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microbiota and metabolomic
reveals that decapod iridescent
virus 1 (DIV1) infection induces
secondary bacterial infection
and metabolic reprogramming
in Marsupenaeus japonicus
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In recent years, with global warming and increasing marine pollution, some

novel marine viruses have become widespread in the aquaculture industry,

causing huge losses to the aquaculture industry. Decapod iridescent virus 1

(DIV1) is one of the newly discovered marine viruses that has been reported to

be detected in a variety of farmed crustacean and wild populations. Several

previous studies have found that DIV1 can induce Warburg effect-related gene

expression. In this study, the effects of DIV1 infection on intestinal health of

shrimp were further explored from the aspects of histological, enzymatic

activities, microorganisms and metabolites using Marsupenaeus japonicus as

the object of study. The results showed that obvious injury in the intestinal

mucosa was observed after DIV1 infection, the oxidative and antioxidant

capacity of the shrimp intestine was unbalanced, the activity of lysozyme was

decreased, and the activities of digestive enzymes were disordered, and

secondary bacterial infection was caused. Furthermore, the increased

abundance of harmful bacteria, such as Photobacterium and Vibrio, may

synergized with DIV1 to promote the Warburg effect and induce metabolic

reprogramming, thereby providing material and energy for DIV1 replication.

This study is the first to report the changes of intestinal microbiota and
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metabolites of M. japonicus under DIV1 infection, demonstrating that DIV1 can

induce secondary bacterial infection and metabolic reprogramming. Several

bacteria and metabolites highly associated with DIV1 infection were screened,

which may be leveraged for diagnosis of pathogenic infections or incorporated

as exogenous metabolites to enhance immune response.
KEYWORDS

decapod iridescent virus 1, Marsupenaeus japonicus, intestinal microbiota,
metabolomic, secondary bacterial infection, metabolic reprogramming
Highlights
• DIV1 infection disrupts the shrimp intestinal

mechanical barrier.

• DIV1 infection resulted in imbalance of oxidative and

antioxidant capacity, decreased immune enzyme

activity, and disordered digestive enzyme activity in

shrimp.

• DIV1 infection caused secondary bacterial infections,

including Photobacterium and Vibrio.

• DIV1 can cooperate with harmful bacteria to induce

metabolic reprogramming.
1 Introduction

Viruses are an important part of marine ecosystems. With

the development of genetic technology, more and more new

marine RNA and DNA viruses have been discovered (1, 2).

Despite their tiny size, viruses play a large role in marine

ecosystems and food webs. On the one hand, marine viruses

can infect a variety of oceans organisms, lysing their cells and

releasing carbon and other nutrients that impact the food web

(3). On the other hand, marine viruses often contain host-

derived metabolic genes (i.e., auxiliary metabolic genes;

AMGs), which are hypothesized to increase viral replication

and alter ecosystem-level productivity through reprogramming

host metabolism (4). To date, several crustacean viruses have

been found to induce metabolic reprogramming to promote

survival and replication, including white spot syndrome virus

(WSSV) (5–8), Taura syndrome virus (TSV) (9) and IHHNV

(10). In recent years, with global warming and increasing marine

pollution, some novel marine viruses have become widespread in

the aquaculture industry, causing huge losses to the aquaculture

industry (11). Decapod iridescent virus 1 (DIV1) is one of the

newly discovered marine viruses. Since China initiated the DIV1

surveillance in 2017, DIV1 has been detected in shrimp culture
02
ponds in several provinces (12). In addition to farmed shrimp, in

2020, Srisala et al. also detected DIV1 in wild populations of

Penaeus monodon in the Indian Ocean (13). Up to now, DIV1

has been known as a highly lethal virus with global risk of

transmission, capable of infecting freshwater and marine

crustaceans, including Marsupenaeus japonicus (14).

Kuruma shrimp M. japonicus is widely distributed in the

Indo-Western Pacific region and the East and South China seas

(15). Due to its high economic value, strong environmental

adaptability and suitability for long-distance transportation, it

has now become one of the most farmed prawns in China (16,

17). Our previous study demonstrated thatM. japonicus showed

obvious clinical symptoms after DIV1 challenge, including

empty stomach and intestine, atrophy of the hepatopancreas

with yellowing, red body and soft shell. The shrimp mortality

rate increased as the virus dose increased, and reached 100%

mortality after at 76 hpi injected with 3.95 × 109 copies/mg DNA
DIV1 inoculum (14). Through mRNA-seq and miRNA-seq

analyses and their association analysis, we preliminarily

revealed the hemocyte and intestinal immune response of M.

japonicus to DIV1 infection (11, 14), and proposed that DIV1

can promote the Warburg effect by regulating host miRNA and

mRNA expression. The Warburg effect was also observed in

DIV1-infected Litopenaeus vannamei and Penaeus monodon.

However, only the miRNA and mRNA expression profiles under

DIV1 infection were revealed, the deep mechanism of the

immune response needs further analysis, especially the

intestinal immunity.

As an important immune and digestive organ of shrimp, the

intestine and symbiotic microorganisms together constitute a

complex ecosystem, which plays an important role in

maintaining the function of the shrimp immune system. The

intestinal immune system of shrimp is mainly composed of three

parts, including the mechanical barrier formed by the tight

junction and adhesion junction of intestinal mucosal cells, the

innate immune barrier formed by intestinal hemocytes and their

secreted immune factors, and the biological barrier formed by the

intestinal microbiota and their secretions (18). The potential

cooperation of bacteria and viruses in promoting disease
frontiersin.org
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development has received extensive attention from researchers in

recent years. Numerous studies have shown that viral infection

can alter the composition and function of the shrimp intestinal

microbiota, induce secondary bacterial infection, and impair host

immunity (19–21). However, similar to other invertebrates,

shrimp lack specific immunity and cannot acquire antibodies

through vaccination. Therefore, regulating host metabolic

reprogramming by exogenous metabolites to enhance host

immunity and ability to withstand environmental has become

one of the best strategies for shrimp to resist viral infection (22–

24). It will be interesting to explore the effect of metabolic

reprogramming on host intestinal metabolome and microbiota

and the consequence on immune response. However, there are no

reports on the effects of DIV1 infection on the intestinal

metabolome and microbiome of shrimp.

