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Endothelial dysfunction plays a central role in the pathogenesis of sepsis-

mediated multiple organ failure. Several clinical and experimental studies have

suggested that the glycocalyx is an early target of endothelial injury during an

infection. Colivelin, a synthetic derivative of the mitochondrial peptide

humanin, has displayed cytoprotective effects in oxidative conditions. In the

current study, we aimed to determine the potential therapeutic effects of

colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male

C57BL/6 mice were subjected to a clinically relevant model of polymicrobial

sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or

colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that

vehicle-treated mice had early elevation of plasma levels of the adhesion

molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the

glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while

levels of angiopoietin-2, a mediator of microvascular disintegration, and the

proprotein convertase subtilisin/kexin type 9, an enzyme implicated in

clearance of endotoxins, raised at 18 h after CLP. The early elevation of these

endothelial and glycocalyx damage biomarkers coincided with lung

histological injury and neutrophil inflammation in lung, liver, and kidneys. At

transmission electron microscopy analysis, thoracic aortas of septic mice

showed increased glycocalyx breakdown and shedding, and damaged

mitochondria in endothelial and smooth muscle cells. Treatment with

colivelin ameliorated lung architecture, reduced organ neutrophil infiltration,

and attenuated plasma levels of syndecan-1, tumor necrosis factor-a,
macrophage inflammatory protein-1a and interleukin-10. These therapeutic

effects of colivelin were associated with amelioration of glycocalyx density and

mitochondrial structure in the aorta. At molecular analysis, colivelin treatment

was associated with inhibition of the signal transducer and activator of
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transcription 3 and activation of the AMP-activated protein kinase in the aorta

and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin

with antimicrobial agents significantly reduced the disease severity score when

compared to treatment with antibiotics alone. In conclusion, our data support

that damage of the glycocalyx is an early pathogenetic event during sepsis and

that colivelin may have therapeutic potential for the treatment of sepsis-

associated endothelial dysfunction.
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Introduction

Sepsis is a life-threating organ dysfunction caused by

dysregulated host responses to infection (1). A recent global

study reported 49 million cases and 11 million sepsis-related

deaths in 2017, accounting for approximately 20% of all annual

deaths globally (2). Endothelial injury is a hallmark of systemic

inflammatory response syndrome during sepsis and largely

contributes to the serious clinical consequences of the infection

such as increased vascular permeability, tissue edema, augmented

adhesion of leukocytes and platelet aggregation, and loss of flow-

dependent vasodilation leading to profound decrease in systemic

vascular tone, and collapse of the microcirculation, and

contributing to acute lung, kidney and liver injury (3, 4).

Clinical and experimental studies have proven that the

glycocalyx is one of the earliest sites involved during the

pathogenesis of endothelial injury (5). The glycocalyx is a gel-

like mesh layer which covers the luminal surface of vascular

endothelial cells. It is composed of membrane-attached

proteoglycans, glycosaminoglycan sidechains, glycoproteins, and

adherent plasma proteins such as albumin and antithrombin. This

structure is known to play critical roles in maintaining hemostasis

(6) and coagulation, regulating leukocyte adhesion and rolling (7,

8), and sensing mechanical forces, such as shear stress and

pressure (9). It also shields cell surface receptors and can

prevent their activation by presenting a physical barrier. In

sepsis, there is a distinct alteration in the composition of the

endothelial glycocalyx following the activation of proteases, such

as metalloproteinases, heparanase, and hyaluronidase, by bacterial

and inflammatory insults (10). These enzymes lead to glycocalyx

degradation via release of glycosaminoglycan sidechains, and if

severe enough, loss of core membrane proteins. As the glycocalyx

is shed, circulating levels of glycocalyx components, including

syndecans, can be measured and are considered biomarkers of

endothelial injury (11).

Mitochondria have emerged as important players in

maintaining vascular homeostasis (12). In addition to energy

production, mitochondria affect a variety of complex processes
02
including inflammation and cell survival (13). Mitochondria-

derived peptides, including humanin, encoded by short open

reading frame in the mitochondrial DNA (mtDNA), have been

recently described to have biological effects (14, 15). Several

experimental studies describe potent cytoprotective effects of

humanin and its synthetic derivatives (15). For example,

humanin is shown to protect endothelial cells from oxidative

stress (16, 17) and to prevent glucose-induce endothelial

expression of adhesion molecules and apoptosis (18, 19). At

the molecular level, humanin appears to regulate metabolic

homeostasis through involvement of the signal transducer and

activator of transcription 3 (STAT3) (20–22) and AMP-

activated protein kinase (AMPK) (15, 23, 24). Recently,

colivelin, a new generation potent humanin derivative has also

been reported to have cytoprotective effects by inhibiting

apoptosis and inflammatory response in vitro and in vivo

models of neuronal degeneration and ischemic injury (25–28).

Despite the substantial literatures on colivelin-mediated

beneficial effects in neurological diseases, the effect of colivelin

on the endothelial damage during a systemic inflammation, like

sepsis, has not been investigated.

In the present study, by employing a clinically relevant

mouse model of sepsis we hypothesized that endothelial

damage occurs early during sepsis and is characterized by

structural damage of glycocalyx and associated with organ

dysfunction. We also sought to evaluate the therapeutic

efficacy of colivelin in sepsis and its potential molecular

mechanisms of action.
Materials and methods

Murine model of polymicrobial sepsis

The investigation conformed to the National Institutes of

Health Guide for the Care and Use of Laboratory Animals

(Eighth Edition, 2011) and was approved by the Institutional

Animal Care and Use Committee of the Cincinnati Children’s
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Hospital Medical Center. Male C57BL/6 mice were obtained

from Charles River Laboratories International, Inc.

(Wilmington, MA). Mice were used at 3-5 months of age to

mimic the equivalent for human ranges from 20 - 25 years (29).

