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The incidence and mortality of colorectal cancer (CRC) are increasing year by

year. The accurate classification of CRC can realize the purpose of personalized

and precise treatment for patients. The tumor microenvironment (TME) plays

an important role in the malignant progression and immunotherapy of CRC. An

in-depth understanding of the clusters based on the TME is of great

significance for the discovery of new therapeutic targets for CRC. We

extracted data on CRC, including gene expression profile, DNA methylation

array, somatic mutations, clinicopathological information, and copy number

variation (CNV), from The Cancer Genome Atlas (TCGA), Gene Expression

Omnibus (GEO) (four datasets—GSE14333, GSE17538, GSE38832, and

GSE39582), cBioPortal, and FireBrowse. The MCPcounter was utilized to

quantify the abundance of 10 TME cells for CRC samples. Cluster repetitive

analysis was based on the Hcluster function of the Pheatmap package in R. The

ESTIMATE package was applied to compute immune and stromal scores for

CRC patients. PCA analysis was used to remove batch effects among different

datasets and transform genome-wide DNA methylation profiling into

methylation of tumor-infiltrating lymphocyte (MeTIL). We evaluated the

mutation differences of the clusters using MOVICS, DeconstructSigs, and

GISTIC packages. As for therapy, TIDE and SubMap analyses were carried out

to forecast the immunotherapy response of the clusters , and

chemotherapeutic sensibility was estimated based on the pRRophetic

package. All results were verified in the TCGA and GEO data. Four immune
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clusters (ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and ImmClust-CS4)

were identified for CRC. The four ImmClusts exhibited distinct TME

compositions, cancer-associated fibroblasts (CAFs), functional orientation, and

immune checkpoints. The highest immune, stromal, and MeTIL scores were

observed in CS2, in contrast to the lowest scores in CS4. CS1 may respond to

immunotherapy, while CS2 may respond to immunotherapy after anti-CAFs.

Among the four ImmClusts, the top 15 markers with the highest mutation

frequency were acquired, and CS1 had significantly lower CNA on the focal

level than other subtypes. In addition, CS1 and CS2 patients had more stable

chromosomes than CS3 and CS4. The most sensitive chemotherapeutic agents

in these four ImmClusts were also found. IHC results revealed that CD29 stained

significantly darker in the cancer samples, indicating that their CD29 was highly

expressed in colon cancer. This work revealed the novel clusters based on TME

for CRC, which would guide in predicting the prognosis, biological features, and

appropriate treatment for patients with CRC.
KEYWORDS

colorectal cancer, tumor microenvironment, clusters, immunotherapy, bioinformatics
Introduction

Colorectal cancer (CRC) is a common malignant tumor in

the digestive system. In recent years, the incidence of CRC is

gradually increasing, and the mortality is also on the rise,

ranking at the forefront of all malignant tumors, seriously

endangering human health (1). The treatment of CRC is based

on radical surgery, supplemented by chemotherapy, but nearly

half of the patients are still trapped in tumor recurrence or

metastasis without effective treatment (2). The traditional

clinical and pathological predictors of CRC mainly include

intestinal obstruction, pathological stage, level of cell

differentiation, invaded vessels, invaded nerves, microsatellite

status, etc. However, the final clinical significance is not very

obvious. Recently, in order to more accurately predict the
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prognosis of patients with CRC, more and more researchers

have begun to pay attention not only to tumor cells themselves

but also to the tumor microenvironment (TME) of tumor cells.

The occurrence of CRC is a multistage mutation

accumulation process involving multiple oncogenes, and the

TME also plays an important role in the regulation (3) and drug

resistance (4, 5) of CRC. The TME consists of a variety of cell

types, including immune cells, inflammatory cells, adipocytes,

fibroblasts, and vascular endothelial cells, as well as non-cellular

components in and around the tumor (6). TME cells can be

induced by tumor cells to produce a large number of cytokines

and growth factors, thus forming a microenvironment

conducive to the survival and proliferation of tumor cells. The

TME can mediate the immune escape of tumor cells with the

participation of tumor-associated immunosuppressive

molecules (transforming growth factor-b, TGF-b), tumor-

associated immunosuppressive cells (tumor-associated

macrophages, TAMs), and tumor-associated proinflammatory

responses (tumor-associated neutrophils) (7). The cellular

components in the TME have become key modulators of

tumor progression, organ-specific metastasis, and therapeutic

response, among which tumor-infiltrating immune cells are the

key to immunotherapy (8). Furthermore, tumor-infiltrating

lymphocytes (TILs) can directly affect the prognosis and

response to immunotherapy (9).

