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T cell receptor repertoire
analysis in HTLV-1-
associated diseases
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and Steven Jacobson*

Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, MD, United States
Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the

causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive

neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic

paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million

people worldwide, although most infected individuals remain asymptomatic.

HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of

developing ATL, and between 0.25% and 1.8% of developing HAM/TSP. Most

HTLV-1 infection is detected in CD4+ T cells in vivo which causes the aggressive

malignancy in ATL. In HAM/TSP, the increase of HTLV-1 provirus induces immune

dysregulation to alter inflammatory milieu, such as expansion of HTLV-1-specific

CD8+ T cells, in the central nervous system of the infected subjects, which have

been suggested to underlie the pathogenesis of HAM/TSP. Factors contributing to

the conversion from asymptomatic carrier to disease state remain poorly

understood. As such, the identification and tracking of HTLV-1-specific T cell

biomarkers that may be used tomonitor the progression from primary infection to

immune dysfunction and disease are of great interest. T cell receptor (TCR)

repertoires have been extensively investigated as a mechanism of monitoring

adaptive T cell immune response to viruses and tumors. Breakthrough

technologies such as single-cell RNA sequencing have increased the specificity

with which T cell clones may be characterized and continue to improve our

understanding of TCR signatures in viral infection, cancer, and associated

treatments. In HTLV-1-associated disease, sequencing of TCR repertoires has

been used to reveal repertoire patterns, diversity, and clonal expansions of HTLV-

1-specific T cells capable of immune evasion and dysregulation in ATL as well as in

HAM/TSP. Conserved sequence analysis has further been used to identify CDR3

motif sequences and exploit disease- or patient-specificity and commonality in

HTLV-1-associated disease. In this article we review current research on TCR

repertoires and HTLV-1-specific clonotypes in HTLV-1-associated diseases ATL

and HAM/TSP and discuss the implications of TCR clonal expansions on HTLV-1-

associated disease course and treatments.
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Introduction

Human T lymphotropic type 1 (HTLV-1) is a retrovirus

known to be an etiological agent of an aggressive mature T cell

malignancy termed adult T cell leukemia/lymphoma (ATL) and

the chronic, progressive inflammatory neurologic disease

HTLV-1-associated myelopathy/tropical spastic paraparesis

(HAM/TSP) (1–4). Although most infected individuals remain

asymptomatic, HTLV-1-infected persons carry an estimated

lifetime risk of approximately 2-5% of developing ATL (5),

and 0.25-1.8% of developing HAM/TSP (6, 7), which varies

between studies and ethnic groups. Disease development such as

T cell transformation and inflammation occurs after many years

of chronic infection of HTLV-1. The predominant reservoir of

HTLV-1 is CD4+ T cell in both ATL and HAM/TSP patients as

well as asymptomatic carriers. Two viral proteins, Tax and HBZ,

play critical roles in HTLV-1 oncogenesis and chronic

inflammation. Tax is a transforming and transactivating

protein of HTLV-1 and induces the expression of a variety of

cellular genes by activation of the NF-kB pathway and the

modulation of the epigenetic machinery to induce cellular

proliferation and transformation (8). HBZ is encoded by the

minus strand of the HTLV-1 provirus and ubiquitously

expressed in all ATL cells and PBMCs of HTLV-1-infected

subjects (9, 10). HBZ promotes proliferation and survival of

ATL cells, suppresses Tax-mediated viral transcription, and

inhibits the classic NF-kB pathway (8). Accumulating evidence

showed that Tax and HBZ are important factors for both ATL

and HAM/TSP, but it remains unknown how the virus can lead

to such different diseases and why only small numbers of HTLV-

1-infected individuals develop these diseases.