Male mice only were chosen for the experimentation to avoid

interference from female hormonal fluctuations in sepsis

responses during the estrous cycle. Mice were housed in

pathogen-free conditions under a 10-h light/14-h dark cycle

with free access to food and water. Mice were anesthetized with

2.0% isoflurane in 50% oxygen and polymicrobial sepsis was

induced by cecal ligation and puncture (CLP) (30). After a

midline laparotomy, the cecum was exteriorized, ligated and

punctured twice with a 23-G needle. The cecum was then

returned into the peritoneal cavity and the abdominal incision

was closed. After the procedure, mice were randomly assigned to

three treatment groups: a vehicle-treated group received distilled

water (200 µl/mouse) intraperitoneally (i.p.); a 100 µg colivelin-

treated group received the colivelin at 100 µg/kg i.p., and a 200

µg colivelin-treated group received the colivelin at 200 µg/kg i.p.

at 1 h after CLP. The intraperitoneal injection was chosen to

allow for a rapid uptake and bioavailability of the peptide. All

groups of mice also received fluid resuscitation (35 ml/kg normal

saline solution subcutaneously) immediately after, at 3 h and 12

h after the CLP procedure. To minimize pain at the surgical

incision site, lidocaine hydrochloride (1%, 4 mg/kg total dose)

was applied locally immediately after the procedure. Control

mice did not undergo any surgical procedure; sham mice

underwent laparotomy only without CLP. Mice were then

sacrificed at 0, 6 and 18 h after CLP. Blood, lungs, kidneys,

liver, and thoracic aortas were collected for biochemical assays.
Long-term studies of severity of sepsis

In a separate study, another cohort of mice was subjected to

the CLP procedure and was used for assessing health and

moribundity conditions, and survival rate up to 7 days. Mice

were divided into two treatment groups in a blind and random

fashion: a vehicle-treated group received distilled water (200 µl/

mouse), and a colivelin-treated group received colivelin (100 µg/

kg subcutaneously) at 1 h, 3 h and 24 h after the CLP procedure.

Twelve animals were included for each group. One animal was

sacrificed because of unintentional extensive damage in the small

intestine during surgical procedure and was excluded from the

study. The subcutaneous injection was chosen to avoid further

stress in the peritoneum since the animals also received

intraperitoneal treatment of antibiotics. To mimic the clinical

management of antimicrobial coverage, all mice received

ceftriaxone (25 mg/kg) and metronidazole (12.5 mg/kg)

intraperitoneally every 12 h after CLP for three days. To

minimize pain, buprenorphine (0.05 mg/kg) was administered
Frontiers in Immunology 03
subcutaneously at 1 h after surgery and every 12 h for three days

after surgery. All groups of mice also received fluid resuscitation

(35 ml/kg normal saline with 5% dextrose subcutaneously) every

24 h for all the duration of the experimental period. Although

some spontaneous death occurred given the acute severity of the

disease, spontaneous death was not considered as endpoint for

this study for ethical reasons. Animals were euthanized when

they exhibited signs of moribundity. During the monitoring

period a score system was developed according to the clinical

signs of peritoneal sepsis (31, 32). Physical examination focused

on four parameters: posture, feces consistency, eye appearance,

hair coat. For each parameter a score 0 to 3 was given according

to the abnormalities. Specifically, a score of 0 represents no

symptoms; score of 1 represents minimum symptoms (awkward

gait, loose stools, some watery ocular discharge, fuzzy facial fur);

score of 2 represents mild symptoms (hunched or slow walk,

watery stools, some yellow ocular discharge, rough hair coat);

score of 3 represents severe symptoms (complete inability to

move or lethargy, hemorrhagic diarrhea, red eyes with thick

ocular discharge, pilo-erection). Weight loss of more than 20%

was also considered a humane endpoint. Monitoring and

weighing of the animals was performed daily by the laboratory

personnel blinded to the treatment protocol and logged in a

score sheet. Animals with cumulative scores >8 or weight loss >

20% from the initial body weight were euthanized. Therefore,

mice experiencing spontaneous death or euthanized within 7

days were defined as non-survivor mice. Animals that survived

the entire observation period of 7 days were also euthanized and

were defined as survivor mice.
Myeloperoxidase activity

Myeloperoxidase (MPO) activity was measured as an

indicator of neutrophil infiltration in lung, kidneys and liver

tissue (33). Tissues were homogenized in a solution containing

0.5% hexa-decyl-trimethyl-ammonium bromide dissolved in 10

mM potassium phosphate buffer (pH 7.0) and centrifuged for 30

min at 4000 × g at 4°C. An aliquot of the supernatant was

allowed to react with a solution of tetra-methyl-benzidine (1.6

mM) and hydrogen peroxide (0.1 mM). The rate of change in

absorbance was measured by spectrophotometry at 650 nm.

MPO activity was defined as the quantity of enzyme degrading 1

mmol of hydrogen peroxide/min at 37°C and expressed in units

per 100 mg weight of tissue.
Histopathologic analysis

Paraffin-embedded sections of thoracic aortas and lungs

were stained with hematoxylin and eosin for morphological
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evaluation by three independent observers blinded to the

treatment groups. Lung injury was also analyzed by a

semiquantitative score based on the following histologic

features: alveolar capillary congestion, infiltration of red blood

cells and inflammatory cells into the airspace, alveolar wall

thickness, and hyaline membrane formation (34). A score of 0

represented normal findings and scores of 1, 2, 3 and 4

represented minimal (<25% lung involvement), mild (25-50%

lung involvement), significant (50-75% lung involvement) and

severe (>75% lung involvement) injury, respectively. The four

variables were summed to represent the lung injury score (total

score, 0–16).
Transmission electron microscopy

Glycocalyx structure was assessed by transmission electron

microscopy (35). At 6 h after CLP, mice were again anesthetized

with 2.0% isoflurane in 50% oxygen and perfused via cardiac

puncture with a solution for lanthanum staining composed of

2% glutaraldehyde, 2% sucrose, 0.1 M sodium cacodylate buffer

(pH 7.3), and 2% lanthanum nitrate. Thereafter, the aorta was

harvested and diced in three to four pieces of approximately 1

mm3 each. Sections were immersed for 2 h in the lanthanum

staining solution and then immersed overnight in a solution

composed of 2% sucrose and 0.1 M sodium cacodylate buffer

(pH 7.3). After washing in alkaline 2% sucrose and 0.03 M

NaOH solution, sections were immersed in 2% osmium

tetroxide and 2% lanthanum nitrate, embedded and cut with

ultramicrotome. The sections were viewed and photographed on

Hitachi H-7650 transmission electron microscope at 120 kV.
Plasma levels of cytokines and
biomarkers of endothelial injury