To gain a more comprehensive understanding of the

interaction between DIV1 and shrimp, this study is the first to

investigate the changes of intestinal microbiota and metabolites

of M. japonicus under DIV1 infection through the integrated

analysis of intestinal microbiome and metabolomics,

demonstrating that DIV1 can induce secondary bacterial

infection and metabolic reprogramming, and several highly

related bacteria and metabolites highly associated with DIV1

infection were screened. The results are beneficial to provide a

theoretical basis for virus control technology.
2 Materials and methods

2.1 Shrimp and rearing conditions

Healthy M. japonicus with an average body weight of 10.5 ±

1.6 g were randomly obtained from a local farming pond in East

Island Marine Biological Research Base, Guangdong Ocean

University (Zhanjiang, China). The shrimp were randomly

sampled and tested by PCR to ensure that they were free from

WSSV, IHHNV, and DIV1. The detection method was

consistent with the previous study (25). Every 30 M. japonicus

were acclimatized in 0.3-m3 tanks with aerated and filtered

seawater (salinity 30‰, pH 7.5, temperature 28°C) for 7 days

before the DIV1 challenge experiment. Commercial feed was

provided to the shrimp three times per day at a feeding rate of

5% of their body weight, and nearly 90% of the seawater was

exchanged per day.
2.2 DIV1 challenge and sample collection

After 7 days of acclimation, the healthy shrimp were divided

into two groups: the PBS-injected group and the DIV1-infected
Frontiers in Immunology 03
group. Each group included three replicate tanks, and each tank

containing 30 individuals. Base on LC50 test results from

previous studies (14), we set the DIV1 injection concentration

of this study as 3.95 × 109 copies/mg DNA. Each M. japonicus

from the DIV1-infected group was intramuscularly injected with

50 mL of DIV1 inoculum, while eachM. japonicus from the PBS-

injected group was intramuscularly injected with 50 mL of

phosphate-buffered saline (PBS; pH 7.4). The methods of viral

inoculum preparation and quantification can be found in

previous studies (26).

Based on previous research (14), theM. japonicus at twenty-

four hour post-injection (hpi) were collected as samples under

an aseptic condition. The intestines and their contents from 3

random individuals in the same group were combined as one

sample and immediately frozen in liquid nitrogen before storing

at -80°C until experimental analysis. In detail, each group had 6

samples were used for enzyme activity analysis, 6 samples were

used for intestine microbiome analysis and 3 samples were used

for intestinal metabolomics analysis. For histological analysis,

the intestines of 6 shrimp per group were used to assess intestine

tissue damage. Intestines of these shrimp were fixed in

10% formalin.
2.3 Histological analysis

After fixed in 10% formalin at 4°C for 24 h, the fixed

intestine were dehydrated in gradient ethanol, hyalinized in

xylene, and embedded in paraffin wax. Next, the paraffin

blocks were sectioned at 5-mm thickness. The sections were

collected on glass slides and stained with hematoxylin and eosin

(H&E). The intestinal sections were examined by a microscope

(Olympus, Nikon, Tokyo, Japan). The electronic images were

further analyzed using ImageJ software to assess the dimensions

of intestinal villus height and muscle thickness.
2.4 Enzyme activity analysis

Enzymatic biomarkers of functional responses in the

intestine were measured using commercial detection kits

(Jianglai Bioengineering Institute, Shanghai, China) according

to protocols of the manufacturer. Prior to analysis, 6 samples in

each group were homogenized in pre-chilled PBS (1:9 dilution)

and then centrifuged for 10 min (4°C and 5,000 × g) to obtain

the supernatant for further use. Superoxide dismutase (SOD),

catalase (CAT) and lysozyme (LYZ) activities were used to

reflect the nonspecific immunity in the shrimp intestine. a-
Amylase (a-AMS), lipase (LPS) and trypsin (TPS) activities were

used to reflect the digestive function of shrimp.
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2.5 Intestinal microbiome analysis

Total bacterial DNA was extracted by the EasyPure®Marine

Animal Genomic DNAKit (TransGen Biotech, China) following

the manufacturer’s directions. The concentration and purity of

total DNA were determined by SimpliNano (GE Healthcare,

United States) and 1% agarose gels. The primers pair 515F (5′-
GTGCCAGCMGCCGCGG-3′) and 806R (5-′GGACTACNNG
GGTATCTAAT-3′) were used to amplify the V4 hypervariable

region of 16S rRNA gene, which was modified with a barcode tag

with a random 6-base oligos. The PCR amplification reaction

was performed with a 25 mL reaction mixture containing 12.5 mL
rTaq mix (Takara Biotechnology (Dalian) Co., Ltd.), 1 mL of

each primer, 1mL template and 9.5 mL ultrapure water. The

reaction cycle parameters were as follows: an initial denaturation

step of 95°C for 3 min; 30 serial cycles of a denaturation step of

95°C for 45 s, annealing at 55°C for 45 s, and extension at 72°C

for 45 s; and a final extension step of 72°C for 10 min.

PCR amplification reaction system and parameters can refer

to previous studies (27). After the PCR products were purified

and mixed in equidensity ratios, sequencing libraries were

constructed, and then sequenced by BGI (Shenzhen, China)

with the Illumina Genome Analyzer technology. All raw

sequencing data of intestinal microbiota was submitted to the

Sequence Read Archive (SRA) (accession: PRJNA720257).

