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Monoclonal antibodies in
the management of asthma:
Dead ends, current status and
future perspectives

Grzegorz Kardas , Michał Panek , Piotr Kuna ,
Piotr Damiański and Maciej Kupczyk *

Clinic of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
Patients with moderate-to-severe asthma may now be treated using a variety

of monoclonal antibodies that target key inflammatory cytokines involved in

disease pathogenesis. Existing clinical data on anti-IgE, anti-IL-5 and other

immunological pathways indicate these therapies to offer reduced

exacerbation rates, improved lung function, greater asthma control and

better quality of life. However, as several patients still do not achieve

satisfactory clinical response with the antibodies available, many more

biologics, aiming different immunological pathways, are under evaluation.

This review summarizes recent data on existing and potential monoclonal

antibodies in asthma. Recent advances have resulted in the registration of a

new antibody targeting TSLP (tezepelumab), with others being under

development. Some of the researched monoclonal antibodies (e.g. anti-IL-13

tralokinumab and lebrikizumab or anti-IL-17A secukinumab) have shown

optimistic results in preliminary research; however, these have been

discontinued in asthma clinical research. In addition, as available monoclonal

antibody treatments have shown little benefit among patients with T2-low

asthma, research continues in this area, with several antibodies in

development. This article summarizes the available pre-clinical and clinical

data on new and emerging drugs for treating severe asthma, discusses

discontinued treatments and outlines future directions in this area.

KEYWORDS

asthma, severe asthma, monoclonal antibodies, tezepelumab, dupilumab, benralizumab,
mepolizumab, omalizumab
Abbreviations: ACQ, Asthma Control Questionnaire; AQLQ, Asthma Quality-of-Life Questionnaire;

EMA, European Medicines Agency; FDA, U.S. Food and Drug Administration; FeNO, Fractional exhaled

Nitric Oxide; GINA, Global Initiative for Asthma; ICS, Inhalable Corticosteroids; LABA, Long-acting Beta-

agonists; LAMA, Long-acting Muscarinic Antagonists; NA, None available; PEF, Peak Expiratory Flow;

RCT, Randomized Control Tria l ; SABA, Short-act ing Beta-agonists ; TSLP, Thymic

Stromal Lymphopoetin.
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Introduction

Asthma is a chronic, heterogeneous and inflammatory

respiratory condition characterized by shortness of breath,

cough, wheezing, and chest tightness. It belongs to the group

of obstructive diseases characterized by variable airflow

limitation (1). Asthma occurs in several phenotypes that vary

in their pathogenesis, and the intensity and frequency of

symptoms and exacerbations (2). Currently, its prevalence is

estimated to reach 1-18% depending on the country studied (1,

3, 4). The disease affects all age groups, with new cases diagnosed

predominantly in children aged 0-9 [early-onset asthma, usually

atopic (5)] and in adults aged 40-49 [late-onset asthma, often

eosinophilic phenotype (6)]. It is important to note that, as is the

case for other allergic diseases, its global prevalence is increasing

(4, 7, 8), which has been attributed to various factors such as air

pollution, antibiotic misuse, viral infections and a high-hygiene

lifestyle (9, 10).

The term asthma is currently considered an umbrella term

that encompasses several clinical and pathophysiological

variants. The main axis of division refers to the type of

inflammation, i.e. type 2 inflammation and non-type 2

inflammation. Furthermore, asthma phenotypes are considered

as either eosinophilic or non-eosinophilic, with blood eosinophil

count considered a major, yet controversial, phenotype-

distinguishing biomarker (11). Most patients present a Th2-

predominant allergic phenotype asthma, which develops on

basis of atopy triggered by inhaled allergens, e.g. house dust

mite, grass pollens, trees or pets (6). Apart from the classical,

early-onset allergic asthma, late-onset eosinophilic asthma is

also under intensive study (12), as are other various asthma

phenotypes, including obesity-associated asthma, neutrophilic

asthma and very-late onset asthma. Asthma pathogenesis is

s trongly influenced by a number of mediators of

inflammation, such as IgE, IL-3, IL-4, IL-5, IL-9, IL-13, IL-33

and TSLP, with many more being discovered (13).
Current clinical options for the treatment
of severe asthma

In clinical practice, three levels of asthma severity are

distinguished (mild, moderate and severe), with treatment

being based on the five Global Initiative for Asthma (GINA)

steps (1). The most severe cases, in which asthma control is not

reached despite using high doses of inhaled corticosteroids, may

be qualified for GINA step 5 biological treatment with

monoclonal antibodies that are targeting key asthma mediators.

According to current epidemiological data, 3.6-10.0% of

asthma patients are believed to demonstrate severe disease

(14–16), which corresponds to four million patients globally.