Plasma levels of tumor necrosis factor-a (TNFa), interleukin
(IL)-1b, IL-6, IL-10, keratinocytes-derived chemokine (KC), and

macrophage inflammatory proteins (MIP-1a) were used as

indices of the systemic inflammatory response and were

evaluated by a commercially available multiplex array system

(Milliplex, Millipore Corporation, Billerica, MA). Plasma levels

of endoglin, intercellular adhesion molecule-1 (ICAM-1), P-

selectin, proprotein convertase subtilisin/kexin type 9 (PCSK9),

and angiopoietin-2 (Ang 2) were used as indices of endothelial

injury and were evaluated by a commercially available multiplex

array system (R&D Systems, Minneapolis, MN). Plasma levels of

syndecan-1 were used as indices of glycocalyx damage and were

evaluated by a mouse syndecan-1 sandwich-type enzyme-linked

immunosorbent assay (ELISA) kit (Boster Biological Technology

Co., California, US). Assays were performed using the protocols

recommended by the manufacturer.
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Subcellular fractionation

Subcellular fractionation was performed using a

centrifugation model. Tissue samples of lung and thoracic

aortas were homogenized in a buffer (50 mg tissue/100 µL)

containing 0.32 M sucrose, 10 mM Tris-HCl (pH 7.4), 1 mM

EGTA, 2 mM EDTA, 5 mM NaN3, 10 mM b-mercaptoethanol,

2 µM leupep t in , 0 . 15 µM peps t a t in A , 0 . 2 mM

phenylmethanesulfonyl fluoride, 50 mM NaF, 1 mM sodium

orthovanadate and 0.4 nM microcystin. Samples were

centrifuged at 1000x g for 10 min at 4°C and the supernatants

collected as cytosol extracts, which also contain membrane and

mitochondria. The pellets were then solubilized in Triton buffer

(1% Triton X-100, 250 mM NaCl, 50 mM Tris HCl at pH 7.5, 3

mM EGTA, 3 mM EDTA, 1 mM phenylme-thanesulfonyl

fluoride, 0.1 mM sodium orthovanadate, 10% glycerol, 2 mM

p-nitrophenyl phosphate, 0.5% NP-40 and 46 µM aprotinin).

The lysates were rocked for 1 h and subsequently centrifuged at

15,000x g for 30 min at 4° C and the supernatant collected as

nuclear extracts. The Bradford protein assay was then used for

quantitative determination of total proteins.
Western blot analysis

Cytoso l content o f to ta l AMPKa1/a2 and i t s

phosphory l a t ed fo rm pAMPKa1/a2 (San ta Cruz

Biotechnology, Dallas, TX, USA), cytosol and nuclear content

of STAT3 and its phosphorylated forms pSTAT3(Tyr705) and

pSTAT3(Ser727) (Cell Signaling Technology, Danvers, MA,

USA) were determined by immunoblot analyses; b-actin was

concomitantly probed with mouse anti-b-actin (Santa Cruz

Biotechnology) as a loading control for both cytosol and

nuclear proteins. Extracts were heated at 70°C in equal

volumes of 4x Protein Sample Loading Buffer. Twenty-five mg
of proteins were loaded per lane on a 10% Bis-Tris gel. Proteins

were separated electrophoretically and transferred to nitro-

cellulose membranes. The immunoreaction was detected by

near-infrared fluorescence. Membranes were blocked with

Odyssey blocking buffer (LI-COR Biotechnology, Lincoln, NE,

USA) and incubated with primary antibodies. Membranes were

washed in PBS with 0.1% TWEEN 20 and incubated with near

infrared fluorescent dye-conjugated secondary antibodies

(IRDye goat anti-rabbit and anti-mouse IgG; LI-COR

Biotechnology). Immunoblotting was performed by using the

IBind Flex Western System (Thermo Fischer Scientific,

Waltham, MA, USA) that uses sequential lateral flow to

perform blocking and antibody binding. The Odyssey LI-COR

scanner (LI-COR Biotechnology) was used for detection. Fold

changes of relative intensity of proteins were calculated versus

mean value of control mice upon data normalization with b-
actin by NIH ImageJ 1.53k software (36). Normalization and
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quantification for AMPKa1/a2 was also validated by Revert

total protein stain and Empiria Studio analysis (LI-

COR Biotechnology).
Materials

Unless otherwise stated, all chemicals were obtained from

Sigma-Aldrich (St. Louis, MO).
Statistical analysis

Statistical analysis was performed using SigmaPlot 14.0

(Systat Software, San Jose, CA, USA). Data in figures and text

are expressed means ± SEM or median with 25th and 75th

percentile of n observations (n = 3–17 animals for each group).

The results were examined by analysis of variance followed by

the Student–Newman–Keuls correction post hoc t-test. Statistical

analysis of damage scores was performed using the non-

parametric Mann–Whitney test. The Gehan-Breslow test was

used to compare differences in survival rates (n = 11-12 animals

for each group). A value of P<0.05 was considered significant.
Results

Glycocalyx shedding and endothelial
damage occur early during polymicrobial
sepsis and are associated with lung injury

To determine the onset of endothelial damage, we performed

histology of thoracic aortas and we measured plasma biomarkers at

6 h and 18 h after CLP. Hematoxylin and eosin-stained sections of

the thoracic aorta did not reveal alteration of cellular density or

irregularities in the tunica intima, tunica media, and adventitia

layers at 6 h or 18 h after CLP (Supplementary Figure S1). However,

an early elevation of plasma levels of syndecan-1, a marker of

glycocalyx breakdown and shedding, was observed at 6 h in mice

subjected to CLP when compared to control mice at baseline

conditions (2.77 ± 0.34 versus 0.49 ± 0.13 ng/ml, P<0.05;

Figure 1A). This early glycocalyx damage was also associated with

an early increase of the angiogenetic factor endoglin (5.07 ± 0.69 ng/

ml), the adhesionmolecules ICAM-1 (156.72 ± 20.93 ng/ml) and P-

selectin (58.26 ± 6.40 ng/ml) when compared to control mice (3.50

± 0.24, 73.96 ± 6.62, and 31.04 ± 5.73 ng/ml, respectively; P<0.05).