Sequences from raw data were analyzed and filtered by

QIIME (v1.8.0). Sequence analysis was performed with

UPARSE software (v7.0.1090), and the operational taxonomic

units (OTUs) were defined with ≥ 97% similarity. Chimeric

sequences were identified with UCHIME (v4.2.40). Alpha

diversity was calculated using mothur software with five

metrics, including the observed OTUs, Chao1, ACE, Shannon

and Simpson indexes. Rarefaction curves were generated based

on these metrics. The shared and unique OTUs between two

groups were figured out by a Venn diagram. Beta diversity index

based on the phylogenetic relationship between OTUs was used

to calculate the Unifrac distance (weighted and unweighted

Unifrac) and the results of Beta diversity were showed through

PCoA and UPGMA Phylogenetic Dendrogram. A bar plot of the

microbial community was constructed at the phylum, family and

genus level respectively. To study the functional characteristics

of bacterial communities, Kyoto Encyclopedia of Genes and

Genomes (KEGG) functions were predicted using the

PICRUSt software.
2.6 Intestinal metabolomics analysis

Six intestinal samples replicates of shrimp from each group

were used for metabolomic analysis. All the samples were taken

from the refrigerator at -80°C and thawed in the refrigerator at

4°C, and metabolite extraction was performed using methanol
Frontiers in Immunology 04
and 2-chlorobenzalanine. Twenty microlitres of each sample was

taken for quality control (QC), and the rest was used for LC-MS

detection. Liquid chromatography was accomplished in a

Thermo Ultimate 3000 system equipped with an ACQUITY

UPLC® BEH C18 (1.7 mm 2.1 × 100 mm, Waters, USA) column.

Mass spectrometry was executed on a Q Exactive HF mass

spectrometer (Thermo Fisher Scientific, USA). Data-dependent

acquisition (DDA) MS/MS experiments were performed with

HCD scans. Dynamic exclusion was implemented to remove

some unnecessary information in the MS/MS spectra.

Peak-identification, peak-alignment and compound

identification was conducted using Compound Discoverer

software (v3.1). All the data were determined using quality

control (QC) and quality assurance (QA). Partial least squares-

discriminant analysis (PLS-DA) of the metabolomics data was

performed using the R language ropls package. All the

metabolites were classified according to Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Human Metabolome

Database (HMDB). The PLS-DA model was used to determine

the differential metabolites (DMs) between the PBS-injected

group and the DIV1-infected group with the first principal

component of variable importance in projection (VIP) values

(VIP ≥ 1) combined with a q-value ≤ 0.05. The DMs were

annotated with KEGG pathway analysis to further identified the

change characteristics of the functional metabolites related to the

immunity of the shrimp.
2.7 Correlation analysis of intestinal
bacteria and DMs

Canonical correlation analysis and spearman correlation

analysis were employed to reveal the correlation between

significantly altered intestinal bacteria and intestinal DMs, and

the results were shown with scatterplots and heat maps. The

thresholds for correlation coefficients and p-values were not set.

p < 0.05 was regarded as statistically significant, p < 0.01 was

regarded as very significant, and p < 0.001 was regarded as

extremely significant.
3 Result

3.1 Intestinal histological changes

Histological analysis of the intestinal sections from the PBS-

injected group and the DIV1-infected group are shown in

Figure 1. The H&E staining showed that no histological

changes were observed in the PBS-injected group (Figures 1A).

Contrastively, the microstructure of the intestine in the DIV1-

infected group had lesions, some intestinal epithelial cells were
frontiersin.org
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detached from the basement membrane and destroyed

(Figures 1D). Intestinal villus height and muscle thickness

were measured to quantify the degree of intestinal damage.

The results showed that the intestinal villus height in the PBS-

injected group (65.02 ± 20.57 mm) was significantly higher than

the DIV1-infected group (31.90 ± 4.48 mm) (p < 0.001), but the

intestinal muscle thickness did not show significantly difference

between the PBS-injected group (53.87 ± 15.50 mm) and the

DIV1-infected group (51.79 ± 10.35 mm) (p > 0.05).
3.2 Immune and digestive enzymes
activity abnormalities

At 24 hpi, the activities of SOD, CAT and LYZ in the

intestine were detected to evaluate the effect of DIV1 infection

on the nonspecific immunity of M. japonicus (Figures 2A–C),

and the activities of a-AMS, LPS and TPS in the intestine were

detected to evaluate the digestive function (Figures 2D–F).

Compared with the PBS-injected group, the activity of SOD,
Frontiers in Immunology 05
a-AMS and LPS were significantly increased (p < 0.001), while

the activities of CAT, LYZ and TPS were significantly decreased

(p < 0.001). It was worth noting that, after infection with DIV1,

both the immune and digestive enzymes in the intestine were

extremely significantly altered (p < 0.001).
3.3 Intestinal microbiota changes

3.3.1 Richness and diversity
A total of 711,264 high-quality sequences were generated

from 12 intestinal samples. The clean reads ranged from 69,929

to 63,969, with an average of 59,272 clean reads per sample.

After the alignment, the sequences of the PBS-injected group

and the DIV1-infected group were clustered into 1,053 and 1,057

OTUs respectively with a 97% sequence similarity. Among them,

there were 421 unique OTUs in the PBS-injected group, 425

unique OTUs in the DIV1-infected group, and 632 OTUs were

the same in both the PBS-injected group and the DIV1-infected

group (Figure 3A). A rarefaction curve analysis of the observed
FIGURE 1

Photomicrographs of intestinal sections in the PBS-injected group (A-C) and the DIV1-infected group (D-F). IEC, intestinal epithelial cells; BM,
basement membrane; VH, villus height; MT, muscle thickness.
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species per sample was sufficient (Figure 3B). To investigate the

differences of species diversity and richness between two groups,

the alpha diversity indexes were calculated, including observed

OTUs, Chao1, ACE, Shannon and Simpson indexes, ranging

from 270 to 715, 400.25 to 753.01, 424.50 to 765.22, 0.41 to 3.19

and 0.10 to 0.89, respectively (Table 1). Community richness

indexes (observed OTUs, Chao1, ACE) were not significantly

changed, while community diversity indexes (Shannon and

Simpson) were significantly changed (p < 0.05). Beta diversity

analysis was performed to comparative analyze the similarity

and difference of intestinal microbial community in different

groups. The PCoA with weighted and unweighted unifrac

distance were further performed to confirm that intestinal

bacteria in the PBS-injected group and the DIV1-infected

group were clearly separated and samples from the same

group were clustered closer (Figures 3C, D). UPGMA

Phylogenetic Dendrogram with weighted and unweighted

unifrac distance showed that all detected samples were divided
Frontiers in Immunology 06
into two main clades, and the intestinal microbial in the same