ATL has four clinical subtypes including acute, lymphoma,

chronic, and smoldering subtypes, and its prognosis remain

poor, especially in aggressive typed ATL (acute and lymphoma

type) due to rapid progression (11). ATL is characterized by

clonal proliferation of CD4+ T cells containing integrated

HTLV-1 provirus, typically associated with T cell receptor

(TCR) gene rearrangements (12, 13). The malignant T cells

have lobulated nuclei (“flower cells”) with condensed chromatin

and express characteristic T cell markers, CD3+, CD4+, CD5+,

CD7-, CD25+, CD26-, and a monoclonal TCRVb (14). Previous

studies demonstrated that increase of HTLV-1 proviral load

(PVL) and clonal expansion of HTLV-1-infected cells in PBMCs

reflect a high risk of ATL transformation in HTLV-1-infected

subjects (15, 16). Interestingly, while about 60% of ATL patients

lost the tax gene expression, the HBZ gene is expressed in all

ATL cells (10, 17). HBZ has been demonstrated to induce similar

immunophenotypes of ATL cells in HBZ-transgenic mice,

suggesting that HBZ plays an important role for proliferation

and infiltration of ATL cells (18, 19). Both Tax and HBZ are

immunogenic proteins recognized by HTLV-1-specific cytotoxic

CD8+ T cells (CTL) which plays a crucial role in immunity

against HTLV-1 to secrete various factors that suppress viral
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replication and kill infected target cells (20–24). However, HBZ-

specific CTL were less detectable in HTLV-1-infected subjects

compared to Tax-specific CTL (20, 23, 24). Moreover, the

frequency and function of HTLV-1-specific CTL are reduced

in ATL patients (25, 26). Therefore, the immunologic effect

against ATL cells may play a critical role in the prevention of

ATL development (27).

HAM/TSP is a progressive, chronic inflammatory

myelopathy of the central nervous systems (CNS) (28). HTLV-

1 PVL in PBMCs is higher in HAM/TSP than in asymptomatic

carriers (29) and has been shown to be significantly elevated in

HAM/TSP cerebrospinal fluid (CSF) cells than in PBMCs (30,

31). These observations have led to the hypothesis that an

increased HTLV-1 PVL is associated with an increased risk of

HAM/TSP disease progression. It has been demonstrated that

HTLV-1-infected CD4+ T cells can induce the production of

proinflammatory cytokines and proliferation of CD8+ T cells

(32–34). CD8+ T cells, including HTLV-1 Tax11-19-specific

CTL which recognize an immunodominant HTLV-1 Tax

antigen particularly in patients who are HLA-A*0201, are

found in high numbers in PBMCs, even higher in the CSF.

This corelates with the increased levels of HTLV-1-infected

lymphocytes and high PVL in both compartments (21, 35–39).

This higher frequency of CD8+ T cells and HTLV-1 PVL in CSF

has recently been shown to have clinical consequence since a

quantitative radiological analysis of the spinal cord has shown a

correlation of spinal cord atrophy in HAM/TSP associated with

increased CD8+ T cells (40). It remains a question why HAM/

TSP patients have high PVL despite vigorous HTLV-1-specific

CTL, while a strong, chronically activated CTL response to

HTLV-1 was found in both asymptomatic carriers and HAM/

TSP patients (41–43). Several reports have demonstrated the

mechanism in HAM/TSP patients including dysregulation in

CD4+ regulatory T cells (44), degenerate specificity and

exhaustion in HTLV-1-specific CD8+ T cells (45–50), and

increased T cell proliferation due to high expression of the

common g chain family of cytokines and their receptors, such

as IL-2 and IL-15, associated with HTLV-1 gene transactivation

(51, 52). The presence of both HTLV-1-infected lymphocytes

and chronically activated CD8+ T cells in high numbers in the

CSF generating a highly proinflammatory environment support

the hypothesis that HAM/TSP is an immunopathologically

mediated disease associated with bystander damage to

surrounding oligodendrocytes (53).