Although much less prevalent than mild and moderate asthma,

severe asthma contributes to about 60% of costs associated with
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the disease, mainly due to higher costs of drugs and hospital

care, as well as various indirect costs (17, 18). Current research

efforts in the field are strongly oriented towards learning more of

the pathomechanisms of severe asthma and concurrent

developing of new biological therapies and identifying groups

of patients best responding to a certain therapy (19). The

ground-breaking change in asthma was achieved in 2003 with

the first biological treatment of severe asthma: the anti-IgE

monoclonal antibody omalizumab. This discovery was

followed by more biological agents targeting key inflammatory

nodes in the chronic inflammation underlying asthma, such as

IL-5, IL-5R, IL-13 and IL-4R. Each of these drugs targets a

certain immunological pathway that triggers and controls airway

inflammation. Currently, omalizumab, mepolizumab,

benralizumab, reslizumab, dupilumab and tezepelumab are

those approved by the FDA for the treatment of severe asthma

(20). With the variety of monoclonal antibodies currently

available for treating asthma, clinicians may now personalize

therapy according to asthma phenotype

Omalizumab is a humanized IgG1/к monoclonal antibody

that binds to the IgE immunoglobulin Fc fragment (21). Thus, it

inhibits the main mediator of the type I reaction pathway. By

binding free IgE molecules in the circulation, it inhibits the

activation of mast cells and basophils. As a result, the number of

IgE receptors on the surface of these cells declines over time,

which is considered to be a critical component of the drug’s

clinical efficacy. Omalizumab also inhibits binding of IgE to the

low-affinity IgE receptor (FcϵRI) (22),. Launched in 2003,

omalizumab has been used in severe allergic asthma and, since

2014, in chronic urticaria. In 2004, omalizumab was the very first

monoclonal antibody to be included in Step 5 of the GINA

recommendations as an addition to standard therapy with inter

alia high doses of inhaled steroids or b2-agonists. Since then,

clinical and observational studies have found its use in

improving asthma control, relieving symptoms, reducing

exacerbation risk and improving lung function (23–25). The

drug is known to be safe for long-term use regarding oncological

safety and can be safely used during pregnancy (26–28) and by

children (29).

Another biological drug in severe asthma is mepolizumab,

which was registered in 2015. This antibody binds IL-5, thus

preventing it from binding to the IL-5R a subunit on

eosinophils. This IL-5 signal blockade reduces the eosinophil

population in patients with eosinophilic asthma, leading to

clinical improvement (30). Clinical and observational studies

confirm that mepolizumab improves asthma control, reduces

the number of exacerbations and steroid doses and improves

lung function in severe eosinophilic asthma (31, 32).

Importantly, both mepolizumab and omalizumab exhibit a

comparable safety profile (33).

Benralizumab – registered in the US in 2017 – is a

monoclonal antibody targeting IL-5R a subunit (20).

Randomised clinical studies have shown the drug’s efficacy
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and safety in patients with severe asthma and elevated

eosinophils (34, 35). It was shown to be effective in lowering

exacerbation rates, symptom burden, and oral glucocorticoid

use, together with improvements in lung function (36, 37). This

was also confirmed in real-world studies, including 2- and 3-

year-long observations (38, 39)

Another anti-IL-5 antibody is reslizumab, which was

registered in the US in 2016. (anti-IL-5 antibody, US

registration in 2016)

Dupilumab is a monoclonal antibody inhibiting IL-4 and IL-

13 signaling. It was registered in the US in 2017) and (20, 40).

The newest drug, tezepelumab, was registered by the FDA in

December 2021. It is a human, IgG2 monoclonal antibody

blocking thymic stromal lymphoprotein (TSLP). This makes it

a first-in-class candidate for a new group of antibodies targeting

alarmins – key epithelial inflammatory cytokines involved in

asthma pathogenesis (TSLP, IL-25 and IL-33). The drug has

been intensively studied in recent years and promising results of

phase II and III trials have been recently published (41).

The clinical efficacy of tezepelumab has been demonstrated

in the following pivotal clinical studies carried out in the period

2017-2020: PATHWAY (Phase IIb), NAVIGATOR (Phase III),

SOURCE (Phase III) and CASCADE3 (Phase II). Their results,

published in 2021, confirm that tezepelumab is effective in a very

wide population of patients with severe asthma. This has been

attributed to its ability to inhibit TSLP - the mediator at the top

of the inflammatory cascade.