group had a high degree of similarity (Figures 3E, F).
3.3.2 Intestinal microbial composition
The taxa of dominant bacteria among the two groups were

similar, while their abundance was altered significantly. At the

phylum level, compared with the PBS-injected group, the

relative abundance of Proteobacteria was significantly

increased in the DIV1-infected group (p < 0.01), while the

relative abundance of Actinobacteria and Cyanobacteria were

significantly decreased (p < 0.01) (Figure 4A). At the family level,

the relative abundance of Vibrionaceae and Sapropiraceae were

significantly increased in the DIV1-infected group (p < 0.05),

while the relative abundance of Corynebacteriaceae,

Rhodobacteraceae and Enterobacteriaceae were significantly

decreased (p < 0.05) (Figure 4B). At the genus level,

differences were also observed. The relative abundance of
A B

D E F

C

FIGURE 2

The activities of immune and digestive enzymes in the intestine of M. japonicus (mean ± SD). (A) Superoxide dismutase (SOD). (B) catalase
(CAT). (C) lysozyme (LYZ). (D) a-Amylase. (E) lipase (LPS) and (F) trypsin (TPS). The statistically significant differences between the two groups
were calculated by Student’s t-test (***p < 0.001).
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Photobacterium was significantly decreased (p < 0.01), while the

relative abundance of Corynebacterium, Sagittula and

Morganella were significantly decreased (p < 0.05).
3.3.3 Changes in the intestinal
bacterial phylotypes

LEfSe was employed to analyse the differential abundances

of bacterial taxa in the two groups. In the cladogram, the families

Vibrionaceae and Saprospiraceae were enriched in the DIV1-

infected group, and Corynebacteriaceae, Rhodobacteraceae,

Enterobacteriaceae and Lactobacillaceae were enriched in the

PBS-injected group (Figure 5A). With an LDA score greater than

4.0, Photobacterium and Vibrio dominated in the DIV1-infected

group, and Corynebacterium and Ruegeria dominated in the
Frontiers in Immunology 07
PBS-injected group (Figure 5B). The prediction function of the

intestinal microbiota was analyzed using PICRUSt. Result

showed that, in the KEGG level 2, the relative abundance of

“carbohydrate metabolism”, “metabolism of cofactors and

vitamins” and “amino acid metabolism” were the top 3 in the

two groups (Figure 5C). It was worth noting that the relative

abundance of “infectious diseases: bacterial” was significantly

increased under DIV1 infection (p < 0.01). The distinct changes

on a deeper resolution level within “Carbohydrate metabolism”,

“Metabolism of cofactors and vitamins” and “Amino acid

metabolism” were showed by the heatmap (Figure 5D). The

results showed that the abundance value of KEGG level 3 term

“alanine, aspartate and glutamate metabolism” and “valine,

leucine and isoleucine biosynthesis” in the DIV1-infected

group were significantly higher than the PBS-injected group
A B

D

E F

C

FIGURE 3

Intestinal microbial richness and diversity of M. japonicus after DIV1 infection. (A) Veen diagram showing the unique and shared OTUs of
intestinal microbiota in the PBS-injected group and the DIV1-infected group. (B) Rarefaction curves of OTUs clustered at 97% sequence identity
different samples. (C) PCoA plot with unweighted unifrac distance. (D) PCoA plot with weighted unifrac distance. (E) UPGMA Phylogenetic
Dendrogram with unweighted unifrac distance. (F) UPGMA Phylogenetic Dendrogram with weighted unifrac distance.
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TABLE 1 Alpha diversity index analysis in the PBS-injected group and the DIV1-infected group.

Sample Sobs Chao1 ACE Shannon Simpson Coverage

PBS-1 512 574.06 577.24 2.65 0.18 0.998304

PBS-2 497 529.76 538.83 2.06 0.37 0.998602

PBS-3 458 490.50 493.66 2.40 0.30 0.998809

PBS-4 541 640.29 666.17 2.60 0.21 0.997645

PBS-5 469 580.91 605.59 2.17 0.22 0.997116

PBS-6 621 678.58 703.00 3.18 0.10 0.997910

DIV1-1 703 736.11 747.55 2.73 0.27 0.998572

DIV1-2 292 470.22 589.70 0.37 0.90 0.997863

DIV1-3 314 450.56 537.92 0.74 0.80 0.998154

DIV1-4 562 643.01 639.31 2.10 0.34 0.998189

DIV1-5 270 404.72 430.81 0.76 0.64 0.998124

DIV1-6 578 611.13 614.32 2.04 0.43 0.998890

p-values 0.441 0.631 0.940 0.032 0.014 0.451
Frontiers in Immunolog
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B

C

FIGURE 4

Structure and composition of the intestinal bacterial communities under DIV1 infection (mean ± SD). (A) Relative abundances of dominant
bacterial phyla. (B) Relative abundances of dominant bacterial families. (C) Relative abundances of dominant bacterial genera.* Indicates a
significant difference (*p < 0.05; **p < 0.01).
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A B

D

C

FIGURE 5

Intergroup variation, functional analysis of intestinal microbiota of M. japonicus after DIV1 infection. (A) LEfSe cladogram. (B) LDA score of
LEfSe-PICRUSt. (C) Microbial metabolism prediction based on KEGG pathway analysis (KEGG level 2). (D) Abundance clustering heat map of
predicted functions of intestinal microbiota in each sample (KEGG level 3).
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(p < 0.01). The abundance value of some Warburg effect marker

pathways and vitamin metabolism-related pathways were also

significantly increased after DIV1 infection (p < 0.01), including

“glycolysis/guconeogenesis”, “pyruvate metabolism”, “nicotinate

and nicotinamide metabolism”, “vitamin B6 metabolism”,

“ r i boflav in me t abo l i sm ” and “pan to th ena t e and

CoA biosynthesis”.
3.4 Intestinal metabolic
pattern alterations

3.4.1 Multivariate analysis of the
metabolite profiles

Metabolomic analysis was conducted to explore the

alterations in intestinal metabolic profiles after DIV1 infection.

