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The microbiome has clearly been established as a cutting-edge field in tumor

immunology and immunotherapy. Growing evidence supports the role of the

microbiome in immune surveillance, self-tolerance, and response to immune

checkpoint inhibitors such as anti PD-L1 and CTLA-4 blockade (1–6). Moreover,

recent studies including those using fecal microbial transplantation (FMT) have

demonstrated that response to checkpoint immunotherapies may be conferred

or eliminated through gut microbiome modulation (7, 8). Consequently, studies

evaluating microbiota-host immune and metabolic interactions remain an area

of high impact research. While observations in murine models have highlighted

the importance of the microbiome in response to therapy, we lack sufficient

understanding of the exact mechanisms underlying these interactions.

Furthermore, mouse and human gut microbiome composition may be too

dissimilar for discovery of all relevant gut microbial biomarkers. Multiple

cancers in dogs, including lymphoma, high grade gliomas, melanomas and

osteosarcoma (OSA) closely resemble their human analogues, particularly in

regard tometastasis, disease recurrence and response to treatment. Importantly,

dogs with these spontaneous cancers also have intact immune systems,

suggesting that microbiome analyses in these subjects may provide high yield

information, especially in the setting of novel immunotherapy regimens which

are currently expanding rapidly in canine comparative oncology (9, 10).

Additionally, as onco-microbiotic therapies are developed to modify gut

microbiomes for maximal responsiveness, large animal models with intact

immune systems will be useful for trialing interventions and monitoring
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adverse events. Together, pre-clinical mechanistic studies and large animal trials

can help fully unlock the potential of the microbiome as a diagnostic and

therapeutic target in cancer.
KEYWORDS

microbiome, immunotherapy, cancer, comparative oncology, canines
Success and limitations of the
murine model

Murine models represent the most used model for studying

host-microbiome physiology at both functional and mechanistic

levels. Due to genetic homogeneity and laboratory environments,

mouse models allow for high levels of control and improved

experimental reproducibility (11). In cancers with representative

murine models, mice have uncovered cancer promoting

microbiota, and microbiota associated with improved response

to treatment. Murine colon cancer models, for example, have

contributed to understanding the influence of the gut microbiome

on colorectal tumorigenesis via modulation of inflammation. In

these models, transfer of the microbiome from tumor-bearing

mice to germ free mice accelerated tumor growth, demonstrating

causality (12, 13). Similarly, TLR4 knockout mice have been

critical in understanding the oncogenic effect of gut microbiota

in liver cancer (14). Sivan et al (15)demonstrated key differences in

tumor kinetics and responses to immunotherapy between

genetically similar mice bred in two different environments. One

cohort showed anti-tumor effects following anti-PD1 checkpoint

inhibitor therapy, while the other cohort showed no benefit.

However, co-housing the mice together reversed the differences

in anti-tumor responses, which were then restored by the

administration of oral Bifidobacterium spp (15). Similar

observations were made for mice receiving anti-CTLA

checkpoint inhibitors with effects modulated by Bacteroides

species, (specifically B. fragilis and/or B. thetaiotaomicrom) (16).

Despite the strength of these mechanistic murine studies,

there are limitations to mouse models, particularly when

considering the complex interactions between microbiome,

immune response, and cancer. Laboratory mice demonstrate

different microbial compositions to their wild counterparts.

Attempts to convert lab-type to wild type mice have

successfully altered, but not completely recapitulated, natural

microbiome profiles (17). Moreover, animal facilities themselves

significantly impact microbiome composition. For example, key

differences in dominant taxa have been observed between

identical mouse lines from different animal locations (18).