At 18 h after CLP plasma syndecan-1, endoglin, ICAM-1 and P-

selectin were still maintained at high levels (Figures 1B–D). At 18 h

after CLP, septic mice also exhibited higher plasma levels of

angiopoietin-2 (154.80 ± 21.90 ng/mL), a mediator of

microvascular disintegration, and levels of PCSK9 (59.27 ± 11.28

ng/mL), an enzyme implicated in low-density lipoprotein receptor

degradation and clearance of endotoxins, when compared to
Frontiers in Immunology 05
control mice (63.19 ± 4.08 and 27.99 ± 2.80, respectively; P<0.05)

(Figures 1E, F). Early degradation of endothelial glycocalyx was also

associated with higher lung injury score at 6 h, which persisted at 18

h after CLP, and was characterized by reduced alveolar space, and

accumulation of red and inflammatory cells when compared to

control mice at basal condition (Figure 2). To distinguish whether

early endothelial damage was secondary to specific sepsis-induced

immune response, we alsomeasured these circulating biomarkers in

sham mice, which underwent laparotomy but not CLP. In sham

mice at 6 h, levels were not significantly different when compared

with baseline levels of control mice. Sham mice at 18 h exhibited a

significant elevation of P-selectin, PCSK9 and angiopoietin-2

(Supplementary Figure S2). There was only a mild infiltration of

neutrophil, as determined by MPO activity, in the lung at 6 h when

compared with control mice, but levels were significantly lower than

mice subjected to CLP (Supplementary Figure S3). Thus, these data

suggested that the early occurrence of endothelial damage is a

specific sepsis-induced response and not induced by the sterile

inflammation caused by the surgical procedures.
Treatment with colivelin reduces
neutrophil infiltration in lung, liver and
kidney after CLP in a
dose-independent manner

Considering the early elevation in plasma levels of adhesion

molecules, we next determined the effects of treatment with the

peptide colivelin on neutrophil infiltration by measuring MPO

activity in major organs at 6 h after CLP. Vehicle-treated mice

had higher MPO activity in lungs, liver and kidneys when

compared to control mice at basal conditions. Treatment with

colivelin significantly decreased MPO activity in lungs, liver and

kidneys in a dose-independent manner when compared to

vehicle treatment (Figures 3A–C). Microscopic examination of

hematoxylin and eosin-stained lung sections confirmed that

treatment with colivelin reduced infiltration of inflammatory

cells and ameliorated alveolar damage in the lung (Figures 3D, E)

when compared to vehicle treatment (Figure 2B).
Treatment with colivelin reduces plasma
levels of cytokines after CLP in a dose-
independent manner

To evaluate the effect of colivelin on systemic inflammatory

response, a panel of Th1/Th2/Th17 cytokines was measured. At

6 h after CLP, plasma levels of IL-1b, IL-6, IL-10, KC, TNF-a,
and MIP-1a were significantly increased in vehicle-treated mice

compared to control mice. Colivelin treatment significantly

decreased levels of TNF-a, MIP-1a and IL-10 in a dose

independent-manner. Levels of KC were significantly reduced

in the mice treated with colivelin at 200 µg/kg. There was also a
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FIGURE 2

Representative histology photomicrographs of lung sections of a control mouse (A) or mice subjected to polymicrobial sepsis at 6 h (B) and 18
h (C) after cecal ligation and puncture (CLP). Lung damage at 6 h and 18 h after CLP was characterized by severe reduction of alveolar space,
neutrophil adhesion along vascular wall, hemorrhage, and infiltration of inflammatory cells. Magnification x100. A similar pattern was seen in
tissue sections of n=5 mice in each experimental group. (D) Histopathologic scores of lung sections (n=5 mice for each group). Lung injury was
scored from 0 (no damage) to 16 (maximum damage). Box plots represent 25th percentile, median, and 75th percentile; error bars define 10th

and 90th percentiles. *Represents P < 0.05 versus control mice at time 0.
B C

D E F

A

FIGURE 1

Plasma levels of Syndecan-1 (A), Endoglin (B), ICAM-1 (C), P-selectin (D), PCSK9 (E), and Angiopoietin-2 (F) at 0 h, 6 h and 18 h after cecal
ligation and puncture (CLP). Data represents the mean ± SEM of 10-13 mice for group (n=10 control group at 0 h, n=13 at 6 h, n=11 at 18 h).
*Represents P < 0.05 versus control mice at time 0.
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trend towards reduction of IL-1b and IL-6 after treatment with

colivelin, but levels of these cytokines were not statistically

different when compared with vehicle treatment (Figure 4).
Treatment with colivelin ameliorates
endothelial glycocalyx damage and
mitochondrial damage in thoracic aortas
after CLP

We next evaluated the effect of colivelin on endothelial

injury. Colivelin treatment significantly decreased levels of

plasma syndecan-1 in a dose-independent manner at 6 h after

CLP, thus suggesting reduction in glycocalyx shedding

(Figure 5). Since effects of the peptide were in a dose-

independent manner, we next examined the ultrastructural

changes of the thoracic aortas in mice treated with colivelin at

100 µg/kg only (Figure 6). At electron microscopic analysis,

mitochondria damage was evident in smooth muscle and

endothelial cells in vehicle-treated mice at 6 h after CLP and

was characterized by swollen mitochondria and presence of

autophagosomes when compared to control mice. On the

luminal surface the lanthanum staining showed a thick

endothelial glycocalyx layer with dense individual bundles in

control mice. At 6 h after CLP, the glycocalyx layer appeared
Frontiers in Immunology 07
thinner with less dense bundles with loose structure in vehicle-

treated mice. On the contrary, in colivelin-treated mice

mitochondria appeared normal with dense matrix in all cell

types and the dense structure of glycocalyx appeared well

preserved when compared to vehicle treatment (Figure 6).
Treatment with colivelin inhibits STAT3
activation in thoracic aortas and lungs
after CLP