The PLS-DA score plot and permutation test showed a

significant different between the two groups in both positive

and negative ion mode (Figure 6), suggesting that DIV1

infection caused metabolic phenotype alterations in shrimp
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intestine. A total of 3,009 metabolites were identified in the

shrimp intestine (including 2,096 metabolites were identified in

the positive ion mode and 913 metabolites were identified in the

negative ion mode). The classification results of the identified

metabolites were shown in Figure 7. The largest category in the

positive ion mode was “amino acids, peptides, and analogues”

(253 metabolites), followed by “fatty acyls” (147 metabolites)

and “benzene and derivatives” (139 metabolites) (Figure 7A),

and the largest category in the negative ion mode was “amino

acids, peptides, and analogues” (132 metabolites), followed by

“fatty acyls” (58 metabolites) and “organic acids” (29

metabolites) (Figure 7B).

3.4.2 Identification and functional annotation
of the DMs

The DMs between the PBS-injected group and the DIV1-

infected group were identified by the PLS-DA model with a cut-

off VIP ≥ 1 and q-value ≤ 0.05. In the positive ion mode, a total

of 868 DMs were obtained, including 312 up-regulated DMs and

556 down-regulated DMs, of which 419 DMs were identified in
A B

DC

FIGURE 6

Derived PLS-DA score plots and corresponding permutation testing of PLS-DA from the LC-MS metabolite profiles in the intestine of M.
japonicus after DIV1 infection. (A) PLS-DA score plot of positive ion mode. (B) PLS-DA score plot of negative ion mode. (C) Permutation testing
of positive ion mode. (D) Permutation testing of negative ion mode.
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the database (Figure 7C). In the negative ion mode, a total of 454

DMs were obtained, including 158 up-regulated DMs and 296

down-regulated DMs, of which 209 DMs were identified in the

database (Figure 7D).

For the KEGG pathway enrichment analysis, the top 20 KEGG

pathway enrichments influenced by DIV1 infection in the positive

ion mode and negative ion mode were shown in Figures 8A, B

respectively. Among of them, four KEGG pathways related to

vitamin metabolism were significantly enriched, including

“vitamin digestion and absorption”, “retinol metabolism”,

“vitamin B6 metabolism” and “pantothenate and CoA

biosynthesis”. Three KEGG pathways related to amino acid

metabolism were significantly enriched, including “tyrosine

metabolism”, “phenylalanine metabolism” and “alanine, aspartate

and glutamate metabolism”. TwoWarburg effect marker pathways

were significantly enriched, including “pyruvate metabolism” and

“glycolysis/gluconeogenesis”. Both in positive ion mode and in

negative ion mode, “primary bile acid biosynthesis”, “bile

secretion”, “metabolic pathways”, “linoleic acid metabolism” and

“arachidonic acid metabolism” were significantly enriched in

KEGG pathway enrichment analysis.

Further, in the positive ion mode, total of 41 known DMs

were significantly enriched, including 25 up-regulated DMs and
Frontiers in Immunology 11
16 down-regulated DMs (Table 2); in the negative ion mode, a

total 24 DMs were significantly enriched, including 17 up-

regulated DMs and 7 down-regulated DMs (Table 3). It was

worth noting that seven types of lipid fatty acids were

significantly changed after DIV1 infection, including

arachidonic acid, eicosapentaenoic acid, docosapentaenoic

acid, 9-oxo-10(e),12(e)-octadecadienoic acid, gamma-linolenic

acid, 8(s)-hydroxy-(5z,9e,11z,14z) eicosatetraenoic acid and 16-

hydroxyhexadecanoic acid. In addition, two Warburg effect

marker metabolites were significantly up-regulated, including

L-(+)-lactic acid and Pyruvic acid.
3.5 Association between the altered
metabolites and microbial

To reveal the relationships between intestinal microbial and

DMs, scatterplots at the phylum, family, and genus levels were

generated by canonical correlation analysis (Figure 9). The results

showed that there was a strong correlation (R value > 0.75)

between the host intestinal microbial and DMs at all taxonomic

levels, and the samples from different groups had a large degree of

dispersion. To further analyze the relationship between the nine
A

B D

C

FIGURE 7

Taxonomic annotation of identified metabolites and volcano plots of DMs from the intestine of M. japonicus. (A) Taxonomic annotation of
positive ion mode. (B) Taxonomic annotation of negative ion mode. Others means that the classification information is other categories, and the
identified metabolites without classification information do not participate in the statistics. (C) Volcano plot of positive ion mode. (D) Volcano
plot of negative ion mode.
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marker DMs (including seven types of fatty acids and two

Warburg effect marker metabolites) and host intestinal

microbial, heat maps at the phylum, family, and genus levels

were generated by spearman correlation analysis (Figure 10).

The results showed that, at the phylum classification level,

Proteobacteria was positively associated with arachidonic

acid, 8(s)-hydroxy-(5z,9e,11z,14z) eicosatetraenoic acid,

docosapentaenoic acid, eicosapentaenoic acid, pyruvic acid and

L-(+)-lactic acid, and negatively associated with gamma-linolenic

acid, 16-hydroxyhexadecanoic acid and 9-oxo-10(e),12(e)-

octadecadienoic acid. The association of Cyanobacteria and

Actinobacteria with marker metabolites was completely opposite

to that of Proteobacteria, while neither Bacteriodetes nor

Firmicutes were significantly associated with the marker

metabolites (p > 0.05). It was worth noting that, Photobacterium

and Vibrio in the Vibrionaceae that dominated the DIV1-infected

group, were positively associated with Warburg effect marker

metabolites L-(+)-lactic acid and pyruvic acid. In contrast,

Corynebacterium in the Corynebacteriaceae that dominated the

PBS-injected group, was negatively correlated with L-(+)-lactic

acid and pyruvic acid. This phenomenon also appeared in the

correlation with fatty acid metabolites.
4 Discussion

Growing evidences suggested that viral infection or

environmental stress can lead to changes in the structure and

function of the host’s intestinal microbiota, and further affect the

normal metabolism of the host and caused various adverse

reactions (28–31). To date, there are no reports on the effects

of DIV1 infection on the intestinal microbiota and metabolites
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of M. japonicus. The present study provides insights into the

interaction of M. japonicus and DIV1 through the histological

analysis, enzyme activity analysis and the integrated analysis of

intestinal microbiome and metabolomics.