In both HAM/TSP and ATL, sequencing of TCR repertoires

has been a useful tool in parsing the drivers of disease. As such,

identification of biomarkers for an HTLV-1-associated disease

outcome is a central focus in the field. Advances in high

throughput and single cell RNA sequencing technology have

made characterization of TCR repertoires more efficient,

economical, and accessible in recent years, and offer

unmatched resolution of T cell populations. Unique molecular

identifier (UMI) based single cell sequencing techniques have
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been used to identify unique molecular reads and remove bias

introduced by PCR amplification. This technique has allowed

highly accurate quantitation of T cell clonal expansions in

disease states. Additionally, sequencing of the complementary

determining region 3 (CDR3), responsible for peptide

recognition has been used to determine HTLV-1 and disease-

specific motifs in both HAM/TSP and ATL. In this review, we

will compare the differing TCR repertoire profiles of HAM/TSP

and ATL and discuss differences in profiles that may contribute

to differing disease outcomes.
TCR repertoire profiles in
healthy individuals

Diversity of TCR repertoires is an essential characteristic of

the highly adaptable healthy immune system; a highly

polyclonal repertoire allows the immune system to quickly

mount responses to a wide variety of antigens (54). TCR

diversity is determined by the combination of the variable (V),

diversity (D), and joining (J) regions of TCR genes, as well as the

introduction of random insertions and deletions at gene

junctions (Figure 1) (55, 56). TCR repertoire analysis has

mainly relied on TCR b chain sequences due to several

reasons, such as the presence of the D gene component in

TCR-b and unique expression of TCR-b on each single ab T

cell, but recent advance of single cell TCR sequencing

approaches can identify the pairs of a and b chains to provide

more accurate TCR diversity and the biological function (57).

Estimates of total possible unique TCR sequences range from

1015 to 1020 in PBMCs (56, 58), with naive T cell subsets

exhibiting a very low frequency of individual clones and

memory T cell subsets exhibiting more clonal expansions in

TCR-a and TCR-b chains (59). In healthy individuals,
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peripheral blood TCR repertoires have been observed to be

highly polyclonal, demonstrate some stability over time, and are

highly specific to the individual in which TCR-b sequences in

particular are highly conserved, although identical sequences

may rarely be found between patients (60, 61). Within the

healthy individual’s repertoire, small subpopulations of 1-5%

of the total TCR-b sequences are observed to be persistent over

time, perhaps indicating immunological selection pressures in

response to low-grade chronic antigen exposures. These persistent

receptor sequences are encoded by an increased number of

redundant nucleotide sequences and make up a significantly

larger proportion of “public” TCR sequences shared across

individuals than unique receptor sequences (61). By

c ompa r i s on , s t u d i e s o f t h e TCR r ep e r t o i r e i n

compartmentalized locations such as CSF are limited. Studies

have shown very low TCR-b richness and diversity in the CSF of

healthy individuals and subjects without any neuroinflammatory

disease (62, 63), suggesting a lack of antigenic stimuli to drive

migration and expansion of T cells within healthy CSF.
TCR repertoire analysis in HAM/TSP

HTLV-1-specific CD8+ T cells in
HAM/TSP

In HAM/TSP, a previous report on the TCR analysis

demonstrated that clonal expansion of both CD4+ and CD8+

T lymphocytes occurs in both asymptomatic carriers and HAM/

TSP patients and that the total number of expanded clones in the

CD8+ T lymphocyte population was much greater than that of

the CD4+ T lymphocytes (64). Using technology based on high-

throughput sequencing and bioinformatics methods, it has been

recently shown that HAM/TSP patients had a higher clonal T
FIGURE 1

TCR-a and TCR-b chain gene structure. TCR-a and TCR-b chains consist of a variable (V) amino-terminal region and a constant (C) region. The
complementarity-determining region 1 (CDR1) and CDR2 encoded in the TCR germline V genes, which are conserved across TCR-a and TCR-b.
In contrast with CDR1 and CDR2, CDR3 is located at the junction between the rearranged V and joining (J) segments in TCR-a chain and V,
diversity (D) and J segments in TCR-b chain. Additions of P- and N-nucleotides (P/N addition) are present in the junctions between the V, D,
and J gene segments of the rearranged TCR-b chain and also between the V and J gene segments of all rearranged TCR-a chain.
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cell expansion in PBMCs as well as purified CD4+ and CD8+

cells compared with healthy individuals and patients with

multiple sclerosis, a clinically similar disease to HAM/TSP but

whose etiologic trigger has not yet been identified (60). In

addition, both cross-sectional and longitudinal analysis of

TCR-b clonal expansions in HAM/TSP patients have shown

significant correlation with HTLV-1 PVL and increased effector/

memory and effector phenotypes in both CD4+ and CD8+ T cell

subsets in PBMCs (60, 63), suggesting that clonal expansions

closely reflect active immune response to HTLV-1 infection.