The results of PATHWAY were published in 2017. This

study was the first to examine the efficacy of tezepelumab in

patients aged 18-75 with uncontrolled asthma receiving long-

acting beta-agonists and medium-to-high doses of inhaled

g l i cocor t i cos t e ro ids . The drug was admin i s t e r ed

subcutaneously at three doses, viz. 70mg, 210mg or 280 mg,

every four weeks and compared to placebo. The patients were

also characterized by blood eosinophil count (<250 or ≥250),

FeNO (<24 or ≥24) and Th2 status (low or high). The annualized

asthma exacerbation rates at week 52 were 0.27 (70 mg), 0.20

(210mg) and 0.23 (280 mg), compared with 0.72 in the placebo

group. In addition, prebronchodilator FEV1 changed by 0.12

liters, 0.13 liters and 0.15 liters at week 52 compared to baseline

and was higher than in the placebo group in the three respective

study groups (42). Moreover, the drug was reported to be

effective in improving patient-reported quality-of-life and

symptom severity compared to placebo (43). A post hoc

analysis of the study results found that the 210mg dose

reduced exacerbation rates by 64-82% across all four seasons,

with the greatest reduction in summer and lowest in winter (44).

The NAVIGATOR study of tezepelumab included 1,061

patients with severe asthma. Although the study entry criteria

did not include peripheral blood eosinophil counts,

approximately 50% of patients were estimated to have ≥300

cells/µL. The annual rate of exacerbations in the entire study

population decreased by 56% and hospitalization by 85% during
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tezepelumab treatment. A 70% reduction of exacerbations was

noted in the population with eosinophilia ≥300 cells/µl, and 41%

in the group with <300 cells/µl. Patients treated with

tezepelumab achieved a 130 ml increase in FEV1 over the

study, which was statistically significant. A statistically

significant improvement in quality of life was also reported:

the tezepelumab group demonstrated a 0.33 point better ACQ-6

score and 0.34 point better AQLQ score. In addition, the patients

with eosinophilia above 300 cells/µl also demonstrated greater

improvement in FEV1 and ACQ-6 and AQLQ questionnaire

scores (45).

Another phase III study on tezepelumab was the SOURCE

study, which aimed to assess its effectiveness in reducing the

dose of oral steroids in the course of steroid-dependent asthma

among 150 patients. Although no statistically significant

differences were found between the study drug and placebo

among patients in general, tezepelumab treatment enabled a

reduction of the oral steroid dose in the population of patients

with > 150 cells/µl peripheral eosinophilia (46).

A continuation of the NAVIGATOR and SOURCE studies is

the ongoing DESTINATION study, in which patients will

continue treatment with tezepelumab for another year or, if

they were taking placebo, will be re-randomized in a 1: 1 ratio.

The aim of the study is a long-term evaluation of the tolerability,

safety and efficacy of tezepelumab in a cumulative two-year

follow-up. The results of this study will be known soon: the

planned completion date is May 2022 (47).

Tezepelumab has been recently registered by the FDA

(December 2021), and European registration by the EMA was

authorized in September 2022. Information on the monoclonal

antibodies currently registered in severe asthma treatment may

be found in Table 1.
Dead ends in severe asthma research -
promising, yet unsuccessful drugs in
recent years

Despite the development of groundbreaking new therapies

for severe asthma over the last two decades, certain groups of

patients still do not respond to available therapies and hence,

there still remains a substantial need for further therapeutic

options. This is particularly the case among those who cannot be

clearly categorized to a certain severe asthma phenotype and fail

to meet the selection criteria for a particular monoclonal

antibody. Moreover, even those who present as candidates for

good response to a certain therapy may never be completely

certain of success. Current research is also focused on search for

biomarkers of possible response to available biological

therapies (48).

Hence, many potential alternatives to current therapeutic

strategies have recently been investigated. Some of these,

discussed below, are at a late stage of research; however, they
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TABLE 1 Current clinical options with monoclonal antibodies in severe asthma.

DRUG FORM TARGET WAY OF TREATMENT, TIME BIOLOGICAL EFFECTS CLINICAL EFFECTS OTHER FDA-
APPROVED INDICA-

TIONS
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-regulation of FcϵRI receptors
sophils, mast cells, and dendritic

Improvement of lung function (FEV1)
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have not yet reached the assumed clinical endpoints in RCTs,

and therefore have not received approval in the treatment of

severe asthma. In this section we summarize the available

information on drugs that were considered and studied in the

area of severe asthma, yet were eventually discontinued in

this indication.
Tralokinumab

Tralokinumab is a human IgG4 monoclonal antibody

targeting IL-13. The drug was studied in several clinical

studies and reached phase III in STRATOS 1, STRATOS 2 and

TROPOS studies. STRATOS 1 study was aimed to identify a

biomarker-specific sub-group that would potentially benefit

most from 300mg tralokinumab and that was further studied

in STRATOS 2. The group comprised patients with baseline

FeNO 37 ppb or higher, who demonstrated a reduced asthma

exacerbation rate in STRATOS 1, but not in STRATOS 2 (49).

The results of the TROPOS study indicate that tralokinumab use

does not allow any reduction of oral corticosteroid use by

patients with OCS-dependent asthma (50–52).

