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Metabolomic studies show that rheumatoid arthritis (RA) is associated with

metabolic disruption. Metabolic changes in fibroblast-like synoviocytes (FLS)

likely contribute to FLS abnormal response and strongly contribute to joint

destruction. These changes often involve increased expression of nutrient

transporters to meet a high demand for energy or biomolecules. The solute

carrier (SLC) transporter families are nutrient transporters and serve as

‘metabolic gates’ for cells by mediating the transport of several different

nutrients such as glucose, amino acids, vitamins, neurotransmitters, and

inorganic/metal ions. In RA FLS SLC-mediated transmembrane transport was

one pathway associated with different epigenetic landscape between RA and

osteoarthritis (OA) FLS. These highlight that transporters from the SLC family

offer unique targets for further research and offer the promise of future

therapeutic targets for RA.
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Introduction

Rheumatoid arthritis (RA) is a complex autoimmune disease that classically affects

the small joints of the hands and feet. Its pathogenesis is driven by an interplay between

cells of the immune system and the cells comprising the tissues of a joint (1, 2). This

includes T cells, B cells, macrophages, chondrocytes and fibroblast-like synoviocytes

(FLS). The FLS in a joint affected by RA, are a key driver of the inflammatory response

that leads to damage and loss of a structural integrity of the affected joint (3, 4). These FLS

play a role in the dysregulation of the innate and adaptive immune response and

increasing evidence demonstrate the multifaceted ways in which metabolic changes are

involved in the pathogenesis of RA and abnormal RA FLS behaviour (5–7).
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The SLC (solute carrier) gene superfamily current consists of

458 protein-coding genes with 65 distinct gene families (8). Genes

within a family are grouped based only on the primary amino acid

sequence. By definition, members of a family have >20-25% DNA

sequence homology to one another. In vitro studies and animal

models have demonstrated key functions of these transporters for

basic nutrients and ions, energy metabolism, neurotransmission,

and xenobiotic/drug transport (8, 9).

Not unexpectedly, SLC transporters are important in normal

health and disease states (9, 10) This is evidenced by greater than

half of SLC transporters being associated with either

susceptibility to a human disease or directly attributable to a

Mendelian human disease (11). This includes diseases affecting

the immune system, cardiovascular disease, metabolic disease,

neurological functioning and cancer. In comparison, ~20% of

genes in general are known to be associated with human disease.

We recently described that in RA FLS, changes in the

epigenetic landscape of genes are related to nutrient transporters,

revealing a potential role of the SLC family in RA pathogenesis

(12). In addition, several papers described associations of SLC

transporter polymorphisms with RA (13–18). In this review, we

concentrate on the roles of SLC transporters on the pathogenesis of

RA. We focus our review on studies of SLCs in RA FLS as they are

critical in regulating cell metabolism and are involved in the

pathogenesis of RA (Figure 1).
Importance of metabolic regulation
on RA pathogenesis and SLC roles in
metabolism regulation

Several studies have been conducted on the role of

metabolism in RA pathogenesis. Different cell types in the

inflamed synovium require various metabolites in order to

meet energy demands including lactate, citrate, and succinate

(5, 19, 20). This metabolic change is also accompanied by

differences in immunity and inflammation and affects both

stromal and immune cells (21). The result of these changes

has also been described and explored by different groups and

involves such pathways as glycolysis, pentose phosphate

pathway, and biosynthetic activity (22). It is suggested that

rewiring of the RA synovial membrane could modulate disease

activity as has been shown in tumor cells and cancer (23). Some

studies on metabolism and RA have focused on RA FLS in this

inflammatory state, including specific pathways such as glucose

metabolism, phospholipid metabolism, and bioactive lipids

which differ from healthy synovial fibroblasts (24).

SLC transporters have been shown to be important in

different physiological functions, but have also been studied

for the effect of their expression on metabolite concentration

in cells, and their involvement in various diseases (25). Some of

these roles SLC transporters have on disease activity are effects
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on signaling, differentiation, and cell function by manipulating

metabolite concentrations from normal levels, as seen in

immune cells (26). For these reasons, SLC transporters have

been explored as treatment targets for some conditions and

diseases (27).
SLC1 glutamate and neutral amino
acid transporter family

The plasma membrane transporters for the neurotransmitter

glutamate belong to the solute carrier 1 (SLC1) family (28).

