year

ROC curves demonstrated a promising AUC of 0.959, 0.887

and 0.910, respectively (Figure 3B). The AUC suggested

excellent clinical value in predicting the short- and long-

term survival probability in PCa. Afterward, univariate and

multivariate cox regression identified MetaScore as an OS-

related factor (Figure 3C).
Biological behaviors of the
metabolic genes

The potential functions and pathways in involved

differentially expressed metabolic genes in PCa were

determined using GSEA analysis. Fifteen metabolic-, immune-

related signaling and tumorigenic pathways in KEGG, and 30

GO annotations were determined (Figure 3D). Enrich GO

analyses revealed that the upregulation was mainly annotated

to humoral immune response, cation transmembrane

transporter activity, inorganic cation transmembrane

transporter activity, alcohol metabolic process, fatty acid

metabolic process, and monocarboxylic acid biosynthetic

process (Figure 3D and Table S2). Enrich KEGG analyses

demonstrated that the specific metabolic pathways were

mainly gathered in arachidonic acid metabolism, drug

metabolism-cytochrome P450, complement and coagulation

cascades, estrogen signaling pathway, TGF-beta signaling

pathway, choline metabolism in cancer, and retinol

metabolism (Figure 3D and Table S3). Moreover, GSEA was

also performed to determine the functional enrichments of each

subtype (Tables S4, S5). We found that regulation of DNA repair

and steroid hormone biosynthesis were activated, while

organellar large ribosomal subunit and valine leucine and

isoleucine degradation were relatively suppressed in it
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https://doi.org/10.3389/fimmu.2022.982628
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.982628
(Figure 3E). The association between MetaScore and the activity

of 114 identified metabolic pathways was explored and the most

significant pathways was presented (Figure 4)
MetaScore is related to distinct profiling
of genomic alterations

To explore the relationship between MetaScore and genomic

patterns in PCa, CNAs and somatic mutation analyses were

performed. We next assembled copy number variation regions

(CNVRs) by merging overlapping CNVs of the type (loss or

gain) (Figure 5A). What`s more, analysis of somatic mutation

patterns demonstrated a high incidence of mutations in TP53

(20%), SPOP (15%), TTN (14%), SPTA1 (8%), SYNE1 (8%),

CDK12(7%) and KMT2C (6%) in the high MetaScore group
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(Figure 5B), while SPOP (10%), TP53 (9%), TTN (9%), FOXA1

(7%), MUC16 (6%) and KMT2D (6%) presented higher-

incidence mutations in the low MetaScore group (Figure 5C).
Immune infiltration of metabolic
subtypes in PCa

The immune cell infiltration in the tumor microenvironment

of the TCGA-PRAD between high- and low-MetaScore

groups was presented through a heatmap (Figure S3).

Monocytes, Macrophages M0, Dendritic cells activated,

CD56bright.natural.killer.cell, CD56dim.natural.killer.cell,

Eosinophil, Immature.dendritic.cell Plasmacytoid.dendritic.cell,

and Type.17.T.helper.cell, were enriched in the low-MetaScore

group. B cells naive, Monocytic lineage, Endothelial cells,
frontiersin.org
B

CA

FIGURE 1

Characteristics of MetaCluster in PCa. (A) Flow chart of the study. (B) Heatmap of the candidate genes associated with MetaCluster. (C) Kaplan–
Meier curves showing the correlation between MetaCluster and OS (log-rank test, P< 0.001).
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Act iva ted .CD4.T .ce l l , Centra l .memory .CD8.T .ce l l ,

Type.2.T.helper.cell, and B cell were enriched in high-MetaScore

group. What`s more, we also demonstrated the correlation

between infiltration of immune cells and MetaScore with a

heatmap (Figure S4). The expression of the immune checkpoint

is the trigger of tumor-intrinsic immune escape, and the involved

molecules include antigen-presenting cells, co-stimulators, co-

inhibitors, receptors, ligands, cell adhesions, etc (36, 37).