The phase II MESOS study examined whether tralokinumab

would inhibit the release of eosinophil chemotactic factors in the

lungs, resulting in decreased eosinophil lung population, despite

increasing the overall eosinophil population possibly due to

inhibition of eosinophil–endothelial adhesion, as observed in

previous studies (53–55). The findings indicate that

tralokinumab does not affect eosinophilic inflammation in

bronchial submucosa, blood or sputum compared to placebo,

although it did reduce FeNO and IgE concentrations (56).

A meta-analysis of six available RCTs of tralokinumab, i.e.

those mentioned above with additional two phase II studies (53,

54), found that the drug improved FEV1 and FVC in patients

with moderate-to-severe asthma; however, it did not improve

asthma-related quality of life, nor reduce asthma exacerbations

in unselected patients. Treatment has nevertheless resulted in

improvements in asthma exacerbation rates in patients with high

FeNO (57). Tralokinumab has been shown to be well-tolerated

with a low risk of adverse events and low likelihood of

immunogenicity (58).

Hence, tralokinumab treatment does not appear to be an

effective strategy for severe uncontrolled asthma (59). Research

has shifted from asthma to treating skin conditions, and the drug

has shown promising results in atopic dermatitis (60)
Lebrikizumab

Lebrikizumab is another humanized IgG4 monoclonal

antibody targeting IL-13 that has been intensively studied in

moderate-to-severe asthma. It has been evaluated in several

phase II and phase III studies. In phase II studies it has
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demonstrated reduced exacerbation rates and improved FEV1

in patients with uncontrolled asthma, particularly among those

with high periostin concentration or blood eosinophil count (61).

Replicate phase III studies - LAVOLTA1 and LAVOLTA2 -

have analyzed the effects of subcutaneous lebrikizumab

treatment, 37.5 mg and 125 mg once every four weeks,

compared to placebo; the patients have been divided into

biomarker-high (periostin, blood eosinophils) and biomarker-

low subgroups. However, the results remain inconsistent, as the

primary endpoint, i.e. a significant (greater than 30%) reduction

of exacerbation rate, was reached in LAVOLTA1, but not in

LAVOLTA2. The drug indeed improved FEV1 in the

biomarker-high patients, but did not improve secondary

outcomes, viz. AQLQ(S) and ACQ-5 scores, in either group (62).

Another pair of replicate phase III studies were LUTE and

VERSE. They were primarily designed as phase III trials, but

were converted to phase IIb due to the discovery of a host-cell

impurity in the study drug material. Thus, the findings only

included the placebo-controlled period of variable duration, and

were pooled across both studies. Changes in exacerbation rate

were far more pronounced in the periostin-high group (60%

reduction) than in the periostin-low group (5% reduction); these

two groups also demonstrated 9.1% (high group) and 2.6%

changes (low group) in FEV1 (63).

Recent reports indicate that research into lebrikizumab has

been moved from asthma to atopic dermatitis and chronic

spontaneous urticaria. However, it may be further investigated

in sub-populations of asthma patients with high blood

eosinophil count and high FeNO (64).

A meta-analysis of lebrikizumab and tralokinumab studies

found that although IL-13 inhibitors showed some benefits in

clinical studies, a more promising approach would be the

combined blocking of IL-13 and IL-4, which demonstrate

overlapping pathophysiological roles (65).
Secukinumab

Secukinumab is a human IgG1k monoclonal antibody

targeting IL-17A. It is currently registered for the treatment of

plaque psoriasis, psoriatic arthritis and ankylosing spondylitis.

Although the safety, tolerability and efficacy of the drug in

patients with uncontrolled asthma was investigated in a Phase

II study, no improvements in ACQ were found and the

investigation was discontinued by the producer. This is the

only available clinical study of secukinumab in severe

asthma (66).

Previously, secukinumab had been evaluated in the ozone-

induced airway neutrophilic inflammation model in healthy

volunteers. Following ozone stimulation, study subjects were

randomized to receive secukinumab (10 mg/kg), placebo or a

single-dose oral corticosteroid treatment. No significant

differences in airway neutrophilia compared to baseline were
frontiersin.org
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observed between study groups, including the secukinumab

group (67). These findings suggest that the drug would

probab ly not br ing any c l in ica l improvement in

neutrophilic asthma.
Brodalumab

Brodalumab is a human, IgG2 monoclonal antibody

targeting IL-17RA, which is currently registered for the

treatment of psoriasis vulgaris, psoriatic arthritis, pustular

psoriasis and psoriatic erythroderma. The drug was studied in

a randomized, double-blind phase II study with 315 participants

in four groups: placebo, brodalumab 140 mg, brodalumab 210

mg and brodalumab 280 mg. No clinically significant differences

were observed between the groups in terms of ACQ score, FEV1,

morning PEF, SABA use, daily and nighttime symptom scores or

symptom-free days. A predefined subgroup analysis found that

only the high bronchodilator reversibility subgroup

demonstrated clinically significant benefits (68).