Other common names of these transporters include Excitatory

Amino-Acid Carrier 1 (EAAC1 or SLC1A1), Glutamate

Transporter (GLT1 or SLC1A2), Glutamate Aspartate

Transporter 1 (GLAST or SLC1A3), Excitatory Amino

acid Transporter 4 (EAAT4 or SLC1A6), and Excitatory

Amino Acid Transporter 5 (EAAT5 or SLC1A7), to name a

few. Glutamate transporters are of particular importance in the

brain, where they contribute to the termination of excitatory

neurotransmission, but they are also expressed in many tissues.

Constitutive expression of EAAC1 (SLC1A1), GLAST

(SLC1A3), and GLT1 (SLC1A2) mRNA was shown in synovial

tissue and confirmed by immunohistochemical (IHC) analysis

(29, 30). Levels of glutamate increased in arthritis paws in a rat

animal model of arthritis. When testing the effect of glutamate on

increased proliferation positively correlated with higher

concentrations of glutamate for RA rat fibroblast in comparison

to normal rat fibroblasts. When given the non-selective EAAT

inhibitors L-threo-B-hydroxyaspartate and carboxycyclopropyl)

glycine (CCG-III), but nor GLT1 inhibitors, decrease glutamate

accumulation and proliferation was significantly decreased despite

higher levels of glutamate (31). These results imply a relatively

selective dependence upon EAAT transporters to deliver

glutamate for the metabolic needs of proliferating RA fibroblasts.
SLC2 glut transporter family

All fourteen members of the SLC2 family encode GLUT

proteins. The SLC2 or GLUT family are uniporters of hexoses,

polyols and yet to be determined substrates and mediate the first

step for cellular glucose usage (32). Deregulated glucose

metabolism of tumor and non-tumor cells is known to affect

cell behavior. RA FLS were found to have more glycolysis activity

than OA FLS by our group and others (33, 34). SLC2A1 (also

known as GLUT1) typically plays a role in basal glucose uptake.

Interestingly, GLUT1 increased mRNA expression of RA FLS

specifically correlated with increased glycolysis. Additionally,

inhibitors of glycolysis, like 2DG and bromopyruvate, or glucose

deprivation decreases proliferation and migration of RA FLS.

The expression of GLUT1 mRNA in the synovial lining has been
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confirmed in a mouse model of inflammatory arthritis and

glycolysis inhibition through BrPa (3-Bromo pyruvate)

decreased arthritis severity in this model (33). Overexpression

of hexokinase 2, which is specifically expressed in RA synovial

lining and regulates FLS aggressive functions, also increased

GLUT1 mRNA levels (35). Increased GLUT-1 and decreased

GLUT-4 (SLC2A4) expression in RA synovium compared to OA

synovium was confirmed for other groups (36). Of interest, TNF

stimulation enhanced GLUT1 expression in RA FLS (37).

Another study looked at the effect of D-lactate and its

relationship with GLUT1. The physiological concentration of

lactate in normal tissues is about 1.5–3 mmol/L but can increase

to 10–12 mmol/L at sites of inflammation such as rheumatic

synovial fluid. When RA FLS were stimulated with D-lactate for

six hours, GLUT1 mRNA, amongst other genes, was

significantly increased through HIF1a, PI3K/Akt and NF-kB
signaling pathways (38). Finally, another group studied the

involvement of T lymphocytes in RA FLS by giving T cell

conditioned media to RA FLS or culturing the FLS with CD4

T cells (39). CD4 conditioned media caused increased glycolysis

in FLS and downregulated oxidative phosphorylation which was

paralleled by increased both GLUT1 and GLUT3 mRNA. The

above studies suggest that targeted changes in the activity of

SLC2 family members could be exploited as adjunct therapeutic

targets for RA.
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SLC4 bicarbonate transporter family