Moreover, sequencing analyses of TCR-b repertoires

demonstrated significantly greater oligoclonal expansion in

CSF compartments as well as PBMCs of HAM/TSP patients

compared to healthy individuals (63). The clonal expansion of

TCR-b clonotypes in CSF of HAM/TSP patients has been

suggested to be associated with high numbers of activated

CD4+ T cells and CD8+ T cells found in CSF of HAM/TSP

patients (34, 35, 65, 66). Importantly, while a large fraction

(77.4%) of expanded TCR-b clones identified in the CSF of
Frontiers in Immunology 04
HAM/TSP patients were also demonstrated in matched PBMC,

the other 22.6% of expanded clones in the CSF that were not

identified in matched PBMCs appeared to be specific for the CSF

compartment (Figure 2) (63). Collectively these results indicate

an antigen-driven immune response in which the majority of

TCR clones in the CSF are derived from the periphery, while a

small but distinct population of clones are the result of

intrathecal enrichment (63).

Compared to asymptomatic carriers, HAM/TSP patients

showed significantly high levels of circulating HTLV-1-specific

CD8+ T cells, which was able to infiltrate in CSF and spinal cord

lesion of HAM/TSP patients (21, 53, 67). Selective enrichment of

HTLV-1-specific CD8+ T cells in CSF of HAM/TSP patients

strongly suggests that these cells maybe directly involved in the

pathogenesis of HAM/TSP. Characterization of TCR repertoire

and usage in HLA-A*0201+ HAM/TSP patients demonstrated

that TCRs used within each patient display a limited

heterogeneity, indicating an oligoclonal expansion of HTLV-1-

specific CD8+ T cells (68, 69). Using a high-throughput
FIGURE 2

Origin of TCR expanded clones in CSF of HAM/TSP patients. HAM/TSP patients had a higher clonal T cell expansion, especially CD8+ T cells
(including HTLV-1-specific CTL), in PBMCs as well as in CSF. Within expanded T cell clones in CSF of HAM/TSP patients, most expanded CSF
TCR-b clonotypes were derived from expanded T cell clones in PBMCs (yellow). A small but distinct fraction of these expanded TCR-b
clonotypes were intrathecally enriched in CSF of HAM/TSP patients [reference (37)].
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sequencing technology, it has recently been demonstrated that

expanded TCR clones in PBMCs of HAM/TSP patients are

found in even greater proportions in CD8+ T cells, and more

specifically, HTLV-1 Tax11-19-specific CD8+ T cells (63).