Similarly, the use of germ-free mice is both a strength and a

weakness of mouse models (19). These sterile conditions allow
02
mice to be born without microbial colonization prior to the

introduction of species of interest. However, this germ-free

environment also leads to significant impairment of immune

system development and responses. For example, mice raised in

sterile conditions develop higher levels of IgE and fail to induce

the same levels of immune reactivity seen during the “weaning

period” of wild-type mice (20–23). This results in susceptibility

to certain bacteria and increased risk of immunopathologies,

complications which are not resolved with instillation of an

“adult” or “wild-type” microbiome (21, 22, 24). Additionally,

mouse studies of the microbiome show a large genetic influence

which is distinct from humans where <10% of taxa are thought

to be heritable (24–28). The high level of genetic homogeneity

present in most murine models raises questions of

generalizability to the human situation where genetic

backgrounds and environmental exposures are vastly more

diverse. This concern is reinforced by studies which have

demonstrated the impact of environmental influences

especially diet and drugs, as the most prominent factors

influencing the microbiome in humans (29–31).

Additionally, as laboratory animals, mice do not receive the

multi-faceted cancer care that is provided to humans and

companion animals such as dogs. While pre-clinical murine

models of checkpoint blockade immunotherapy have

demonstrated impressive ability to prevent disease progression

in various cancer cell lines, translation to human medicine has

shown mixed results (32). Clinically meaningful survival benefits

of PD-1 & CTLA-4 checkpoint inhibitor therapy have been

demonstrated in some cancers, such as melanoma and non-

small cell lung cancer, but only in a subset of patients (31–34)

While observations from murine studies have demonstrated

microbiome-associated factors for responsiveness to treatment,

another limitation of murine models is their tendency to be

reductionistic in their capacity to explore all potential

intersecting variables which influence the cancer-immunity

cycle (5–8, 15, 35, 36).

Similarly, murine models are able to strictly control diet and

environment, both of which are key drivers of microbiome

plasticity and composition, but as with germ-free studies, this

can be both a strength and a weakness. For example, Matson

et al. and Gopalakrishnan et al. (5, 6) used FMT to study whether

human commensal microbes would potentiate anti-tumor T cell
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responses in germ-free mice in two separate studies. Matson

et al. demonstrated slower tumor growth in some mice

after transferring microbiota from human responders.

Gopalakrishnan et al. (6) showed changes in tumor infiltrating

cells and upregulation of PD-1 in the tumor microenvironment

after FMT. Although these mouse experiments demonstrated

significant proof-of-concept results, it is not clear why effects

were seen in some, but not all, mice. Given that the mice were

evaluated to be highly homogenous and genetically inbred, the

mice are expected to respond similarly. It is unclear whether the

effects on the treatment would persist when using models with

more heterogenous genetic backgrounds and environmental

exposures. Additionally, the fact that similar mechanisms were

identified in these studies but the precise microorganisms were

different highlights potential concerns regarding generalizability

and extrapolation as noted above.

Microbiome studies in dogs with spontaneous cancers

receiving immunotherapy offer an additional avenue for

exploration. As the development of canine immunotherapy

advances, including the development of novel caninized anti-

PD1, anti-CTLA-4 and anti-PD-L1 monoclonal antibodies,

microbiome correlative studies and attempted therapeutic

intervention in canines with intact immune systems and a

lifetime of commensal gut microbiome symbionts may yield

useful observations for human applications (37–39). Human

clinical immunotherapy trials are impacted by immune-related

adverse effects such as colitis and myocarditis (32, 33, 39, 40).

While murine models have been developed to help study these

immune-related events, these models are prone to develop auto-

immune responses which may limit translational potential (41).

Canine models represent an opportunity to bridge mechanistic

studies in mice with descriptive studies in humans, and

microbiome studies in companion animal dogs can help

advance our understanding of how the gut microbiome shapes

immunotherapy responses as well as toxicity and adverse events.
Human vs canine microbiome

As in humans, studies of the canine microbiome have

evaluated the relationship of the microbiome with

inflammatory disease states, development of malignancies, and

more recently, response to oncologic therapies (42–47). The

“normal” adult microbiota comprises thousands of bacterial

species across mucosal and skin surfaces and is determined by

environmental and genetic factors. The colonization of both the

human and canine gut microbiome, one of the densest bacterial

environments on earth, increases in alpha diversity and

decreases in beta diversity during the weaning period before

stabilizing (0-3 years in humans, 0-9 weeks in canines) (45, 48–

50). Exposure to microbes during delivery, early diet, and

antibiotic exposure have all been shown to impact gut

microbial development (22, 51, 52). Early influences have
Frontiers in Immunology 03
clinical impact – colonization with C. difficile during the first

months of life is associated with increased risk of atopic

disorders such as asthma and eczema in children (53).