The SLC4 family members transport bicarbonate and consist

of 10 genes that play roles in acid-base homeostasis (40). In

addition to regulating pH, bicarbonate transporters contributes

to a cell’s ability to fine tune the intracellular regulation of the

cotransported/exchanged ion(s) (e.g., Na+ or Cl−) (41). In the

context of these transporters playing a known role in migration

of other cell types, one group has investigated the role of

bicarbonate transporters on RA FLS migrations. Upon testing

various genes of the SLC4 family, SLC4A7 (also known as

NBCn1) was shown to be significantly increased in RA FLS

upon TNF-a expression as compared to OA FLS (42). As a result,

TNF stimulation significantly increased migration. NBCn1 was

also found to be in the plasma membrane after TNF stimulation.

Upon the use of NBC inhibitor S0859, RA FLS migration was

attenuated. As bicarbonate affects pH and RA patients tend to

have more acidic synovial fluid, they tested the effect of pH on

FLS migration and found that more acidic conditions increased

RA-FLS migration and NBCn1 expression. An NBC inhibitor,

S0859, decreased RA FLS migration and reduce bone erosion

and edema in joints in the collagen induced arthritis (CIA)

model (42).

Similar to the findings of M. Ji et. al., our group also found

SLC4A4 (NBCe1) expression to be increased in OA vs RA FLS
FIGURE 1

Depiction of the localization and solutes transported by the SLC transporter genes associated with RA FLS aggressive phenotype. SLC, solute carrier;
Glu, glutamate; Asp, aspartate; Ala, alanine; Asn, asparagine; Cys, cysteine; His, histidine; Ser, Serine; Zn, zinc; Cd, Cadmium; Mn, Magnesium; T3,
Triiodothyronine; T4, Thyroxine; L-DOPA, L-Dopamine; AA, amino acids; BCH, 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid.
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(12, 42). Upon siRNA knockdown of SLC4A4, RA FLS were

found to be more invasive but with unchanged migration

compared to control siRNA (12). This collection of findings

demonstrates the potential direct role of the SLC4 bicarbonate

transporters in regulating the pH of pathologic synovium and

their role in RA disease progression.
SLC7 cationic amino acid
transporter/glycoprotein
associated family

The SLC7 family transports amino acids, particularly,

SLC7A5 also known as LAT1, transports large, neutral, L-type

amino acids (43). Amino acids play essential roles in cell biology

as regulators of metabolic pathways. In RA FLS, the heterodimer

of SLC3A2 and SLC7A5 mediates cellular uptake of large neutral

amino acids like phenylalanine (39), tyrosine, leucine, and

tryptophan (28). SLC7A5 is overexpressed in RA synovial

tissue as compared with OA synovial tissue, and found to

colocalize with FLS through immunofluorescence of synovial

tissue from RA patients (44). This group also found that IL1b
stimulation upregulated SLC7A5 and induced mTORC1

activation. Another group utilized RNAi and the LAT1

inhibitor, L-leucine analogue b(−)2-aminobicyclo[2,2, 1]

heptane-2-carbocyclic acid (BCH), to test the effect on

downstream mechanisms (45). Both methods resulted in

reduced phosphorylation of mTOR and 4EBP1, leucine uptake

and migration in RA FLS. Interestingly, IL-17 increased

expression of SLC7A5, which was attenuated by inhibiting the

mTOR pathway (45).

SLC7A11 is a transporter that is targeted by the RA drug

sulfasalazine and is also referred to as xCT or system XC-. This

transporter specifically exports glutamate and imports cysteine.

Cysteine is essential for glutathione synthesis which has effects in

ferroptosis and reactive oxygen species resistance (46). One

study investigated the effect of icariin (47), shown to promote

anticancer, antiaging, neuroprotective, and anti-inflammatory

effects, on ferroptosis in FLS (48). FLS stimulated by

lipopolysaccharide (LPS) were used as a synovitis cell model.

ICA inhibited cell death, increased cell viability, reduced lipid

peroxidation, reduced iron content, and inhibited ferroptosis-

related proteins as compared to controls. ICA inhibited

ferroptosis by activating the XC-system and glutathione

peroxidase 4 (GPX4) activity, suggesting a role of ferroptosis

in FLS aggressive phenotype.