However, as the highest ranking TCR-b clonotypes in the

peripheral blood did not appear to be used by HTLV-1 Tax11-

19-specific CD8+ T cell clones (63), it suggests that the

peripheral blood compartment may not best reflect the antigen

(HTLV-1) driven immunological responses characteristic of the

disease. Rather, analysis of TCR-b clonotypes from Tax11-19-

specific CD8+ T cells in the CSF of one HAM/TSP patient with

matched PBMC data showed seven TCR-b sequences shared

between PBMCs and CSF (63). Of these seven TCR-b sequences,

two clones from Tax11-19-specific CD8+ T cells were detected

more in the CSF than PBMCs, suggesting that a subset of Tax11-

19-specific TCR-b clonotypes was clonally expanded in

peripheral blood and was subsequently infiltrated and

becoming highly enriched in the CSF (63). These observations

are consistent with the hypothesis that HAM/TSP is

immunopathologically mediated by HTLV-1-specific CTL

whose TCR-b clonotypes can be demonstrated to be expanded

in the CSF.
CD4+ T cells in HAM/TSP

In contract to CD8+ T cells, little is known about TCR

repertoire in CD4+ T cells of HAM/TSP patients, although TCR

clonal expansion was detected in both CD4+ and CD8+ T cells in

HAM/TSP patients (60, 64). Using flow cytometry, comparison

of TCR Vb usage showed that TCR Vb7.2 was under-utilized

and Vb12 was over-utilized in CD4+ T cells of HTLV-1-infected

individuals compared with healthy uninfected controls, whereas

there were no such differences in CD8+ T cells (70). While the

virological and immunological events are different between

HAM/TSP and ATL, the frequency of ATL development in

HAM/TSP patients is extremely rare and has been reported to be

approximately 3.81 per 1000 person-years (71). Since HTLV-1-

infected subjects including HAM/TSP patients may be at risk for

developing ATL, further studies about TCR repertoire analysis of

CD4+ T cells would be needed for a more complete

understanding of CD4+ T cell dynamics in HTLV-1-

infected subject.
TCR repertoire analysis in ATL

Malignant T cells

Malignant T cells in ATL patients are derived from clonally

expanded T cells with HTLV-1 provirus integrated into the

cellular genome and express characteristic T cell markers, CD3+,

CD4+, CD5+, CD7-, CD25+, CD26-, CCR4+, CADM-1+ and
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monoclonal TCR Vb (14, 72–76). Using high throughput

sequencing, TCR repertoire analysis in PBMCs demonstrated

that ATL patients showed oligo- or monoclonal patterns of TCR

clonotypes whereas asymptomatic carriers and healthy

individuals showed polyclonal patterns (77, 78). However,

expression of TCR-a and TCR-b genes in the dominant clone

differed among the samples (77). The most and commonly

expressed TCR-b clone constituting 60-99% of total clones,

while the clonal percent of the top TCR-b clone from non-

malignant HTLV-1-associated disease patients ranges from 1%

to 40%, highlighting the stark differences in ATL clonal profiles

(79). In ATL, four clinical subtypes (acute, lymphoma, chronic

and smoldering) have been identified, which range from highly

aggressive to indolent in their clinical course (11). Some studies

have demonstrated significant variation in ATL TCR repertoire

based on disease subtype in which smoldering ATL patients

showed significantly higher TCR diversity compared with the

other subtypes while diversity significantly decreased in more

aggressive stages of the disease, including acute, chronic, and

lymphoma types (77, 78).

Importantly within ATL, TCR-b clonal expansions originate

primarily from HTLV-1-infected cells. Characterization of TCR

repertoire together with virological approaches, such as genomic

and viral transcriptomes, provirus integration, and somatic

mutation, are essential to understanding the heterogeneity and

complexity of ATL. Using high throughput genome sequencing

and flow cytometric screening of TCR repertoire and T cell

markers, longitudinal analysis of TCR clones in one smoldering

ATL patient revealed a gradual switch from one dominant

HTLV-1-infected T cell clone (Vb 20) to another (Vb 13.1),

corresponding to an increase in somatic mutations associated

with upregulation of genes downstream of the TCR pathway

(80). Further longitudinal studies of the TCR repertoire in ATL

may offer insight into the relationship between progression of

ATL disease subtype and shifts in dominant clones. In some

cases of ATL, dominant TCR clones were skewed, with only

dominant CDR3 TCR-a or TCR-b sequences being observed in

a single individual (77). As both TCR-a and TCR-b sequences

are typically expressed in conjunction and necessarily must

interact with CD3 for the differentiation and survival of T

cells, these skewed TCR clones may coincide with previous

findings of reduced CD3 protein expression in ATL (81). A

recent advance of TCR repertoire analysis with multiple

bioinformatics analysis at single cell level also demonstrated

that HTLV-1-infected cells in an activated state further

transformed into ATL cells, which are characterized as clonally

expanded, highly activated T cells (78). In addition, while

healthy individuals harbored T cells with an activated

phenotype, in ATL, infected T cells and ATL cells became

spontaneously activated, acquired a regulatory T cell

phenotype, and subsequently progressed to a state of extreme

activation, which was maintained throughout the ATL phase

(78). Thus, new technologies and bioinformatics tools at single
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cell level will further improve our ability to identify mechanistic

pathways responsible for the in vivo transformation of HTLV-1-

infected T cells into leukemic cells.
Malignant T cell HTLV-1-specific CD8+ T
cells in ATL