Since colivelin has been reported to activate STAT3 in

vitro, we next determined whether colivelin induced changes in

STAT3 activation and intracellular localization in aortas and

lungs. Control mice exhibited marginal levels of pSTAT3

(Ser727), whereas the pSTAT3(Tyr705) was undetectable in

both cytosol and nuclear compartments of thoracic aortas

(Figure 7). At 6 h after CLP, the levels of total STAT3 were

reduced in the cytosol while they remained unchanged in the

nucleus in vehicle-treated mice when compared to control

mice. On the contrary, the expression of pSTAT3(Ser727)

was significantly upregulated in the cytosol, while there was a

trend towards increase in the nucleus; pSTAT3(Tyr705) was

significantly upregulated in the cytosol and nuclear

compartments when compared to basal levels of control
FIGURE 3

Activity of myeloperoxidase (MPO) in lung (A), liver (B), kidney (C) at 6 h after cecal ligation and puncture (CLP). Data represents the mean ±
SEM of 7-17 mice for group (n=17 control group, n=13 vehicle group, n=7 colivelin 100 µg group, n=11 colivelin 200 µg group). *Represents P <
0.05 versus control mice; #represents P < 0.05 versus vehicle-treated mice. (D-E) Representative histology photomicrographs of lung sections
of colivelin-treated mice at 6 h after CLP. Vehicle (200 µl distilled water) or colivelin (100 or 200 µg/kg) was administered intraperitoneally at 1 h
after CLP. Magnification x100. A similar pattern was seen in tissue sections of n=5 mice in each experimental group.
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mice, thus suggesting an overall activation of the transcription

factor after sepsis. Interestingly, in thoracic aortas of colivelin-

treated mice, cytosolic expression of both pSTAT3(Ser727) and

pSTAT3(Tyr705) was significantly reduced. Colivelin

treatment did not affect nuclear expression of pSTAT3

(Ser727), while it inhibited pSTAT3(Tyr705) at the highest

dose. Furthermore, the levels of total STAT3 were restored in

the cytosol while they remained unchanged in the nucleus in

colivelin-treated mice when compared to vehicle treatment

(Figure 7). In the lung, there was a constitutive expression of

both pSTAT3(Ser727) and pSTAT3(Tyr705) in the cytosol and

nuclear compartments of control mice (Figure 8). At 6 h after

CLP, the expression of pSTAT3(Ser727) was significantly

upregulated in the cytosol, while there was a trend towards

increase in the nucleus (P=0.063); pSTAT3(Tyr705) was

significantly upregulated in the cytosol and nuclear

compartments when compared to basal levels of control

mice, thus suggest ing an overal l act ivation of the

transcription factor also in the lung after sepsis. Interestingly,

in the lung of colivelin-treated mice, cytosolic expression of

both pSTAT3(Ser727) and pSTAT3(Tyr705) was significantly

reduced when compared to vehicle-treatment. Nuclear

expression of both pSTAT3(Ser727) and pSTAT3(Tyr705)

was lower than vehicle-treated mice, but not statistically
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significant. In the lung, levels of total STAT3 were similar

among the three groups of mice (Figure 8).
Treatment with colivelin activates AMPK
in thoracic aortas after CLP

To further examine the molecular mechanism of colivelin,

we also determined the cytosolic activation of AMPK, the crucial

regulator of mitochondrial control quality. At 6 h after CLP, the

phosphorylated active pAMPKa1/a2 were reduced in the

cytosol of thoracic aortas in vehicle-treated mice when

compared to basal levels of control mice. Colivelin treatment

significantly increased the ratio of the phosphorylated/total

forms in a dose-independent manner, thus suggesting the

restoration of the kinase function (Figure 9).
Treatment with colivelin ameliorated
long-term outcomes after CLP

Given the early beneficial effects of colivelin on organ and

endothelial injury induced by sepsis, we sought to determine the

effect of the peptide in long-term outcomes. In long-term
B C

D E F

A

FIGURE 4

Plasma levels of TNFa (A), MIP-1a (B), IL-10 (C), KC (D), IL-1b (E), and IL-6 (F) at 6 h after cecal ligation and puncture (CLP). Vehicle (200 µl
distilled water) or colivelin (100 or 200 µg/kg) was administered intraperitoneally at 1 h after CLP. Data represents the mean ± SEM of 4-7 mice
for group (n=4 control group, n=6 vehicle group, n=4 colivelin 100 µg group, n=7 colivelin 200 µg group). *Represents P < 0.05 versus control
mice; #represents P < 0.05 versus vehicle-treated mice.
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studies, septic mice were treated with colivelin (100 µg/kg

subcutaneously) or vehicle at 1 h, 3 h and 24 h after CLP and

were monitored up to 7 days. To mimic the clinical condition, all

mice also received antibiotic therapy for three days and fluid

resuscitation for all the duration of the experimental period. The

vehicle-treated group exhibited a survival rate of 50% as 6 out of

12 mice survived at 7 days after CLP. The colivelin-treated group

experienced a slight, but not significant, increase of survival rate

(72.6%) as 8 out of 11 mice survived at 7 days (Figure 10A). Both

vehicle- and colivelin-treated mice exhibited diarrhea, pilo-

erection and signs of lethargy in the early 36 h after CLP.

Symptoms declined at 48 h but increased again at later time

after antibiotics discontinuation in both vehicle and colivelin-

treated groups. However, colivelin-treated mice exhibited less

severe signs of sepsis for all the duration of the observation

period and survivor colivelin-treated mice were significantly

healthier than survivor vehicle-treated mice at 6 and 7 days

after CLP (Figure 10B). Both vehicle- and colivelin-treated mice

experienced a similar body weight loss in the first two days after

CLP. However, at later time points vehicle-treated mice

maintained a significant lower weight than colivelin-treated

mice (Figure 10C).
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Discussion

In the present work, we demonstrated that increased plasma

levels of biomarkers of endothelial permeability, inflammation

and adhesiveness occurred at the early stage of experimental

sepsis in mice (i.e., at 6 h after CLP) and coincided with

structural changes of endothelial glycocalyx in the aorta and

with inflammation of major organs. We also demonstrated for

the first time that colivelin, a potent synthetic humanin

derivative, is a potential therapeutic compound to restore

endothelial stability and improve outcomes of sepsis. We

found, in fact, that colivelin treatment attenuated infiltration

of inflammatory cells in lung, kidney and liver, reduced the

systemic release of the pro-inflammatory cytokines, and, when

given as an adjunctive treatment to the standard fluid

resuscitation and antibiotics, improved long-term recovery and

health conditions of septic mice.