Of interest, a recent study used an opposing approach and

used imidazole ketone erastin (49), which is a ferroptosis

inducer, to decrease fibroblast numbers in synovium

accompanied by a TNF antagonist, to halt progression of

arthritis in the collagen-induced arthritis (CIA) mouse model.
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This study found that ferroptosis resistance in FLS was regulated

by TNF by upregulating SLC7A11, glutamate-cysteine ligase

catalytic subunit (GCLM), and glutamate-cysteine ligase

regulatory subunit (GCLC) and increasing cysteine uptake. A

TNF antagonist allowed RA FLS to become more susceptible to

ferroptosis, so the combination of a TNF antagonist and a

ferroptosis inducer had a synergistic effect in RA FLS but not

in healthy synoviocytes (50). A similar approach also described

that ferroptosis is decreased in RA FLS by looking at

mitochondrial morphology and membrane potential in RA

FLS along with increases in SLC7A11 (51). They also looked at

the effect of glycine on ferroptosis (51) Glycine enhanced

ferroptosis by increasing GPX4 promoter methylation, which

decrease dGPX4 expression, and by increasing the expression of

ferritin heavy chain 1 (FTH1), which releases iron and induces

ferroptosis. In addition, glycine reduced progression of

ferroptosis in the CIA mouse model. The above studies

suggest that the modulation of ferroptosis, as shown with

sulfasalazine (52), by targeting SLC7A11 among other

strategies can be exploited as adjunct therapeutic targets for RA.
SLC16 monocarboxylate
transporter family

The SLC16 family (specifically SLC16A1, SLC16A3, SLC16A7,

and SLC16A8) transports monocarboxylates such as l-lactate,

pyruvate, and ketone bodies across the plasma membrane (53).

SLC16A2 is specifically involved in transporting thyroid

hormones, while the other nine transporters are involved in

transporting other molecules or their role is otherwise known.

SLC16A3, also known as monocarboxylate transporter 4

(MCT4), is known to transport lactate and ketone bodies.

SLC16A3 mRNA and protein expression is upregulated in RA

compared to OA FLS and exports intracellular lactate into the

extracellular space (54). MCT4 siRNA reduced RA FLS

proliferation in comparison to OA FLS. This effect was

mediated by increased apoptosis. In an in vivo mouse model

of collagen induced arthritis (CIA), MCT4 siRNA was

electroporated into the joint tissue of mice, decreased MCT4

levels and was associated with reduced synovial cell hyperplasia

and infiltration. However, no difference in severity of cartilage

destruction and bone erosion was observed.
SLC30 zinc efflux family and SLC39
metal ion transporter family

Zinc ions are essential inmany physiological processes, including

enzyme catalysis, protein structural stabilization, and the regulation
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of many proteins, including matrix metalloproteinases (MMPs), a

disintegrin and metalloproteinase (ADAM), and a disintegrin

and metalloproteinase with thrombospondin motif (ADAMTS)

(55, 56). These proteases play key roles in the formation,

homeostasis and remodeling of the extracellular matrix and the

cartilage. The SLC30 family are specifically exporters of zinc and are

commonly referred to as Zinc transporters (ZnTs). In contrast, the

SLC39 family are importers of zinc and are commonly referred to as

Zrt- and Irt-like proteins (ZIPs), but can also transport a handful of

other metals. In FLS, it has been found that upon TNF and IL-17

stimulations, zinc exporters (SLC30) and importers (SLC39), there

are variable effects on Zinc exporters (SLC30) and importers. With

this cytokine combination, SLC39A8 (also known as ZIP-8)

expression significantly increased in RA FLS. However, in OA FLS,

only TNF was able to increase ZIP-8 expression, and no difference

was observed when IL-17 was added. With increased amounts of

Zinc, ZIP-8 expression was inhibited in RA FLS after TNF and IL-17

stimulation, but not in OA FLS. In contrast, SLC30A1 (also known as

ZnT1) expression was unchanged upon stimulation with TNF and

IL-17, and expression was slightly enhanced with increased amounts

of zinc, but upon the combination of zinc and cytokines, ZnT1

expression was significantly increased. This combination of cytokines

and zinc also significantly increased IL-6 production in RA FLS (57).
SLC38 system A and system N
sodium-coupled neutral amino acid
transporter family