The results of histological analysis showed that severe

intestinal mucosal damage was observed in the intestine of

DIV1-infected shrimp, some intestinal epithelial cells were

detached from the basement membrane and the intestinal

villus height was significantly reduced. Similarly, Xue et al.

found that WSSV-infected crayfish Procambarus clarkii

exhibited worse intestinal histomorphology, with thinner

intestinal walls and shorter intestinal villi compared to healthy

crayfish (32). Liang et al. found that the intestinal epithelial cells

of L. vannamei infected with Vibrio parahaemolyticus were

completely detached from the basement membrane (33).

Except for the intestinal mucosal damage, the disturbance of

intestinal immunity and digestive function was also observed in

the DIV1-infected shrimp. Enzyme activity analysis showed that

all digestive enzymes and immune enzymes were significantly

altered (p < 0.001), indicating that DIV1 infection severely

affected the normal immune and digestive functions of the M.

japonicus intestine. Studies have found that shrimp hemocytes

can produce a large amount of free radicals and reactive oxygen

species (ROS) during phagocytosis, thereby effectively killing the

invading pathogens (34, 35). However, the mass accumulation of

ROS in animals will cause serious cell damage, resulting in

various diseases (36). SOD and CAT are two kinds of

antioxidant enzymes, which can effectively remove free

radicals and ROS, thereby protecting cells from oxidative

stress (37–39). Under the action of SOD, ROS react with

hydrogen ions to generate less toxic hydrogen peroxide, and

then react with hydrogen ions under the action of CAT to finally
A B

FIGURE 8

KEGG pathway enrichment analysis of DMs between the PBS-injected group and the DIV1-infected group (A) positive ion mode. (B) negative
ion mode.
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produce harmless water (40). Therefore, only when the activities

of SOD and CAT are coordinated, the free radicals and ROS in

the organism can be maintained at a low level. However, the

trends in the activity of SOD and CAT were not always

consistent. In L. vannamei, intramuscular injection of 0.1 mg
(g shrimp)−1 fluorescent red polyethylene microspheres (41) and

experimental infection with Enterocytozoon hepatopenaei (42)
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both resulted in a significantly increase in SOD activity and a

significant decrease in CAT activity. In Strongylocentrotus

intermedius, the activity of SOD increased significantly and the

activity of CAT decreased significantly with increasing

temperature (43). In our study, the activities of SOD was

significantly increased in the intestine of the M. japonicus

under DIV1 infection, while the activities of CAT was
TABLE 2 41 known differential metabolites were significantly enriched in KEGG pathway enrichment analysis in positive ion mode.

No. Metabolites log2FC p-value q-value VIP regulated

1 Succinic acid 3.493788215 0.0000 0.0000 2.0951 up

2 Deoxyguanosine monophosphate 3.319487878 0.0020 0.0020 1.5953 up

3 Retinol 2.6540001 0.0027 0.0027 1.7192 up

4 Xanthine 2.642447432 0.0001 0.0031 1.7224 up

5 Xanthosine 2.521980398 0.0008 0.0008 1.5769 up

6 (+/-)-2-hydroxyglutaric acid 2.450063094 0.0064 0.0064 1.4260 up

7 Uric acid 2.233335903 0.0028 0.0028 1.2898 up

8 Guanosine monophosphate 2.17280751 0.0037 0.0037 1.4209 up

9 Leukotriene e4 2.039805179 0.0082 0.0082 1.3434 up

10 Phenethylamine 1.922426225 0.0084 0.0084 1.3140 up

11 Icomucret 1.853875916 0.0046 0.0290 1.3534 up

12 Hypoxanthine 1.849358809 0.0036 0.0036 1.2915 up

13 All-trans-retinal 1.80467314 0.0005 0.0005 1.4709 up

14 Thymine 1.758388465 0.0038 0.0038 1.2088 up

15 Leukotriene b4 1.715102636 0.0035 0.0252 1.4015 up

16 (9cis)-retinal 1.68063942 0.0066 0.0066 1.2967 up

17 Glutarate 1.655260226 0.0025 0.0025 1.2688 up

18 Phosphoric acid 1.548979075 0.0012 0.0012 1.2447 up

19 5'-methylthioadenosine 1.523863009 0.0036 0.0036 1.4736 up

20 Arachidonic acid 1.456017576 0.0011 0.0011 1.1912 up

21 Eicosapentaenoic acid 1.344089921 0.0033 0.0033 1.1334 up

22 Androstanolone 1.310805431 0.0071 0.0071 1.0906 up

23 Docosapentaenoic acid 1.266636643 0.0074 0.0074 1.0680 up

24 Anandamide 1.260989139 0.0078 0.0390 1.0622 up

25 L-valine 1.172743517 0.0066 0.0066 1.0401 up

26 Progesterone 0.830093032 0.0018 0.0168 1.0147 up

27 Taurine -1.415422269 0.0000 0.0013 1.3254 down

28 D-sphingosine -1.416192117 0.0026 0.0026 1.0329 down

29 Estriol -1.481968507 0.0037 0.0037 1.4376 down

30 9-oxo-10(e),12(e)-octadecadienoic acid -1.717382279 0.0023 0.0023 1.3412 down

31 Gamma-linolenic acid -1.779917739 0.0000 0.0000 1.5127 down

32 5a-dihydrotestosterone -1.974262439 0.0006 0.0006 1.4595 down

33 Taurolithocholic acid sulfate -2.120921629 0.0020 0.0020 1.4804 down

34 Taurocholic acid -2.138600389 0.0009 0.0009 1.5635 down

35 Testosterone -2.200249538 0.0008 0.0008 1.5711 down

36 Cholecalciferol -2.321206928 0.0002 0.0002 1.6205 down

37 Phytosphingosine -2.868805648 0.0000 0.0000 1.8610 down

38 (+/-)12(13)-dihome -2.950090478 0.0000 0.0000 1.8567 down

39 Taurochenodeoxycholic acid -3.604717796 0.0008 0.0008 1.9053 down

40 Kaempferol -4.120294234 0.0000 0.0000 2.2115 down

41 3,4-dihydroxyphenylacetic acid -4.618827395 0.0000 0.0000 2.3781 down
fro
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significantly decreased. These results are supported by the

previous findings, and suggested that DIV1 infection may

cause a large amount of intestinal reactive oxygen species to be

produced and inhibit the antioxidant capacity of the intestine to

some extent. The specific mechanism needs to be further

studied. LYZ has been shown to play an important role in

shrimp resistance to viral and bacterial infections (44–46). The

activity of LYZ can directly reflect the strength of shrimp
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immune function. After infection with DIV1, the activity of