Therefore, we investigated the correlation between the immune

checkpoint and MetaScore (Figure S5).
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The role of MetaScore in the prediction
of immunotherapeutic benefits

Emerging immune checkpoint blockade therapies blocking

the programmed death 1 (PD-1) or its ligand PD-L1 molecules

have exhibited satisfactory outcomes, with the potential to

prevent the progress of advanced cancer. Therefore, we

evaluated the utility of the MetaScore in estimating the

therapeutic benefit in patients. For this purpose, the patients

who adopted anti-PD-L1 immunotherapy in the IMvigor210
B

C

D

E

F

A

FIGURE 2

Establishment and verification of MetaScore signature. (A) The volcano plot of mRNA levels expression of metabolism genes. The abscissa is the
log2 value of the screening condition, the ordinate is the log10 transformed p-value. The red-colored dots represent the DEGs (|logFC|> log2
(1.5) and P< 0.05). (B) Univariate Cox analysis of 48 selected genes. (C, D) The error rate of the random trees and variable relative importance for
the 9 metabolism-related genes. (E) The pattern of the logistic regression model is related to the AUC scores and is verified by a Gaussian
mixture, including 8 clusters of 511 combinations. (F) The heat map revealed the relationship between the four-gene signature and distribution
of MetaScore ****P < 0.0001.
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cohort were assigned high- and low-MetaScore groups

according to our four-gene signature. Notably, MetaScore is

related to objective response to anti-PD-L1 therapy in the

IMvigor210 cohort (Kruskal-Wallis, p = 0.00039; Figure 6A).

Patients with low MetaScore significantly outlived patients with

high MetaScore in the IMvigor210 cohort (log-rank test, p =

0.001; Figure 6C). A similar outcome was observed in the

GSE78220 cohort, which was also undergoing anti-PD-1

checkpoint inhibition therapy (Wilcoxon, p =0.0038,

Figure 6B; log-rank test, p < 0.001, Figure 6D). Further, we

verified the immunotherapeutic response in GSE35640 and

GSE91061 cohorts, which received distinct immunotherapies

(Wilcoxon, p =0.0016; Figure S6A; Wilcoxon, p =0.0024; Figure

S6B). TMB and MSI were emerging biomarkers associated with
Frontiers in Immunology 08
immunotherapy response. Thus, the correlation between

MetaScore and TMB/MSI in TCGA-PRAD was further

investigated (Figures 6E, F). Collectively, these data

demonstrated that MetaScore might serve as hazardous

prognostic markers and predict immunotherapy response.
Prognostic metaScore and sensitivity
to chemotherapy

To improve the therapeutic outcomes of PCa patients, we

further investigated the correlation between our MetaScore and

the predicting sensitivity to 16 common chemotherapy drugs

(Figure 7). The analysis revealed that increased MetaScore was
B

C

D

E

A

FIGURE 3

Functional annotation of low- and high-MetaSore groups. (A) Kaplan–Meier curves showing the correlation between MetaScore and OS (log-
rank test, p < 0.001). (B) ROC curves exhibited the predictive capability of the MetaScore signature on the clinical value including 1-, 3- and 5-
year. (C) Clinical variables related to OS by univariate cox and multivariate cox analysis in the TCGA-PRAD cohort. (D) GO and KEGG plots for
enrichments based on the high- and low-MetaScore group. (E) GSEA plots for enrichments based on the high- and low-MetaScore group.
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related to increased drug sensitivity of cancer cells to Cisplatin,

Cyclophosphamide, Gemcitabine, Camptothecin, Irinotecan,

Vorinostat, Fulvestrant, Topotecan, Cytarabine, Venetoclax,

Carmustine, Entinostat, Nutlin-3a, Crizotinib, Fludarabine,

Nilotinib. The correlation coefficient and corresponding

estimated AUC value of another 15 chemotherapy drugs were

shown in Figure 8. What`s more, in order to evaluate the broad

applicability of the four-gene signature, pan-cancer analysis (33

tumors) was conducted based on TCGA and the Harzard Ratios

suggested that the four-gene signature can be an increased risk

predictor for 7 tumors (Figure 9A).
Bioinformatic analysis of molecular
mechanisms underlying SLC17A4