SLC38 family is a set of genes that primarily transports

amino acids. Specifically, SLC38A1, or system N amino acid

transporter 1 (SNAT1), is a sodium coupled amino acid

transporter that is shown to be upregulated in human liver

cancer cell lines (58). SLC38A1 was shown to have differential

epigenetic markings between RA and OA FLS with higher

expression in RA FLS than in OA FLS. Upon siRNA

knockdown, there was no difference in migration or invasion,

suggesting a s redundancy in amino acid transporters (12).
SLC40 basolateral iron
transporter family

The SLC40 family consists of only one SLC named

SLC40A1, which is also called MTP1 or IREG1, and codes for

a protein named ferroportin-1 (FPN1). It is involved in the

cellular efflux of iron (59). In the paper previously described for

SLC7A11 (50), this group briefly analyzed expression of

SLC40A1 and its role in RA FLS ferroptosis. In this model, RA

FLS incubated with a TNF antagonist were more sensitive to
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ferroptosis upon sensitization with IL-6. They found that IL-6

decreased expression of SLC40A1 and lowered ferritin. Upon

knockdown of SLC40A1, RSL3-driven ferroptosis toxicity was

increased. Based on these findings, IL-6 caused an increase in

intracellular iron levels which could contribute to RA FLS

proliferation. Of note, increased intracellular iron levels

positive correlates with tumor growth (33).
SLC44 choline-like
transporter family

The SLC44 family comprises several high affinity choline

carriers which are thought to provide choline for phospholipid

and acetylcholine synthesis (60). Choline kinase (ChoKa), an
essential enzyme for phosphatidylcholine biosynthesis, is

required for cell proliferation and has been implicated in

cancer invasiveness. The relevance of choline, choline kinase

and phosphocholine in RA FLS aggressive phenotype and

macrophage activation was described by our group and others

(31, 61, 62). SLC44A1 (also known as CTL1) is expressed widely

in the nervous system while the others, including SLC44A2 (also

known as CTL2) are expressed in peripheral tissues. SLC44A2 is

thought to be involved in autoimmune hearing loss

One group found all five of the CTL proteins present in

synovial tissue and cartilage of human joints. CTL1 and 2 being

the most prominently expressed, but without a difference

between OA and RA FLS (63). CTL1 and CTL2 were found to

loca l i z e to bo th macrophages and fibrob la s t s in

immunohistochemical staining, with CTL1 being the most

prominent in synovium and cartilage (64). Another study

found CTL1 and CTL2 mRNA and protein to be highly

expressed in RA FLS and localized to the plasma membrane.

They found that CHT1, CTL4, CTL5, OCT1, and OCT2 mRNAs

were not expressed in RA FLS. CTL3 and OCT3 were expressed

at low levels and proposed that inhibition of these transporters

promote apoptotic cell death (65). In RA FLS, the exposure to

the choline uptake inhibitor hemicholinium-3 (HC-3) in dose

specific manner, decreased cell viability and increased caspase 3/

7 activity; both of which are markers of apoptosis (65).
SLC47 multidrug and toxin
extrusion family

The SLC47 family is called the multidrug and toxin

extrusion (MATE) family which comprises of SLC47A1 (or

MATE1) and SLC47A2 (or MATE2). MATE1 and MATE2 are

H+/organic cation antiporters that secrete organic cations and

are mostly expressed kidney and liver (66).
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One study looked at the effect of tyrosine kinase inhibitors

(TKIs) in RA FLS and the role of these membrane transporters

(67). The tyrosine kinase inhibitor Imatinib was studied for

transport and accumulation and found that MATE1 had the

greatest affinity for Imatinib. This was confirmed after siRNA

knockdown of MATE1 caused decreased uptake of Imatinib

transport into RA FLS With increased activity of MATE1

following PDGF stimulation, proliferation was inhibited by

imatinib given its ability to enter the cell. When cells were

under disease relevant conditions such as a lower pH and

cytokine stimulation, imatinib uptake decreased. Previous

studies suggested a potentiation of the effect of imatinib under

these disease relevant conditions.