LYZ in the intestine of M. japonicus was significantly decreased,

which indicated that the intestinal immune function was

suppressed to some extent. a-AMS, LPS and TPS are three

important digestive enzymes that also serve as markers to help

diagnose diseases. Several studies had reported that the

significantly increased a-AMS and LPS activities can be used

as the basis for the diagnosis of mammalian enteritis and
TABLE 3 24 known differential metabolites were significantly enriched in KEGG pathway enrichment analysis in negative ion mode.

No. Metabolites log2FC p-value q-value VIP regulated

1 Cytidine 3.146492307 0.0011 0.0109 1.7973 up

2 Pantothenic acid 2.722553458 0.0069 0.0314 1.3379 up

3 Pyridoxine 2.709555326 0.0098 0.0394 1.3698 up

4 N-acetyl-l-phenylalanine 2.593234239 0.0055 0.0275 1.4078 up

5 Argininosuccinic acid 2.556306784 0.0053 0.0271 1.3755 up

6 Succinic semialdehyde 2.279560440 0.0037 0.0224 1.3252 up

7 Uric acid 2.258820397 0.0005 0.0072 1.4234 up

8 8(s)-hydroxy-(5z,9e,11z,14z)-eicosatetraenoic acid 2.183581791 0.0027 0.0191 1.3515 up

9 Phosphoric acid 2.161629747 0.0006 0.0085 1.4491 up

10 Adenine 1.969196548 0.0076 0.0333 1.1510 up

11 L-(+)-lactic acid 1.909043413 0.0023 0.0172 1.2639 up

12 Niacin 1.536649754 0.0141 0.0473 1.1171 up

13 Pyruvic acid 1.437494091 0.0040 0.0236 1.0153 up

14 Terephthalic acid 1.360645202 0.0001 0.0034 1.0953 up

15 Taurine 1.331303934 0.0080 0.0344 1.0127 up

16 Arachidonic acid 1.306845500 0.0025 0.0182 1.0367 up

17 N-acetyl-1-aspartylglutamic acid 1.085968454 0.0004 0.0067 1.0802 up

18 N-acetyl-d-mannosamine -1.046027092 0.0011 0.0110 1.0350 down

19 16-hydroxyhexadecanoic acid -1.569179503 0.0015 0.0129 1.3084 down

20 Cholic acid -2.838563734 0.0000 0.0021 1.6745 down

21 (+/-)12(13)-dihome -2.975964065 0.0000 0.0019 1.7010 down

22 Luteolin -3.930160375 0.0000 0.0017 1.9612 down

23 Taurochenodeoxycholic acid -4.316168826 0.0001 0.0038 2.1122 down

24 N-acetylmuramic acid -4.952322025 0.0001 0.0046 1.9742 down
fro
A B C

FIGURE 9

Scatter plots of correlation between DMs and hosts intestinal microbial. (A) Phylum classification level. (B) Family classification level. (C) Genus
classification level.
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pancreatitis (47–51), while trypsin deficiency is closely related to

enteritis (52–54). In this study, the intestinal activities of a-AMS

and LPS were significantly increased after infection with DIV1,

while the activities of TPS was significantly decreased. This

suggested that DIV1 infection may cause damage to the

shrimp intestine, causing enteritis and digestive dysfunction.

In addition, this may also be one of the reasons for the decreased

feeding rate of DIV1-infected shrimp and caused the symptoms

of empty stomach and intestine (14, 25, 26, 55, 56).

In intestinal microbiome analysis, after DIV1 infection at 24

h, the intestine microbiome was significantly changed in the

composition and diversity at the phylum, family and genus

levels. In this study, the intestinal microbiota in M. japonicus

were dominated by five phyla of Proteobacteria, Actinobacteria,

Bacteroidetes, Firmicutes and Cyanobacteria in both the PBS-

injected group and DIV1-infected group, which is consistent

with the previous microbiome studies in L. vannamei. At the

family level, the relative abundance of Vibrionaceae significantly

increased in the intestine of DIV1-infected M. japonicus

compared with healthy M. japonicus, which mainly reflected in

the significant increase in the relative abundance of

Photobacterium and Vibrio at the genus level. In addition,

both the LEfSe cladogram and LDA score of LEfSe-PICRUSt

showed that Photobacterium and Vibrio dominated in the DIV1-

infected group. Several previous studies had shown that WSSV

infection can cause an increase in the relative abundance of

opportunistic pathogens in the intestine of shrimp, such as

Aeromonas, Arcobacter, Vibrio and Trichococcus (19, 21, 32).

Photobacterium had been shown to cause various diseases in fish
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and shrimp (57–61) causing huge losses in aquaculture. Vibrio,

which is generally considered to be an opportunistic pathogen of

shrimp and widely exists in the intestine of shrimp, can cause

shrimp disease when the environment changes drastically (62–

65). These results suggested that DIV1 infection can cause an

increased abundance of opportunistic pathogens in the intestine,

which may probably due to DIV1 infection disrupting the

mechanical barrier of the intestine and impairing the ability of

intestine to select microorganisms. The results of PICRUSt

functional prediction showed that, in the KEGG level 2, the

relative abundance of “carbohydrate metabolism”, “metabolism

of cofactors and vitamins” and “amino acid metabolism” were

the top 3 in the two groups. It meant that intestinal microbiota

played an important role in regulating host vitamin metabolism,

carbohydrate metabolism and amino acid metabolism. Notably,

the relative abundance of “infectious diseases: bacterial” was

significantly increased under DIV1 infection, which further

suggested that DIV1 infection could cause secondary bacterial

infection. In-depth analysis of the top 3 KEGG level 2 terms

showed that the abundance value of amino acid metabolism,

vitamin metabolism, glycolysis/gluconeogenesis and pyruvate

metabolism were significantly increased after DIV1 infection.