Another phase II study of brodalumab with 421 patients was

initiated but later terminated; however, this was due to lack of

observed efficacy, not safety concerns. The results are not

publicly available (69).
Fevipiprant

Another mediator pivotal to orchestrating immunological

and inflammatory mechanisms in asthma is prostaglandin D2

(PGD2), an eicosanoid which is released by degranulating mast

cells. Fevipiprant, an oral, nonsteroidal, highly-selective,

reversible antagonist of the DP2 receptor showed promising

results in three phase II studies. Although it is not a monoclonal

antibody, due to its advanced stage of development, we decided

to include it in this review to broaden the context of current

advances in asthma.

Early-phase trials have confirmed its safety and

demonstrated its potential efficacy in patients with asthma,

specifically, improvement in FEV1 and eosinophilic airway

inflammation (70, 71). Despite these results, the subsequent

phase III trials did not yield satisfactory clinical conclusions.

In two placebo-controlled replicate phase III studies named

ZEAL-1 and ZEAL-2, patients received 150 mg fevipirant (or

placebo) plus standard-of-care asthma therapy (medium- or high-

dose ICS, low-dose ICS plus either LABA or LTRA, or medium-

dose ICS plus LABA for at least three months prior to screening).

Neither study met its primary endpoint, defined as change from

baseline in pre-dose pre-bronchodilator FEV1 at the end of the

12-week treatment period. Nor did it meet its secondary

endpoints: change from baseline in daytime asthma symptom

score and total dailySABA use over 12 weeks of treatment, and

change from baseline in AQLQ +12 score at week 12 (72).
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Another two replicate phase 3 studies of fevipirant

(LUSTER-1 and LUSTER-2) examined the effects of

fevipiprant on moderate to severe asthma exacerbation

annualized rate in patients aged 12 or older receiving GINA

step 4 or 5 treatment. Patients were randomised to receive 150 or

450 mg of fevipirant or placebo throughout a 52-week

observation period. Neither of the studies demonstrated a

significant reduction in asthma exacerbation annualized rates

(73). Due to this observed overall lack of clinical efficacy, the

manufacturer has discontinued its research in asthma.
Anakinra

Anakinra is a human IL-1 receptor antagonist produced by

recombinant DNA technology in an E. coli expression system.

As the IL-1-regulated pathway is believed to play a significant

role in asthma pathogenesis in both Th2/Th17-high and –low

phenotypes, it has become an attractive therapeutic target (74).

However, two recent clinical trials that were designed to assess

the effectiveness of anakinra as a rescue treatment for airway

inflammation in allergic asthma, either through early- or late-

phase administration after allergen challenge, were withdrawn

due to the COVID-19 pandemic and the risks associated with

allergen exposure and anakinra treatment (75, 76). Another

study of the drug has been suspended (77).

Other potential treatments for severe asthma have

unfortunately failed to demonstrate satisfactory results and

thus are not being continuously studied. Such examples include:
• Cendakimab (formerly known as RPC4046), a

monoclonal antibody targeting IL-13, which was only

reported in a Phase I study in asthmatic patients (78).

The drug is being further developed in eosinophilic

esophagitis (79)

• GSK 679586 – another monoclonal antibody targeting IL-

13 reported to reach phase II. The drug did not

demonstrate any clinically-relevant improvements in

asthma control, pulmonary function or exacerbations

in patients with severe asthma (80).

• Daclizumab - a monoclonal antibody that binds the IL-2R

a chain (CD25), which in turn inhibits lymphocyte

activation. The available literature only includes one

RCT for the drug: A 2008 study by Busse et al.

examined its effects on FEV1 changes in 115 patients

with moderate to severe uncontrolled asthma. An

improvement was observed in the 88-patient

daclizumab group (4.4 ± 1.80% vs 1.5 ± 2.39%; p

= 0.05), daytime asthma symptoms were reduced (p

= 0.018), and the time to exacerbation was prolonged

(p = 0.024). An absolute increase of FEV1 was observed

in the treated group, i.e. from 2.34 ± 0.07 in baseline to

2.4 ± 0.08 at Day 84, the patients receiving placebo had a
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decrease in FEV1 (from 2.25 ± 0.1 to 2.2 ± 0.1 L), and an

increase in serious adverse events was reported in the

treatment arm (5 vs 1) (81). Although it was discussed at

the time as a potential asthma therapy, the drug was not

further studied in asthma (82). Daclizumab is now

registered and indicated in multiple sclerosis (83)

• Enokizumab/Medi-528 - an antibody targeting IL-9: an

inflammatory cytokine that regulates the development

of airway inflammation, mucus production, airway

hyperresponsiveness, and airway fibrosis by increasing

mast cell numbers and activity (84). Enokizumab

showed an acceptable safety profile in phase I studies

(85). The drug reached Phase II clinical trials in 2011

(86). However, at this stage, the drug administration

(dosed subcutaneously at three dosages – 30, 100 and

300 mg every 2 weeks for 24 weeks in addition to

concurrent asthma medication) did not yield any

improvements in ACQ-6 scores, asthma exacerbation

rates or FEV1 values (87).