Being responsible of important physiological functions, such

as hemostasis, vasomotor control, barrier integrity and

immunological function, the endothelium is a critical cellular

system for host survival following severe injury, including sepsis

(3, 4). Considering the systemic nature of sepsis, exposure to
FIGURE 5

Plasma levels of Syndecan-1 at 6 h after cecal ligation and puncture (CLP). Vehicle (200 µl distilled water) or colivelin (100 or 200 µg/kg) was
administered intraperitoneally at 1 h after CLP. Data represents the mean ± SEM of 7-13 mice for group (n=10 control group, n=13 vehicle
group, n=7 colivelin 100 µg group, n=11 colivelin 200 µg group). *Represents P < 0.05 versus control mice; #represents P < 0.05 versus
vehicle-treated mice.
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pathogen-associated molecular patterns and endogenous

damage-associated molecular patterns may impair the

structure and function of the endothelium and its glycocalyx

layer. Several clinical studies have demonstrated elevated

circulating levels of syndecan-1 as a marker of glycocalyx

degradation in sepsis and are associated with organ

dysfunction and mortality (37–40). Clinical studies have also

profiled protein markers of endothelial activation in both the

adult and pediatric populations and have reported significant

associations with the severity of sepsis and septic shock, organ

failure and mortality risks (41–44). Adhesion molecules, such as

ICAM-1 and P-selectin, have been associated with poor

outcomes of acute lung injury (45–47). In adult patients

circulating P-selectin, measured at ICU admission, appear to

be associated with sepsis development in time (48) and it may
Frontiers in Immunology 10
have diagnostic value for sepsis when used with other

endothelial markers (40). Angiopoietin-2, which is produced

in endothelial cells and pre-stored in the Weibel-Palade bodies,

has been correlated with sepsis severity and death (42–44, 49)

and with acute kidney injury and respiratory failure (50). Other

novel biomarkers have been proposed for the evaluation of

endothelial dysfunction (51). Endoglin, or CD105, is a

membrane-bound glycoprotein that serves as a co-receptor for

members of the transforming growth factor-b and functions as

an angiogenetic factor. Although not yet determined in sepsis,

circulating levels of soluble endoglin have been shown to be

higher in the serum of patients with cardiovascular diseases with

a significant inflammatory component (52, 53). Recent

experimental and clinical studies have also supported a central

role of PCSK9 in the clearance of pathogenic lipids such as the
FIGURE 6

Transmission electron microscopy sections of thoracic aortas with lanthanum staining at 6 h after cecal ligation and puncture (CLP). Panels of
control mice (A, D, G, J) show thick endothelial glycocalyx layer with dense individual bundles and normal mitochondria in endothelial and smooth
muscle cells. Panels of vehicle-treated mice (B, E, H, K) show thin glycocalyx with bundles with loose structure and some damaged mitochondria
and authophagic vesicles at 6 h after CLP. Panels of colivelin-treated mice (C, F, I, L) show well preserved thin glycocalyx and normal mitochondria
at 6 h after CLP. Vehicle (200 µl distilled water) or colivelin (100 µg/kg) was administered intraperitoneally at 1 h after CLP. Arrows = glycocalyx; EC
= endothelial cell; EL = elastica lamina; EM = extracellular matrix; RC = red cell; SMC = smooth muscle cell; a = authophagosome; n = nucleus; m
= normal mitochondria; dm = damaged swollen mitochondria presenting translucent matrix and disrupted cristae.
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bacterial lipopolysaccharide (LPS) and in sepsis (54). Although

mainly located in the liver PCSK9 is also expressed in vascular

smooth muscle and endothelial cells and its expression is

increased by stimulation with LPS (55), suggesting a critical

role of PCSK9 in vascular function. Plasma PCSK9 levels have

been shown to serve as a late biomarker of the severity of illness

in patients with severe trauma injury in ICU (56) and sepsis (57)

and have been correlated to endothelial dysfunction in patients

with chronic kidney disease (58).

Despite these data on association with poor prognosis, the

pathophysiology of glycocalyx injury and endothelial

dysfunction and its potential role as therapeutic targets in

improving sepsis outcomes remain unclear. In our study, we

observed a distinct temporal profile of these circulating

endothelial biomarkers and glycocalyx degradation. We

observed that plasma elevation of the glycocalyx component
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syndecan-1 occurred early after CLP procedure and correlated

with an early elevation of plasma levels of the adhesion

molecules ICAM-1 and P-selectin. This early increased

expression of circulating syndecan-1 support the hypothesis

that the shedding of the glycocalyx concomitantly occurs with

the critical period of the inflammatory process of the

endothelium and may precede angiogenetic events as

angiopoietin-2 was elevated only at 18 h after CLP.

Interestingly, in our model we also have identified other

novel markers, such as endoglin and PCSK9, whose

pathophysiological role in sepsis deserves further investigation.