It meant that DIV1 can promote the Warburg effect by affecting

the function of the host intestinal microbiota.

A recent study found that the “linoleic acid metabolism” and

“arachidonic acid metabolism” were also the most disturbed

pathways by HCoV-299E infection (66). Interestingly,

exogenous supplement of linoleic acid or arachidonic acid in

HCoV-229E-infected cells significantly suppressed HCoV-229E
A B C

FIGURE 10

Heap maps of correlation between the nine marker DMs and the hosts intestinal microbial. (A) Phylum classification level. (B) Family
classification level. (C) Genus classification level. Red indicateds a positive coreelation, and blue represents a negative correlation. * Indicates a
significant difference (*p < 0.05; **p < 0.01; ***p < 0.001).
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virus replication (66). Another study showed that linoleic acid

could directly bound to WSSV to inhibited the viral replication

and indirectly participate in the immune response against WSSV

by activating the ERK-NF-kB signaling pathway to promote the

expression of antimicrobial peptides and IFN-like gene Vago5

(67). Consistently, the intestinal metabolomics analysis in this

study showed that lipid metabolism in the intestine of M.

japonicus was remodeled after DIV1 infection, and a total of

seven types of lipid fatty acids were significantly changed,

including arachidonic acid, eicosapentaenoic acid,

docosapentaenoic acid, 9-oxo-10(e), 12(e) -octadecadienoic acid,

gamma-linolenic acid, 8(s)-hydroxy-(5z,9e ,11z,14z)

eicosatetraenoic acid and 16-hydroxyhexadecanoic acid. In

addition, two Warburg effect marker metabolites were

significantly up-regulated, including L-(+)-lactic acid and

pyruvic acid. KEGG enrichment analysis indicated that the

“Linoleic acid metabolism” and “arachidonic acid metabolism”

pathways were the most affected by DIV1 infection. These results

suggested that the lipid metabolic reprogramming ofM. japonicus

was significantly associated with DIV1 infection and replication.

After infected with DIV1, two marker metabolites of the Warburg

effect were significantly up-regulated in the shrimp intestine,

including L-(+)-lactic acid and pyruvic acid, and significantly

enriched in the “pyruvate metabolism” and “glycolysis/

gluconeogenesis” pathways. In addition, some amino acid

metabolism-related pathways were also significantly enriched

under DIV1 infection, including “tyrosine metabolism”,

“phenylalanine metabolism” and “alanine, aspartate and

glutamate metabolism”. These phenomena also appeared in

previous studies (11, 25, 26), which may be attributed to the
Frontiers in Immunology 16
material and energy requirements of DIV1 replication and

suggested that DIV1 may contain AMGs for regulating host

amino acid metabolism, carbohydrate metabolism and energy

metabolism. It was worth noting that some pathways related to

vitamin metabolism were significantly enriched, such as “retinol

metabolism”, “vitamin B6 metabolism” and “pantothenate and

CoA biosynthesis”. Retinol, also known as vitamin A (VA), plays

an important and positive role in intestinal mucosal immunity

and repair (68). The B vitamins can regulate the energy

metabolism, nutrient accumulation and immune defense

function of aquatic animals (69). Our previous study showed

that DIV1 infection can regulate the vitamin metabolism of

shrimp by affecting the expression of intestinal miRNA and

mRNA (11, 26). In this study, from the metabolome level, it

was further demonstrated that DIV1 infection can regulate

vitamin metabolism in the intestine, thereby affecting the

normal physiological function of M. japonicus.

Intestinal microbiota variation caused by viral infection or

environmental stress can affect the metabolism and immunity of

their host, and increase disease susceptibility (70, 71). To further

explore the relationship between intestine microbiota variation

and metabolites, the correlation analysis of dominant intestinal

microbial and marker DMs was carried out. In this study, the

increased levels of Photobacterium and Vibrio were positively

correlated with changes in Warburg effect marker metabolites

L-(+)-lactic acid and pyruvic acid. This indicated that

Photobacterium and Vibrio may synergize with DIV1 to jointly

promoted the Warburg effect, providing material and energy for

the successful replication of DIV1. In addition, the abundances

of Photobacterium and Vibrio were positively associated with
FIGURE 11

Proposed schematic diagram of secondary bacterial infection and metabolic reprogramming of M. japonicus induced by DIV1 infection.
IEC, intestinal epithelial cells; BM, basement membrane; SOD, superoxide dismutase; CAT, catalase; LYZ, lysozyme; LPS, lipase; TPS, trypsin.
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arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid

and 8(s)-hydroxy-(5z,9e,11z,14z) eicosatetraenoic acid and

negatively associated with 9-oxo-10(e),12(e)-octadecadienoic

acid, gamma-linolenic acid and 16-hydroxyhexadecanoic acid.

However, Corynebacterium, which dominated the PBS-injected

group, was just the opposite of the above. It suggested that

Photobacterium and Vibrio may be involved in the metabolic

reprogramming of the shrimp intestine after DIV1 infection.
5 Conclusions

In conclusion, through the histological analysis, enzyme

activity analysis and the integrated analysis of intestinal

microbiome and metabolomics, the present study revealed that

DIV1 infection can lead to the damage of the intestinal mechanical

barrier of shrimp, the imbalance of oxidative and antioxidant

capacity, the decrease of immune enzyme activities, and the

disturbance of digestive enzyme activities. Futhermore, harmful

bacteria may cooperate with DIV1 to promote the Warburg effect

and induce metabolic reprogramming, thereby creating favorable

conditions for the replication of DIV1. The speculation needs to be

further verified. This study is the first to report the changes of

intestinal microbiota and metabolites of M. japonicus under DIV1

infection, demonstrating that DIV1 can induce secondary bacterial

infection and metabolic reprogramming (Figure 11).
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