• Canakimumab – a monoclonal antibody targeted at IL-1b.
The drug was tested in one small study in 16 asthmatics

with positive results, with attenuation of the late

asthmatic response after inhalative allergen challenge

and a >90% decrease of IL-1b level (88). The drug is

currently registered in Periodic Fever Syndrome,

Cryopyrin-Associated Periodic Syndromes, Tumor

Necrosis Factor Receptor-Associated Periodic

Syndrome, hyperimmunoglobulin D syndrome and

several other rheumatoid diseases.

• Risankizumab - a monoclonal antibody targeting the p19

subunit of IL-23: a cytokine mostly affecting Th17 cells

and thus decreasing antigen-induced Th2 cytokine

production (89). Only one phase IIa study on this

drug has been published to date. The results indicate

that treatment failed to reduce the annualized asthma

exacerbation rate compared to placebo, with the

risankizumab group demonstrating shorter time to

first asthma worsening (90). Therefore, research in this

area is discontinued, with potential other applications

(e.g. psoriasis) being currently researched (91).

• VR942 - a dry-powder formulation containing CDP7766, a

high-affinity anti-human-IL-13 antigen-binding antibody

fragment. Only one phase I study has examined the safety

and pharmacodynamics of the drug. Although the concept

of direct inhalable administration of monoclonal antibodies

to the target tissue seems promising, this study remains one

of few such reports in humans (92). A 2012 study by Hacha

et al. examined the concept of nebulized anti-IL-13 antibody

treatment in a murine model of asthma with promising

results; however, the idea was not continued (93). Even so,

other studies have evaluated the potential of similar drug

delivery methods in other respiratory conditions (94).
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A summary on the above-mentioned discontinued drugs in

severe asthma is presented in Table 2.
Other approaches for treating severe
asthma and potential new targets

Research on monoclonal antibodies in severe asthma has made

significant progress in recent years. With the six monoclonal

antibodies currently available (omalizumab, mepolizumab,

benralizumab, reslizumab dupilumab and tezepelumab), patients

with severe asthma have a fairly wide range of possible treatments.

However, although these are highly-advanced drugs that target

specific pathophysiological pathways of asthma, a large group of

patients still fails to respond to treatment (100). Consequently, the

terms ‘non-responders’, ‘responders’ and ‘super-responders’ have

emerged to categorize those who do or do not reach improvements

with biologics. This problem may be partially explained by the fact

that the target molecule is a part of a causal network of many other

inflammatory mediators rather than an element of a linear cause

and effect relation (101). Many efforts have been made to identify

biomarkers of response to biological treatment, yet no dichotomous

factor has been found to date (101–104).

As such, research has turned to new antibodies aimed at

other cytokines. This section summarizes the current findings

concerning molecular targets in severe asthma obtained in

clinical and pre-clinical research.
Tocilizumab (also called ‘atlizumab’)

Tocilizumab is a humanized IgG1 antibody targeting IL-6R –

the receptor for IL-6, that is an interleukin recently attributed to

contribute to asthma pathogenesis and which may represent a

pathophysiological target (105). This drug is registered for the

treatment of rheumatological conditions such as rheumatoid

arthritis. More recently, it has been intensively studied and

registered as a drug in SARS-COV-2 infection (106). However,

as of May 2022, there have been no clinical studies of tocilizumab

in severe asthma, and very limited data exists on the use of the

drug in asthma.

In May 2019 Esty et al. reported two pediatric cases of severe

persistent, non-atopic asthma treated with tocilizumab. Both

patients demonstrated good clinical (FEV1 increase, reduction of

oral corticosteroids) and immunological (reduced IL-4 and IL-17

production) responses to the therapy and no adverse events (107).

A proof-of-concept study by Revez et al. published in June 2019

studied the effects of tocilizumab on asthma patients with high sIL-

6R levels following two allergen inhalation challenge tests. The

study included 11 patients: six who received tocilizumab and five

placebo. No significant differences in the primary endpoint was

observed between study arms: late asthmatic response, maximum

percentage fall in FEV1 and AUC of the percent fall in FEV1 (108).
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TABLE 2 Drugs discontinued in severe asthma research.