Microbiome compositions in pre-weened puppies display

instability of prominent taxa. Puppies that displayed these

“immature” microbiome profiles are more suspectilble to

diarrheal illness compared to those who have developed stable

more “adult” compositions (54). Environmental factors such as

diet, drugs, and living conditions also exert key influences on

subsequent adult microbiota composition (29, 30). Microbiomes

of genetically unrelated co-habitants are consistently

demonstrated to be more similar than those of relatives who

do not cohabitate, and genetic ancestry does not predict

compositional similarities (29, 55). While environment is the

primary influencer of composition, there appears to be

heritability in human and canine gut microbiomes as well. A

study of 400 human twin pairs raised in the same household

compared monozygotic vs dizygotic siblings. Interestingly,

monozygotic twins demonstrated more similar gut microbiota

compared to their dizygotic counterparts (56). Canine

comparisons of dog breeds show similar findings, although

studies of breed variation indicate that breed does not cause

major shifts in microbiome composition or diversity but may

influence abundance of specific taxa (46). Although not to the

extent of humans or mice, the canine gut microbiota has been

surveyed in some detail (50, 57–59). Most large studies agree on

the five most prominent phyla in dogs: Firmicutes, Fusobacteria,

Bacteroides, Proteobacteria and Actinobacteria, the composition

of which is more similar to humans than other commonly

studied mammalian species. Coelho et al. (57) compared 129

stool samples from 64 dogs against previously published gut

microbial gene catalogs based on similar sequencing methods.

The phylum level distribution of genes in the dog was more like

the published human data than that of a mouse or pig. When

genes were clustered by each species pool, the dog gut gene pool

overlapped most with the human gut microbiome (23%)

compared to only 4.9% for the murine gene catalog. As in

prior human data, the majority of the composition appeared

to be influenced by environmental exposures, diet, and disease

states. Importantly, certain bacterial species have been found to

exert similar effect across species. Obesity, which is a growing

problem in both humans and canines, is correlated with a

change in Firmicutes/Bacteroides ratios in both humans and

canines (60–62). Canine and human inflammatory bowel

disorders are associated with a reduction in microbial

community diversity and structure characterized by loss of key

species or overgrowth of species with genotoxic potential such as

Bacteroides fragilis and E. coli (45, 63). In humans, these

microbiome shifts have been associated with colorectal cancer

(12, 64, 65). While colorectal cancer is less common in dogs,

increased E.coli is associated with canine intestinal lymphoma

(42). Importantly, human and dog differences in microbiome

interactions are also informative. Fusobacterium, for instance,
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plays a role in energy utilization in the gut as a fermenting

species. In humans, F. nucleatum is associated with colorectal

cancer and thought to trigger inhibitory T cell receptors that

suppress anti-cancer immune response (66, 67). In dogs,

however, fusobacteria are associated with maintaining gut

health (67).

While similarities in the development and composition of the

gut microbiome present one advantage of the canine model,

perhaps the most important is that of a shared environment

with humans. As companion animals, dogs inhabit the same

environment as humans. Therefore, shifts in composition caused

by disease states or therapeutics must be robust enough to

compete with the myriad of “real life” influences that patients

encounter. Shared environments may also lead to shared

taxonomy; canine housemates show similar microbiome

profiles, similar to what is observed between human cohabiting

with a spouse or partner (68). Interestingly, co-living between

species influences microbiome profile as well (69). Companion

dogs share more skin flora with their owners than with other dogs

and oral microbiomes, which may show relevance in oral

melanoma, as there is evidence of oral spread of symbionts

between humans and dogs (68, 69). Some have hypothesized

that pet ownership may influence the human gut microbiome as

well (70). Small differences in abundance for two OTUs have been

associated with pet ownership, although additional studies are

needed given the risk of type I error (69).
Microbiome in canine therapeutics

Attenuation of immune surveillance and development of

immunological tolerance to tumor-derived antigens contribute

to cancer development and progression. Novel immunotherapies

target one of these two mechanisms to stimulate the subject’s

immune system to recognize and target cancer as non-self.