Inspired by the satisfactory prognosis predicting ability of

the four-gene model in the training and validation cohort, we

further applied bioinformatic analyses to explore the potential

underlying mechanisms of SLC17A4. To our knowledge, the role

of SLC17A4 in PCa has not been explored. The correlation

between the expression of SLC17A4 and prognosis was

evaluated in 33 tumor types (Figure 9B). Based on the cox

analysis, we suggested that SLC17A4 might be an oncogene for

the 3 evaluated types of tumor. Kaplan-Meier analysis indicated

that low expression of SLC17A4 is associated with better survival

in PCa (P < 0.01, Figure 9C). Furthermore, GSVA revealed that

three GO category negative regulation of interferon gamma

secretion, uronic acid metabolic process, heterochromatin
Frontiers in Immunology 09
assembly were highly enriched in the high-SLC17A4 group,

three KEGG category ascorbate and aldarate metabolism,

maturity onset diabetes of the young, homologous

recombination were mainly gathered in the high-SLC17A4

group (Figure 9D). The correlation analyses between SLC17A4

expression and the most significant identified metabolic

pathways among 114 are shown in Figure 10. To determine

the potential therapeutic drugs in high- and low-SLC17A4 PCa

patients, the IC50 of 34 drugs in PCa cells was estimated utilizing

the GDSC database. Remarkably, the drug sensitivity (IC50) of

34 chemotherapy compounds was significantly lower in the

high-SLC17A4 group as compared to the low-SLC17A4 group,

which revealed that the patients with high-SLC17A4 could be

more beneficial to the application of these drugs (Figure 11).
SLC17A4 regulates the invasion, viability,
and proliferation of PCa

Various in vitro experiments were performed to validate the

pathogenic role of SLC17A4 in PCa cells. Transfection in DU145

and PC3 cells was performed using three siRNAs to prohibit the

expression of SLC17A4, in which si-RNA-626 and si-RNA-1080

exhibited relatively high efficiency (Figure S7). Western blot was

employed to verify the silence of SLC17A4 by siRNA

(Figure 12A). The CCK8 assay interpreted that the cell

proliferation ability is inhibited by silencing SLC17A4

(Figure 12B). The colony formation experiment revealed that

the inhibition of SLC17A4 remarkably reduced the colony
FIGURE 4

The heatmap was employed to visualize the most significant pathways among 114 identified metabolic-related pathways correlation to
MetaScore. ***p < 0.001, ****P < 0.0001.
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FIGURE 5

Distinct genomic pattern related to MetaScore. (A) Amplifications and deletions in PCa with high- and low-MetaScore. Chromosomal regions of
peaks correspond to the relevant recurring focal amplification (red) and deletions (blue). (B, C) The overall somatic mutation profile with the
highest frequency in high- and low-MetaScore groups. P< 0.05 indicates statistical significance.
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FIGURE 6

The Role of MetaScore in the prediction of immunotherapeutic benefits. MetaScore in groups with a different anti-PD-1 clinical response status
(complete response [CR]/partial response [PR] and stable disease [SD]/progressive disease [PD]) in the IMvigor210 cohort (A) and GSE78220
cohort (B). Kaplan-Meier curves for patients with high- and low-MetaScore in the IMvigor210 cohort (C) and GSE78220 cohort (D). (E) The
differences of TMB between MetaScore groups in the training set. (F) The differences of MSI between MetaScore groups in the training set. TMB,
tumor mutation burden; MSI, microsatellite instability.
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number in DU145 cell line and PC3 cell line (Figure 12C).

Dramatically, the dysfunction of SLC17A4 inhibited the

invasion ability of DU145 and PC3 cells (Figures 12D, S8A).