In contrast with HAM/TSP, ATL patients are commonly

immunosuppressed and have a lower frequency and diversity of

HTLV-1-specific CD8+ T cells (11, 25, 26, 82, 83). TCR

repertoire analysis in CD8+ T cells have been studied for anti-

viral T cell-based treatment of ATL. Previous studies

demonstrated that HTLV-1 Tax-specific CD8+ T cells could

prevent relapse in ATL patients who have undergone allogeneic

hematopoietic stem cell transplantation (allo-HSCT) (84, 85). In

addition, Tax301-309-specific CD8+ T cells were increased in

ATL patients who achieved complete remission after allo-HSCT

and TCR repertoires in Tax301-309-specific CD8+ T cells of

ATL patients were highly restricted having a particular amino

acid sequence motif (PDR) in CDR3 of the TCR-b chain

(86–88).
TCR repertoire and treatment of ATL

In addition to allo-HSCT which can achieve long-term

remission, treatments of ATL may additionally affect TCR

clonal profiles and act as a marker of remission. Following

treatment of ATL with traditional chemotherapy (mLSG15)

which can provide short-term survival of about one year (14),

major TCR clonotypes were reduced but remained dominant

within the repertoire, and typical polyclonal T cells were not

fully reestablished (89). Mogamulizumab is a humanized anti-

CCR4 antibody to kill CCR4+ cells by enhanced antibody-

dependent cellular cytotoxicity and has shown substantial anti-

ATL activity, even in relapsing or chemotherapy-resistant

disease (90, 91). Mogamulizumab treatment of ATL resulted in

the reduction of ATL-associated TCR clones and a return to

polyclonal repertoire in CD4+ T cells and oligoclonal repertoire

in CD8+ T cells, suggesting remarkable reduction or elimination

of clonal cells, and enhanced reconstitution of non-tumor

polyclonal CD4+ T cells and oligoclonal CD8+ T cells (89).

Thus, TCR repertoire analysis can provide strong insights to

understand immune reconstitution in ATL patients undergoing

anti-tumor treatment.
Conserved TCR motifs

In HTLV-1-associated disease, identification of conserved

TCR sequences or motifs maybe useful in predicting disease-

specific outcomes in early-stage HTLV-1 infection. While it is
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still challenging to identify shared TCR sequences between

individuals and disease-specific TCRs across patients (92),

sequence motif analysis may offer insights into key antigen

determinants that maybe predictive of an HTLV-1-associated

disease outcome.
HAM/TSP

The amino acid sequencing analysis in the CDR3 region of

TCR demonstrated the shared amino acid motif in the CDR3b in
CD8+ T cells and Tax11-19-specific CD8+ T cells in HAM/TSP

patients (64, 93, 94). Recently, amino acid CDR3 repertoire

analysis of expanded clones in Tax11-19-specific CD8+ T cells

from HAM/TSP patients with HLA-A*0201 has demonstrated a

consensus sequence of interest. While exact TCR-b sequences

amongst HLA-A*0201 patients are largely private, an amino acid

sequence motif, PGLAG, at position 4-8 of the CDR3 region, was

found in over half of sequenced HAM/TSP patients (63). These

findings are consistent with previous indications of a possible PG

or PXG CDR3 motif, which were found in 50% of HLA-A*0201

HAM/TSP patients (64). In addition, it has been demonstrated

that similar motifs, such as PGL at positions 5-7 and SLG at

position 8-10, in the center of the CDR3 region were detected in

some expanded TCR-b clonotypes in CSF of HAM/TSP patients

(63). Since HAM/TSP patients have the complexity of T cell

expansions including both CD4+ and CD8+ T cells (60, 63, 64,

93, 94), it would be important to identify TCR motifs that reflect

disease and/or pathogen specificity and local inflammation.
ATL

A particular amino acid motif, the PDR sequence found at

position 108-110 in CDR3b of Tax301-309-specific TCRs, has

been found to be highly conserved between asymptomatic

carriers and ATL patients with HLA-A*24:02 (86–88). In

addition, Tax301-309-specific CD8+ T cells of asymptomatic

carriers and ATL patients commonly showed highly restricted

TCR repertoires with a strongly biased usage of the BV7 gene

family, and the preference for BV7 of Tax301-309-specific CD8+

T cells tended to decrease in asymptomatic carriers to ATL (88).