Overcoming both intrinsic and acquired resistance to these

treatments are critical areas of study, and although several

species of interest have been identified, no universal “responder

signature” has been identified. Canine analysis that identifies

similar bacterial enrichment as in human studies would greatly

enhance the chances of replicable and generalizable effects.

Microbiome modulation has demonstrated exciting promise

in increasing the number of human patients who may respond to

PD-1/PD-L1 checkpoint inhibitor immunotherapy (4–6).

Demonstrated first by Gopalakrishnan & Matson et al. (5, 6) in

a murine model, and recently by Baruch et al. (7) in a human

clinical trial, FMT from a drug-responsive subject to a

nonresponsive subject was able to convert a subset of prior non-

responders, allowing them to benefit from treatment. Importantly,

when considering the human trial of FMT, extensive pre-and

post-treatment analysis regarding microbiome composition, local

metabolism, and expression of immune-related genes failed to

show significant differences between those who became responsive
Frontiers in Immunology 04
to treatment and those who did not (7). Thus, while successful in

proving the concept of FMT to be safe and potentially beneficial,

the effects remain correlative. These types of immune-microbiome

relationships could benefit from additional studies in dogs with

spontaneous cancers in the setting of an intact immune system.

FMT is accepted in community veterinary practice making high-

powered studies possible once commercially available caninized

ICI’s are readily available (59). Repeating FMT trials with canine

immunotherapy provides an opportunity to integrate

observations of gut microbial alterations with longitudinal

changes in metabolism and immune surveillance. Dogs, unlike

mice, allow for multiple collections of adequate blood samples that

can detect metabolites of short chain fatty acids that can act as

ligands for G-protein coupled receptors. Iosine and hypoxanthine

have recently been associated with bacteria of interest, for example

(71, 72).

While veterinary medicine is waiting for the widespread

commercial availability of canine specific PD-1/PD-L1/CTLA-4

mAbs to usher the area of immunotherapy in dogs, other

immunotherapy approaches are in use, and comparison of

microbiome profiles between responder status in other

immune-based therapies should be considered (73, 74).

Longitudinal stool and blood sampling of these canine patients

for microbiome and metabolic investigation presents a rich area

of investigation. Standard treatments for dog cancers include

chemotherapy and radiation, which may allow for evaluation of

the impacts that traditional therapies have on the microbiome

alone or in combination with immunotherapy. Canine lifecycles

are also inherently shorter, so rapidly progressing canine cancers

allow for collection of samples linked to critical end points such

as disease-free interval and time to progression which are highly

relevant to the human situation.
Microbiome in the
tumor microenvironment

The gut microbiome represents the most extensively

classified community in humans and animal models, yet

increasing studies have demonstrated that microbial

communities in other compartments have clinical implications

(74–76). Tumor-associated microbiomes have been identified in

multiple human cancers including breast, lung, pancreas, and

melanoma tumors (74–79). While tumor infiltrating

lymphocytes (TILs) have emerged as a key feature of the

immune tumor microenvironment (TME), a deeper molecular

and cellular signals responsible for immune-tumor-microbiome

communication are not yet understood. While some studies

demonstrate a higher number of tumor infiltrating lymphocytes

(TILs) in the TME project more positive patient outcomes,

others suggest that the upregulation of regulatory T cells in the

TME is associated with a more negative outcome (80–82).
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Although mouse models can provide key insights into the

immune-tumor interactions in the TME and are important for

mechanistic studies, these models have limitations given the

nature of transplanted highly retroviral tumors. Known

differences in tumor initiation and promotion are likely to

impact the fidelity of the model for microbiome studies (83, 84).