What`s more, the EdU assay indicated that the proliferation

ability of PCa cells was inhibited by the silence of SLC17A4

(Figures 12E, S8B). Therefore, the prognostic gene SLC17A4 was

associated with the proliferation and invasion of PCa cells and

may be a potential therapeutic target for PCa.
Discussion

Metabolic reprogramming has emerged as a prominent

hallmark of tumors (38). Tumor cells alter their dominant
Frontiers in Immunology 12
oxidative phosphorylation ATP-producing procedure to aerobic

glycolysis even if there is sufficient oxygen (described as the

Warburg effect) (39). The metabolic characteristics of cancer cells

might influence varying cells in the TME. Among them are tumor-

associated fibroblasts, endothelial cells and immunocytes, which

eventually facilitate the invasion, proliferation and no response to

antitumor therapy of cancer cells (40). A study reported that

upregulation of glycolytic metabolism might accelerate prostate

cancer progression and radioresistance via circular RNA (41).

Thereby, targeting the metabolic state of cancers with drugs

would be a promising therapeutic approach for better outcomes.

In this study, PCa patients were stratified into MetaCluster 1 and

MetaCluster 2 according to metabolic genes to investigate the

correlation between tumor metabolic profile and tumor
B C D

E F G H
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FIGURE 7

The sensitivity of 16 common chemotherapy drugs between MetaScore groups in PCa cells.
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BA

FIGURE 8

(A) The correlation coefficient of 15 chemotherapy drugs. (B) The estimated AUC value of 15 chemotherapy drugs between MetaScore groups.
**p < 0.01, ***p < 0.001, ****P < 0.0001.
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phenotype. Differentially expressed metabolic-associated pathways

were verified between the two MetaClusters. Subsequently, to

further investigate the correlation between the cluster model and

cancer progression pattern, we establish a scoring system,

MetaScore, to qualify the gene model. In summary, we focus on

analyzing the possible biological behavior of metabolism-associated

genes in the prognosis and development of PCa by bioinformatics

analysis and functional cell assays.

Integrating multiple biomarkers into one aggregate signature

via bioinformatics might enhance the prediction compared with

a single biomarker (42, 43). Here, we applied a multi-step

bioinformatics analysis to establish a metabolic genes model to

predict OS in PCa patients. We identified four metabolism-

associated genes (GAS2, SLC17A4, NTM, and GC) related to OS

in PCa. Among the four genes, the NTM gene showed negative

coefficients, and the expression was upregulated in promising OS

patients. What`s more, the expression of GAS2, SLC17A4, and
Frontiers in Immunology 14
GC was increased in patients with unfavorable outcomes, which

have positive coefficients. Studies showed that some of the 4

genes are involved in tumors, including PCa. It has been

reported that the 1,25(OH)2 D/25(OH)D (metabolites of GC)

molar proportion was related to a reduced risk of high aggressive

PCa in African-American men (44), vitamin D binding protein

(the protein encoded by GC) regulates the correlation between

total 25(OH)D expressions and risk of advanced and fatal PCa

(45). However, the study interpreted that NTM may promote

biochemical recurrence of PCa after radical prostatectomy via

affecting regulatory T cells and M2 macrophages (46) and

decreased expression of NTM in transformants is associated

with hypermethylation close to the transcription start point in

arsenic- or cadmium-transformed malignant prostate epithelial

cells (47).

SLC17A4 is an organic anion transporter (belonging to the

solute carrier 17 families) that is particularly maintained
B

C D

A

FIGURE 9

(A) Pan-cancer analysis of the 4-gene signature based on TCGA. (B) Correlation between the expression of SLC17A4 and overall survival in
multiple tumor types based on TCGA. (C) Survival curves of OS between low-SLC17A4 patients and high-SLC17A4 based on TCGA-PRAD. (D)
The differential in GO and Enrich analysis between low- and high-SLC17A4 groups. ****P < 0.0001.
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phosphate homeostasis. The study reported that phosphate

transporters gene SLC17A4 is linked to Ca and P metabolism

and homeostasis in pig models (48). Interestingly, a

metabolizing enzyme colocalized with the SLC17A4 gene is

closely related to thyroid hormone pathway, insulin signaling,

and glucose metabolism (49, 50). Our analysis revealed that the

upregulation of SLC17A4 increases MetaScore and is associated

with poor prognosis in PCa patients. Our functional

experiments further reveal that human SLC17A4 is capable of

promoting progression and invasion in PCa cells (Figure 12).