DRUG FORM TARGET LAST
PHASE
OF

STUDY

LAST
PHASE OF
STUDY
YEAR

OTHER FDA-APPROVED INDICATIONS

Tralokinumab Human IgG4
monoclonal
antibody

IL-13 Phase III 2019 (51) Atopic dermatitis

Lebrikizumab Humanized
IgG4
monoclonal
antibody

IL-13 Phase III 2016 (62) NA, possibly atopic dermatitis

Secukinumab Human IgG1k
monoclonal
antibody

IL-17A Phase II 2015 (66) Plaque psoriasis, Psoriatic arthritis, Ankylosing spondylitis

Brodalumab Human, IgG2
monoclonal
antibody

IL-17RA Phase II 2013 (95) Plaque psoriasis

Fevipirant Non-steroidal
selective
receptor
inhibitor

CRTH2 Phase III 2021 (72) NA

Anakinra Protein IL-1R Phase I/Phase
II

Rheumatoid arthritis, COVID-19, Periodic fever syndrome, Cryopyrin-associated
periodic syndromes, Familial Mediterranean Fever, Adult-onset Still’s disease

Cendakimab Monoclonal
antibody

IL-13 Phase I 2017 (78) NA

GSK 679586 Monoclonal
antibody

IL-13 Phase II 2014 (80) NA

Daclizumab Humanized
IgG1
Monoclonal
antibody

IL-2Ra Phase II 2008 (81) Multiple sclerosis

Enokizumab/
Medi-528

Humanized
IgG1k
monoclonal
antibody

IL-9 Phase II 2013 (87) NA

Canakimumab Humanized
IgG1k
monoclonal
antibody

IL-1b Phase I/Phase
II

2006 (88) Relapsing fever syndrome, Cryopyrin-Associated Periodic Syndromes, Tumor
Necrosis Factor Receptor-Associated Periodic Syndrome, hyperimmunoglobulin D
syndrome and several other rheumathoid diseases

Risankizumab Human IgG1
monoclonal
antibody

IL-23 Phase IIa 2021 (90) Plaque psoriasis
Psoriatic arthritis

VR942 Inhalable
fragment of
antibody

IL-13 Phase I 2018 (92) NA

Itepekimab
(REGN-3500)

Human IgG4P
monoclonal
antibody

IL-33 Phase II 2021 (96) NA

Etokimab Monoclonal
antibody

IL-33 Phase IIa 2019 (97) NA

Melrilimab Monoclonal
antibody

IL-33 Phase II 2020 (98) NA

LY3375880 Monoclonal
antibody

IL-33 Preliminary 2020 (99) NA
Frontiers in Im
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NA, none available.
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Anti-IL-33: Itepekimab, etokimab,
melrilimab, LY3375880, MEDI3506

Itepekimab, found in the literature under the aliases REGN-

3500 or SAR440340, is an anti-IL33 antibody that has recently

been studied or treating asthma. Although research on this

antibody has reached phase II, the results are insufficient to

continue it further. A recent study by Weschler et al. compared

the efficacy of itepekimab with three other treatments:

dupilumab, itepekimab+dupilumab and placebo. The groups

were randomized in a 1:1:1:1 ratio and the primary endpoint

was the occurrence of an event indicating loss of asthma control.

By week 12, such an event occurred in 22% of patients in the

itepekimab group, 27% in the combination group, and 19% in

the dupilumab group, as compared to 41% in the placebo group

(96). As a consequence of these results, the drug was

discontinued for asthma research in February 2021; however,

its potential against COPD remains under study (109).

Etokimab is another anti-IL-33monoclonal antibody which has

been recently studied as a possible asthma treatment. Currently, no

peer-reviewed reports are available; however, it has been speculated

that the drug might be studied against asthma, pending results of

failing studies in eczema and atopic dermatitis (99).

Other anti-IL-33/IL-33R drugs reported are melrilimab by

GSK, LY3375880 by Lilly and MEDI3506 by AstraZeneca. Only

the latter is currently being studied in an on-going phase II

clinical trial, the FRONTIER-3 trial, with an estimated

completion date in August 2022 (110).
Bispecific antibodies

An interesting approach, although still only in the initial

research phase and without any significant progress regarding
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severe asthma biological therapy, is based on the concept of

bispecific antibodies, i.e. such that one particle can target two

immunological targets at the same time. Compared with

hypothe t i ca l combina t ion therapy inc lud ing two

monospecific antibodies, bispecific antibody treatment may

incur lower costs of development and clinical trials. Such

examples include:
• BITS7201A (a monoclonal antibody that binds both IL-13

and IL-17) which to date has only been studied in a

single phase I study; it showed good drug tolerance, but

a high incidence of anti-drug antibodies (111)

• a monoclonal antibody simultaneously targeting IL-4Ra
and IL-5 in a murine model of asthma (112)

• bispecific anti-TSLP/IL13 antibodies called Zweimabs

(monovalent bispecific) and Doppelmabs (bivalent

bispecific) (113)
Selected other particles with signaled or ongoing research in

severe asthma are presented in Table 3. The summary on

available, currently researched and discontinued agents in

severe asthma is shown in Figure 1. Also, a brief graphic

summary on future perspectives of research in the field of

severe asthma may be found in Figure 2.
Challenges and future perspectives in
the biological therapy of severe asthma

Clearly, research of new drugs for severe asthma remains

intense, with many potential pathways under investigation.