Expression of the PDR+ Tax301-309-specific clones was detected

in both asymptomatic carriers and ATL patients (chronic and

acute subtypes) demonstrating that PDR amino acid sequence

motif was conserved in CDR3b of Tax301-309-specific CD8+ T

cells regardless of clinical subtype in HTLV-1 infection (88).

Interestingly, following allo-HSCT, Tax301-309-specific PDR+

TCRs persisted in ATL patients (87). Longitudinal analysis of

TCR repertoire in one such post-allo-HSCT ATL patient

demonstrated persistence and selective expansion of PDR+

Tax301-309-specific TCR clones up to 3 years post-transplant

and were found to exhibit strong Tax301-309-specific cytotoxic
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activity in peripheral blood and bone marrow (86). CTL activity

of Tax301-309-specifc PDR+ TCR clones was importantly found

to be restricted to HTLV-1-infected cells and had no effect on

uninfected normal cells, regardless of autologous or allogeneic

origin (95). Recently, it has been reported that HLA-A*24:02+

healthy individual T cells transduced with PDR+ TCRs have

strong Tax301-309-specific reactivity against HTLV-1-infected

cell lines and some ATL primary cells (96).

In addition, treatment with Tax301-309-specific PDR+ TCRs

in NOD/Shi-scid, IL-2Rgnull (NOG) mice inoculated with an

HLA-A*24:02+ HTLV-1-infected cell line (MT-2) resulted in

significant decreases in size and eventual eradication of tumors,

compared to uncontrolled tumor growth and eventual death of

non-genetically modified PBMC treated and control mice (96).

These results collectively indicate a potentially promising

therapeutic directed at TCR-b clones containing the PDR

motif against HTLV-1-infected and ATL cells. In addition,

since the downregulation of Tax expression or acquisition of

viral and cellular gene mutations also linked to immune evasion

during ATL disease course (97, 98), further analysis of

therapeutic targets for ATL cells such as HBZ, is warranted.
Conclusions

Analysis of TCR repertoires associated with a wide range of

cancers, autoimmune, and inflammatory diseases in various

compartments such as peripheral blood and CSF will greatly

contribute to our understanding of the role that T cells play in

these disorders and may lead to identification of markers of

disease and even potential therapeutic targets. While

understanding of TCR repertoires in HTLV-1-associated

disease has made great strides in recent years due to advances

in sequencing technology, large gaps remain in the literature

regarding the progression of the TCR repertoire from HTLV-1-

infected asymptomatic carrier to diseased individuals. Increasing

evidence indicates T cell clonal profiles and motif sequences may

be unique to different HTLV-1-associated diseases. Timing of

progression from asymptomatic carrier to disease may improve

our ability for early diagnosis and intervention. Longitudinal

studies following asymptomatic carriers through disease

development, treatment and remission or disease progression
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will be invaluable in this effort. Further studies utilizing new

techniques in high throughput single cell sequencing are

warranted to better characterize the in vivo TCR repertoire in

ATL and HAM/TSP, particularly in compartments such as CSF

for HAM/TSP in which large numbers of cells are difficult to

obtain and which may be more closely reflective of events in the

CNS rather than T cells in the peripheral blood. Lastly, TCR

dynamics, tracking and mRNA single cell sequencing in local

tissues would offer a valuable tool to discover antigen specificity,

transcriptional profiling, and the molecular mechanisms of T

cell plasticity to understand the heterogeneity and complexity of

HTLV-1-associated diseases.
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