Herein, for the first time, we recognized the roles of SLC17A4 in

the development and progression of PCa. Further exploration is

needed to verify the biological function and underlying

mechanism of SLC174A in PCa biogenesis and progression.

Further characterization of molecules from the signature will

supply novel insights into the tumor etiology and may reveal

potential metabolic therapeutic targets.

The tumor cell metabolism affects TME and immune

infiltration patterns, thereby altering the efficiency of

checkpoint-based immunotherapy. The metabolic status is
Frontiers in Immunology 15
different between normal tissue and PCa, so it provides a new

way to identify cancers through metabolic differences. It has

been interpreted that PCa cells show high consumption of

glucose during the metastatic stage (12, 13), and PCa patients

with highly glycolytic metabolism may promote tumor

progression and aggressiveness (14). The accumulation of

lactic acid, the metabolic product of glycolysis, in the

extracellular matrix is conducive to the acidic TME and

further influences immune cell infiltration. A study

demonstrated that acidic TME might restrict T cell-mediated

immunity and promote hyporesponsiveness of immune cells

(51). Consistently, immunocytes including B cells naive,

Monocytic lineage, Endothelial cells, Activated.CD4.T.cell,

Central.memory.CD8.T.cell, Type.2.T.helper.cell, and B cell in

the high-MetaScore group presented more disordered than low-

MetaScore group (Figure S3).

Immune checkpoint inhibitors have presented promising

outcomes in treating patients with various cancers, providing

new frontiers in cancer treatment strategies (52, 53). PCa has

been stratified into an immune-desert pattern and is
FIGURE 10

The correlation analysis between the 114 identified metabolic-related pathways and SLC17A4 (the most significant pathways was presented).
***p < 0.001, ****P < 0.0001.
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moderately responsive to immunotherapy (54, 55). Therefore,

only partial and specific patients might benefit from the

immunotherapy . A l though biomarker s have been

extensively explored to predict PCa prognosis, metabolic

signatures for predicting the response of immuno-/chemo-

therapy have not been developed. In the present study, we

developed a novel system according to metabolic genes to

predict the efficacy of immunotherapy. TMB and MSI were

emerging biomarkers associated with immunotherapy

response (56). Patients with higher TMB and MSI may

benefit more from the treatment of immunotherapy (57),

which is consistent with our findings (Figure 6).

Given the complexity and diversity of PCa cell lines, the

selected PC3 and DU145 cell lines (less differentiated and

androgen-independent) may not represent the full spectrum of
Frontiers in Immunology 16
the disease, a wider variety of PCa cell lines should be used in

subsequent studies.

Our study is the first to comprehensively elucidate the

chemo-/immuno-therapy response of PCa patients based on

MetaGene-signature. A recent study reported only

chemotherapy response based on MetaGene-signature but

lacked immunotherapy response results (58). Interestingly,

studies have shown that signature based on MetaGenes are

associated with PCa recurrence undergoing radical

prostatectomy (59). Two other researches also revealed that

the model established by MetaGenes can predict the

prognosis of PCa, which is consistent with our study (60,

61). In summary, we conducted an integrated analysis to

develop a metabolism-based four-gene signature for

predicting the OS and chemo-/immuno-therapy response of
FIGURE 11

The IC50 of 38 chemotherapy drugs in PCa cells was estimated in SLC17A4 groups utilizing the GDSC database.
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PCa patients. This study investigated the expression patterns,

prognostic value, and potential mechanisms of metabolic

genes in PCa. Future prospective clinical trials are required

to assess the clinical utility of this signature.
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FIGURE 12

(A) Measurement of siRNA transfection efficiency in DU145 and PC3 cells at the protein level. (B) CCK-8 assays revealed that silence of SLC17A4
suppressed the proliferation of DU145 and PC3 cells. (C) Colony formation assay of DU145 and PC3 cells after the knockdown of SLC17A4. (D)
Knock-down of SLC17A4 affected the invasion ability of DU145 cells and PC3 cells (Crystal Violet Staining). (E) EdU assay of PC3 and DU145 cells
after the knockdown of SLC17A4 (siRNA-NC: siRNA negative control). **p < 0.01, ***p < 0.001.
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