A different study found MATE1 to be increased in OA as

opposed to RA. MATE1 was also determined to mediate

transport of Tofacitinib, a blocker of the ATP-binding side of

Janus kinase (JAK) proteins and tyrosine kinase inhibitor, from

RA FLS (68). The increased expression of MATE1 in OA allows

tofacitinib to be exported out of the cell, while the lower activity

of MATE1 in RA does not allow tofacitinib to leave the cell, thus

allowing tofacitinib to undergo its intended effects. It is

suggested that tofacitinib is a more ideal drug since healthy

cells would be able to export it through MATE1 and thus not

undergo JAK inhibition while RA FLS would not be able to

export it due to lower MATE1 expression.
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The role of SLC transporters in
other cells

SLC transporters in RA are relevant in more than just FLS.

Other cell types critical in RA pathogenesis, including

chondrocytes, CD4+ T cells, monocytes, endothelial cells and

neutrophils express SLC transporters and they play a role in their

activated phenotype. Table 1 summarizes they key findings.
SLC transporters as
therapeutic targets

The SLC family offer unique targets for further research and

offer the promise of future therapeutic targets for RA.

Importantly, many SLC transporters are expressed on the cell

surface and are therefore targetable by both small molecules and

therapeutic antibodies. Modulation of these SLC can also affect

both the efficacy and toxicity of RA therapies as suggested by the

association of polymorphism with methotrexate toxicity (77–

82). A comprehensive understanding of the function of these

transporters and the pathways in which they act will be critical

for recognizing SLC that may be therapeutically targeted in RA.
TABLE 1 The role of SLC transporters in RA cells other than FLS.

SLC
family

Gene Alias Substrates Cell type Findings Reference

SLC2 SLC2A1
SLC2A2

GLUT1
GLUT2

DHA, glucose,
galactose,
mannose,
glucosamine

Chondrocytes DHA transported via GLUT1 regulated by hypoxia (69)

SLC5 SLC5A12 SMCT2 Short chain fatty
acids

CD4+ T cells Lactate regulates T-cell migration and regulates metabolism and
inflammation

(70), (47)

SLC7 SLC7A5 LAT1 Large neutral AA Monocytes
Macrophages

Glycolytic reprogramming through SLC7A5 in immune response (71)

SLC7 SLC7A11 XC- Cysteine,
glutamate

Endothelial cells Sulfasalazine inhibits fibroblast growth-factor induced chemotaxis of
endothelial cells

(72)

SLC16 SLC16A1 MCT1 Lactate, pyruvate,
ketone bodies

T cells Lactate regulates T-cell migration and regulates metabolism and
inflammation

(70)

SLC29 SLC29A1 ENT1 Nucleoside T cells in animal
model

Decitabine therapy results in long-term remission of RA (72)

SLC29 SLC29A1
SLC29A2

ENT1
ENT2

Nucleoside Mixed synovial cells Dipyridamole is an ENT inhibitor. It did not affect cytokine release in RA
and OA cells

(73)

SLC38 SLC38A1
SLC38A2
SLC38A3

SNAT1
SNAT2
SNAT4

Gln, Ala, Asp, Cys,
His, Ser

Monocytes
Neutrophils
AIA

Glutamine uptake is regulated by SNAT and attenuated AIA (74)

SLC39 SLC39A8 ZIP8 Zinc Macrophages Zinc regulated IL-1b (75)

SLC63 SLC63A2 SPNS2 Sphingolipids CIA model SPNS2 deletion improved arthritis (76)
fro
CIA, collagen induced arthritis; AIA, antigen induced arthritis, AA, amino acids; GLUT, glucose transporter; SMCT2, sodium-coupled monocarboxylate transporters; LAT1, L-type amino
acid transporter; MCT1, monocarboxylate transporter 1; ENT, Equilibrative nucleoside transporter; SNAT, Sodium-Coupled Neutral Amino Acid Transporter; ZIP, Zrt- and Irt-like
proteins; SPNS2, Sphingolipid Transporter 2; DHA, Dehydroascorbate
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