Neutrophil infiltration is a crucial pathophysiological event

of organ injury. In normal conditions, adhesion molecules

responsible for leukocyte adhesion are embedded in the

glycocalyx and are shielded from leukocytes rolling. Therefore,

shedding of the glycocalyx allows for neutrophil infiltration. In
B

C D

A

FIGURE 7

Representative Western blots of total STAT3, p-STAT3(Ser727) and p-STAT3(Tyr705) in cytosol and nuclear extracts of thoracic aorta; b-actin
was used as loading control protein (A). Image analyses of cytosol and nuclear of relative intensity of total STAT3 (B), ratio of p-STAT3(Ser727)/
STAT3 (C), and ratio of p-STAT3(Tyr705)/STAT3 (D) as determined by densitometry. Vehicle (200 µl distilled water) or colivelin (100 µg/kg) was
administered intraperitoneally at 1 h after CLP. Each data represents the mean ± SEM of 3-4 animals for each group. *Represents P < 0.05
versus control mice; #represents P < 0.05 versus vehicle-treated mice.
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our model, the early increase of syndecan-1 and adhesion

molecules temporally correlated with neutrophil infiltration in

lung, liver and kidney. In this regard, it is noteworthy that

elevation of circulating syndecan-1 was associated with

inflammatory biomarkers of neutrophil activation, including

MPO, and was predictive of adverse clinical outcomes in

patients with sepsis due to pneumonia (59).

To restore the endothelial permeability barrier and improve

outcome in sepsis, we tested the efficacy of colivelin, a new

generation humanin peptide derivative (25). Humanin is a

polypeptide containing 24 amino acids, which is encoded

encoded by short open reading frame in the mtDNA and acts

as retrograde signaling molecule to regulate inflammation (14).

Humanin was first identified in the cDNA associated with

neuroprotective effects in Alzheimer’s disease patients, and

therefore recognized for its antiapoptotic properties (21).
Frontiers in Immunology 12
Previous in vitro studies have demonstrated that humanin has

cytoprotective effects in human aortic endothelial cells against

oxidative stress (16). A synthetic analogue with enhanced

potency, humanin-G, has also been reported to inhibit cell

death in high-glucose-induced apoptosis in human umbilical

vein endothelial cells (17). Another potent humanin derivative is

colivelin, a hybrid peptide named composed of activity-

dependent neurotrophic factor and fused at the C-terminus to

a fragment of humanin (25), which has been shown to provide

beneficial effects in ischemia models in vivo (28). In our study,

we demonstrated that in vivo treatment with colivelin reduced

lung injury and reduced leukosequestration in lung, liver and

kidney. These beneficial effects correlated with a significant

reduction of circulating levels of syndecan-1, thus suggesting

inhibition of glycocalyx shedding, when compared to vehicle

treatment. To determine the beneficial effect of colivelin on
B

C D

A

FIGURE 8

Representative Western blots of total STAT3, p-STAT3(Ser727) and p-STAT3(Tyr705) in lung cytosol and nuclear extracts; b-actin was used as
loading control protein (A). Image analyses of cytosol and nuclear of relative intensity of total STAT3 (B), ratio of p-STAT3(Ser727)/STAT3 (C),
and ratio of p-STAT3(Tyr705)/STAT3 (D) as determined by densitometry. Vehicle (200 µl distilled water) or colivelin (100 µg/kg) was
administered intraperitoneally at 1 h after CLP. Each data represents the mean ± SEM of 3-4 mice for group (n=3 control group, n=4 vehicle
group, n=4 colivelin 100 µg group). *Represents P < 0.05 versus control mice; #represents P < 0.05 versus vehicle-treated mice.
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glycocalyx and endothelium we comprehensively assessed the

vascular damage of thoracic aortas by transmission electron

microscopy and found that colivelin treatment was associated

with amelioration of glycocalyx structure, as evidenced by the

presence of thick and complex bundles when compared to the

loose and thin structure in mice receiving vehicle. Although our

analysis of the vascular wall was focused on glycocalyx structure,

we also found that vascular damage in vehicle-treated mice was

characterized by the presence of damaged mitochondria in both

endothelial and smooth muscle cells. It must be considered that

mitochondria in vascular smooth muscle and endothelial cells
Frontiers in Immunology 13
play a pivotal role in maintaining the structural integrity of the

vascular wall, whereas their dysfunction leads to energy failure

and contributes to inflammation via production of reactive

oxygen species (12). In our study, colivelin treatment also

ameliorated mitochondrial structure. Thus, taken together, our

data demonstrated that the peptide affords multifactorial

beneficial effects against oxidative and metabolic stress and

against neutrophil adhesiveness and activation at the vascular

level. Many preclinical and clinical studies have demonstrated an

association between inflammatory cytokines and glycocalyx

degradation biomarkers (35, 39, 60, 61). In our study colivelin
B

A

FIGURE 9

Representative Western blots of total AMPKa and pAMPKa in cytosol extracts of thoracic aorta; b-actin and Revert stain were used to verify
loading of proteins (A). Image analyses of ratio of relative intensity of p-AMPKa/AMPKa (B) as determined by densitometry. Vehicle (200 µl
distilled water) or colivelin (100 µg/kg) was administered intraperitoneally at 1 h after CLP. Each data represents the mean ± SEM of 3-4 mice for
group (n=3 control group, n=4 vehicle group, n=4 colivelin 100 µg group). *Represents P < 0.05 versus control mice; #represents P < 0.05
versus vehicle-treated mice.
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FIGURE 10

Survival rate (A), severity score (B) and body weight loss (C) of mice at 7 days after cecal ligation and puncture (CLP). Mice were subjected to
CLP and received colivelin (100 µg/kg subcutaneously) or vehicle at 1 h, 3 h and 24 h after CLP. All mice received fluid resuscitation (35 ml/kg
normal saline with 5% dextrose subcutaneously) every 24 h up to 7 days and ceftriaxone (25 mg/kg) and metronidazole (12.5 mg/kg)
intraperitoneally every 12 h up to 3 days after the CLP procedure. *Represents P < 0.05 versus colivelin-treated mice.
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treatment significantly blunted the systemic elevation of TNFa,
MIP-1a, KC and IL-10, suggesting that the peptide interferes

with the vicious cycle between impaired endothelial glycocalyx

and neutrophil activation.

One of the most notable observations in our study was that

treatment with colivelin improved long-term wellbeing outcomes

of mice subjected to sepsis. To mimic human sepsis management,

mice were resuscitated with fluids and treated with antibiotics. We

observed that mice treated with a combination offluids, antibiotics

and colivelin experienced less severe clinical signs of sepsis up to 7

days after CLP when compared with animals treated only with

fluids and antibiotics, suggesting beneficial effects of colivelin on

recovery. The group of mice that received the adjunct therapy of

colivelin also exhibited a higher, but not significant, survival rate

(72.6%) than the group that received only vehicle in combinations

with fluids and antibiotics (50%). However, it must be noted that

for ethical reasonsmortality was not used as endpoint of our study

and we did not use a large number of mice; furthermore, some

mice were euthanized according to criteria that predicted

moribundity, thus, most probably affecting statistical significance.