Therefore, dogs represent an important translational

opportunity for studies of the cancer-immunity cycle,

including microbiome studies. Canine immunotherapy,

including evaluation of novel therapies in the context of

clinical trials, has received significant attention from

researchers and funding agencies, including the Cancer

Moonshot, and examples of ongoing canine immunotherapy

trials can be seen in Table 1 (9, 10). Dogs are diagnosed with

naturally occurring cancers which are highly similar to humans,

and genetic studies have demonstrated notable overlap in the

tumor genetic makeup of human and dog OSA, melanoma,

mammary tumors, gliomas and lymphoma (84–90). Canine
Frontiers in Immunology 05
OSA recapitulates several feature of human OSA including

frequent TP53, PI3K, and MAPK pathway mutations with low

expression of immuno-associated genes and a trend toward

higher mutation burden in metastatic disease (88). Canine

mammary tumors and lymphomas share major gene

alterations with their human counterparts in addition to

having similar tumor mutation burdens (91). Gliomas have

been shown to share specific alterations in receptor tyrosine

kinases such as TP53 and cell cycle pathways with human

pediatric gliomas (89). Overall, the incidence of these canine

cancers is believed to be as high or higher than their human

counterparts, although precise case numbers are not known

since no national database exists for dogs. For example, soft

tissue sarcomas make up 10-15% of malignant tumors in dogs

with estimates of approximately 7700-31,800 new canine cases

per year in the United States compared to soft tissue sarcoma in

humans which represents approximately 1% of cancer cases and

10,000 – 12,000 new cases per year in the US (91). Similarly,
TABLE 1 Ongoing Clinical Trials in Dogs.

Institution Clinical Trial Cancer
Type

University of California
Davis

Enhancing Natural Killer Immunotherapy with First in Dog Trials of Inhaled Recombinant IL-15 and Super agonist IL-15
in Naturally Occurring Canine Cancers

Osteosarcoma
Melanoma

University of Alabama at
Birmingham

Canine Immuno-Neurotherapeutics (Combination immunotherapies for canine brain tumors) Glioma

Colorado State University Optimizing Novel Immunotherapy Combination Targeting the Tumor Microenvironment in Canine Spontaneous
Osteosarcoma

Osteosarcoma

Tufts University Enhancing the Efficacy of Immunotherapy in DLBCL Using Rational Combination Approaches Lymphoma

University of Minnesota Novel Combined Immunotherapeutic Strategies for Glioma: Using Pet Dogs as a Large Animal Spontaneous Model Glioma
fr
FIGURE 1

Venn diagram comparing relevant aspects of canine model to humans. Important mouse model differences highlighted below.
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canine OSA is estimated at approximately 25,000 – 50,000 cases

per year, whereas the number of human OSA is approximately

3000 per year in the US (92–94). Data such as these highlight the

value of the canine model as an important asset in tumor

immunology and immunotherapy studies, especially where an

intact immune system is critical for understanding tumor and

host biology.
Conclusion

Murine models will always have utility as pre-clinical

models, including for microbiome studies. However, due to

the complex interactions between the immune system, the

TME, and metabolism, utilization of canines for microbiome

research is a promising strategy to yield additional data that

can bridge our understanding from “proof of concept” to

“proof of mechanism”. Further classification of the canine

microbiome in cancer, changes in the canine microbiome in

response to immunotherapy, and characterization of

microbiomes outside the gut will all be important in deriving

the most from canine models. This is particularly important

now as veterinary medicine has made advances in canine

specific immunotherapy agents that mirror human ICI.

Canine clinical trials should consider collection of stool

samples for microbiome biomarkers, as well as tissue and

blood samples as well to correlate microbiome changes with

immune infiltration and metabolic changes. As we increase our

understanding of the interplay between specific commensal

bacteria and the targets of immune therapy, the next step is

therapeutic application. Through diet, antibiotics, fecal

transfer, or other methods, reliably tailoring gut microbiomes

to create maximal responsiveness with minimal side effects is

the future of immuno-oncology. Dogs present a step-in bench

to bedside science where their developing interventions can be

tested on immune intact models exposed to complex

environmental influences to ensure they demonstrate

durability and utility.
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