Parallel to the development of new drugs, attempts are being

made to optimize the use of existing therapies and to better

understand their mechanisms. One promising direction involves
TABLE 3 Monoclonal antibodies and drugs in current clinical trials or suggested as potential agents in severe asthma.

DRUG FORM TARGET CURRENT
STUDY STAGE

OTHER FDA-
APPROVED INDICA-

TIONS

Tocizilumab Humanised IgG1 monoclonal antibody IL-6R Casuistic Rheumatoid arthritis
COVID-19
Juvenile idiopathic arthritis
Cytokine release syndrome

Clazakizumab Humanized monoclonal IgG1 antibody IL-6 Phase 2 (114) NA

CSJ117 Antibody fragment in powder for delivery
to the lungs via dry powder inhaler

TSLP Phase 2 (115) NA

FB825 Humanised IgG1 monoclonal antibody CϵmX domain on human B lymphocytic cells
expressing membrane-bound IgE (mIgE).

Phase 2 (116) NA

CM310 Monoclonal antibody IL-4Ra Phase 2 (117) NA

610 Monoclonal antibody IL-5 Phase 1 (118) NA

FB704A Human antibody IL-6 Phase 2 (119) NA

MEDI3506 Monoclonal antibody IL-33 Phase 2 (120) NA
NA, none available.
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identifying the biomarkers of response to a specific monoclonal

antibody, an important aspect of personalizing treatment, while

another concerns improving the phenotyping of asthma, and

thus the selection of a drug compatible with the immune

background. For example, many patients qualify for both

omalizumab (high IgE) and anti-IL-5 therapies (high blood

eosinophilia), forcing a difficult decision in the choice of a

drug (121), which may be suboptimal (122).

However, as few studies have compared individual molecules

under real-life and head-to-head conditions, there is often

inadequate data to conclusively state that a given drug is better

than another. As such, the choice of treatment remains a clinical

challenge, not only due to the differentiation of the disease, but

also to the variety of potential treatment options (123). Although

some ongoing head-to-head studies cover this issue, such as

PREDICTUMAB, a head-to-head study of omalizumab and

mepolizumab (124), or Choosebetweenmab (125), they are few

in number. Notably, no direct head-to-head comparisons

between anti-IL-5 antibodies in asthma have been made,

although one head-to-head study comparing benralizumab and

mepolizumab in Eosinophilic Granulomatosis With Polyangiitis

is ongoing (MANDARA) (126). Therefore, no clear advantage

can be found for any of these treatments (127, 128).

Another important aspect of research into severe asthma

and implementation of new drugs concerns their effect on

airway remodeling: an important aspect of research, with

great efforts being aimed at determining whether new, or

existing, drugs reverse this process. For example, the effect of
Frontiers in Immunology 10
tezepelumab on bronchial remodeling was already verified in

phase II studies (129), unlike the majority of previously

registered drugs (130).

Finally, no matter how successful the new and future

biologics may be at treating severe asthma, research is still

needed into the selection of an appropriate treatment

depending on the individual characteristics of the patient’s

disease. There is a clear need for updating state-of-art

algorithms biologics selection to allow them to reflect nuances

in asthma phenotype and treatment response. Some progress in

this field has been made recently with algorithms proposed by

Papadopoulos (131), Viswanathan (123) or Buhl (132).
Summary

Monoclonal antibodies targeting specific inflammatory

cytokines are undoubtedly revolutionary drugs in many fields

of medicine and have begun a new chapter in the treatment of

severe and complex cases of immunological diseases. This is also

the case in severe asthma, where we have moved from

demanding and aggravating oral steroid therapy to a targeted

and personalized immunological approach. In asthma, the use of

monoclonal antibodies has given many patients the chance to

control their disease and significantly improve their quality of

life. However, there is still a need to develop new therapies that

will be effective in more complex and unusual cases, or where

existing treatment has not been successful.
FIGURE 1

Summary on available, continued and discontinued agents in severe asthma.
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Research on new monoclonal antibodies in asthma does

not always bear fruit. The immunological complexity of the

disease, with its considerable variation in phenotypes and

endotypes, greatly hinders the identification of new

therapeutical solutions. The bench-to-bed process of drug

development is always a challenge which continually

demands greater efforts and many of the promising

concepts are not confirmed in clinical trials; however, while

this may appear as failure, these findings allow future research

in a given area to be narrowed or redirected to other areas

of medicine.
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