In evaluating the molecular mechanisms of colivelin, we

investigated the contribution of both STAT-3 and AMPK since

these signaling pathways have been reported to be activated by

humanin and its derivatives. STAT3 is a crucial transcription

factor, which plays a role in development, inflammation,

immunity, metabolism and cancer (62). In addition to its

established role as a nuclear transcription factor, a pool of

STAT3 has been described in the mitochondria. STAT3 in the

mitochondria requires Ser727 but not Tyr705 phosphorylation

and functions as a positive regulator of mitochondrial electron

transport chain for ATP production (63). In vitro studies have

shown that treatment with humanin and its analogues may exert

protective functions through STAT3 phosphorylation (20, 23, 64).

In a murine model of ischemic stroke, the beneficial effects on

neuronal death and axonal remodeling of colivelin have also been

associated with activation of STAT3 signaling (28). Previous

studies have reported that expression of pSTAT3(Tyr705)

increases in the lung, liver, and kidney in murine models of

sepsis (65–67). However, these studies have not examined the

subcellular localization of the different phosphorylated forms of

STAT3. In our study, we observed for the first time that in

addition to the lung, pSTAT3(Tyr705) is also activated in the

cytosol and nuclear compartments of the aorta at 6 h after CLP in

vehicle-treated mice. Interestingly, we also found that distinct

subcellular localization of the pSTAT3(Ser727), which increased

in both aortas and lungs and was preferentially located in the

cytosol. It is important to note that non-canonical STAT3

activation through Ser727 phosphorylation has been recently

demonstrated to serve as a crucial signaling intermediary for

TLR4-induced glycolysis, macrophage metabolic reprogramming

and inflammation (68). An intriguing finding of our study was

that colivelin treatment inhibited the activation of STAT3 in the

aorta and lung and was associated with improvement of
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endothelial damage and pulmonary protection. These data are

in discrepancy with previous in vivo and in vitro studies

demonstrating that colivelin may act as a potent activator of

STAT3 (25, 28). A potential reason for this discrepancy on STAT3

activation by colivelin may be due to the different disease models.

Our study is the first to investigate the beneficial effects in an

infection condition, while previous in vivo and in vitro studies

have focused on conditions of neurodegeneration in Alzheimer’s

disease and ischemia and reperfusion injury models. On the

contrary, our findings are consistent with previous studies

demonstrating that inhibitors of STAT3, such as Stattic,

ameliorate inflammatory responses in endotoxin-induced acute

lung injury (69).

To further understand the molecular mechanisms of

colivelin, we also investigated the contribution of AMPK

signaling pathway. AMPK is a serine/threonine protein kinase,

which is the crucial regulator of energy metabolism and

mitochondrial quality control (70). In our study, we observed

that the thoracic aorta of colivelin-treated mice had increased

activation of AMPK. It must be noted that humanin and

humanin analogues may exert beneficial effects in oxidative

stress by activation of AMPK (71, 72). Furthermore, it has

been proposed that AMPK activation exerts anti-inflammatory

effects in endotoxic shock in mice by inhibiting STAT3 signaling

(73). Thus, it is plausible that the molecular mechanisms of the

protective effect of colivelin in sepsis may be related to increased

AMPK, which in turn inhibits phosphorylation of STAT3. Our

current findings also support our previous studies

demonstrating that pharmacological activation of AMPK

ameliorates organ injury in mice subjected to experimental

sepsis (74, 75).

In our study, however, we did not investigate the direct

mechanisms by which colivelin interferes with STAT3 or AMPK

activation. Mitochondrial peptides have been described to

interact with cell surface receptors, such as formylpeptide-like-

1 receptor and insulin-like growth factor binding protein-3 (14).

Specific in vitro studies in endothelial cells are, therefore,

necessary to further establish the upstream molecular

mechanisms of colivelin in preserving glycocalyx structure

and function.
Limitations

As a limitation of our study, we did not include a colivelin-

treated control group of healthy mice. Furthermore, we did not

investigate potential sex-differences in colivelin beneficial effects

as we used only male mice. However, at this preliminary stage of

our investigation, the main goal of our study was to evaluate the

effect of colivelin post-treatment in a disease state without the

phenotypic variability of the estrous cycle. Previous studies have

investigated the effect of colivelin on healthy animals/cells in the

context of experimental model of neurodegenerative diseases. In
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these studies, colivelin did not alter behavior parameters or cell

viability (25). Further comprehensive studies and elucidations of

hormonal influences are required to better understand the

molecular mechanisms of this synthetic mitochondrial peptide.

Another limitation of our study is that we used two different

routes of administration to explore the therapeutic efficacy of

colivelin in short-term and long-term experiments. In the short-

term studies, colivelin was injected intraperitoneally to allow for

a rapid uptake and bioavailability of the peptide. However, for

the wellness of the animals, we switched to subcutaneous

injection for the long-term administration to avoid further

stress in the peritoneum since the animals also required

repetitive intraperitoneal injections of antibiotics. Thus, it can

be speculated that differences in biodistribution might have

resulted in less efficacy in long-term outcomes. However, it

must be noted that the cytoprotective effects of colivelin or

other humanin derivatives have been described through different

routes of administration in vivo (76).
Conclusion

In conclusion, our data indicates that endothelial

dysfunction and glycocalyx damage are early events of lung

injury in a murine model of polymicrobial sepsis. Treatment

with the novel synthetic mitochondrial peptide colivelin exerted

pulmonary protective effects and improved long-term recovery

via activation of AMPK and inhibition of STAT3 in thoracic

aortas and lung. With the ability to rescue endothelium function

and ameliorate glycocalyx structure, colivelin should be

investigated as adjunct therapy for the treatment of sepsis.
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