The heterogeneity of tumors is one of the important

characteristics of tumors, which enables tumors to evolve

various characteristics to adapt to the environment and even to

resist the treatment of tumors (10, 11). Traditionally, tumors have

been classified according to the type of cell or tissue they originate
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from and, thus, have a “one-size-fits-all” approach to pathology

and treatment. It was not until sequencing became widely

available that we realized that there were differences in genomic,

transcriptome, and epigenetic characteristics within the same type

of tumor (10). For example, the CRC Subtyping Consortium

proposed a consensus molecular model, which divided CRC into

four consensus molecular subtypes (CMS) according to

pathological features (12). CMS1 is the type involved in

microsatellite instability (MSI), also known as a high mutation

type, which is manifested by mismatched gene repair changes.

CMS2 is typical and is associated with abnormal activation of

WNT or MYC signaling pathways. CMS3 is a metabolic type,

showing a high mutation degree of KRAS and metabolic disorder.

CMS4 indicates an abnormal activation of the TGF-b signaling

pathway. Even within the same tumor, its genetic characteristics

are different between subcellular populations and change

dynamically as the tumor develops (11, 13). The understanding

of tumor heterogeneity has led to a more detailed classification of

tumors, and the development of different treatment regimens

based on the molecular characteristics of tumors has improved the

therapeutic outcomes of multiple tumors. For example, imatinib is

used to treat BCR-ABL tyrosine kinase constitutively activated

chronic myeloid leukemia (14), HER2 protein-targeting drugs are

used to treat HER2-positive breast cancer (15), and estrogen

antagonists are used to treat estrogen receptor-positive breast

cancer (16).

In this study, we integrated TME cells of CRC to identify

four immune clusters (ImmClust-CS1, ImmClust-CS2,

ImmClust-CS3, and ImmClust-CS4), which were validated

using data from the Gene Expression Omnibus (GEO)

datasets. We described each according to their biological

characteristics, including the prognosis, immune status,

somatic mutations, copy number variation (CNV), and

response to treatment.
Materials and methods

Public data acquisition and
preprocessing

The RNA-seq FPKM (fragments per kilobase million) data of

TCGA-COAD and TCGA-READ were downloaded from the

UCSC Xena platform (https://xenabrowser.net/) (17). After

primary tumor selection, a total of 390 COAD and 154 READ

samples were included in our study. The FPKM style of RNA-seq

data was normalized into TPM value (18). The 450K DNA

methylation array was also extracted from the UCSC Xena

platform (19). The somatic mutation data and the

clinicopathological information of patients with COAD or READ

were obtained from the cBioPortal platform (http://www.

cbioportal.org/datasets) (20). The data on CNV were acquired

from FireBrowse (http://firebrowse.org/) (21). Four external
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independent datasets, namely, GSE14333, GSE17538, GSE38832,

and GSE39582, were downloaded from the GEO database and

quantitated by Affymetrix Human Genome U133 Plus 2.0 Array

(22–25). TCGA and GEO data were combined to remove batch

effects by ComBat in R package SVA (26), and the removal of batch

effects was tested by principal component analysis (PCA) (27).
TME abundance quantification and
immune cluster establishment

MCPcounter is an R package that quantifies the absolute

abundance of eight immune cells (B-cell lineage, CD8+ T cells,

cytotoxic lymphocytes, monocytic lineage, myeloid dendritic

cells, natural killer cells, neutrophils, and T cells) and two

stromal cells (fibroblasts and endothelial cells) using

transcriptome data (28). We utilized MCPcounter to quantify

the abundance of the 10 TME cells for CRC samples. After

cluster repetitive analysis based on Hcluster function of

Pheatmap package in R (29), four immune clusters

(ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and

ImmClust-CS4) were identified. The ESTIMATE R package

was applied to compute immune scores and stromal scores

(30), representing the enrichment scores for CRC patients.
Immunotherapy response analysis

Based on the ESTIMATE tool, the present study used gene

expression data from CRC to estimate stromal and immune cells

in cancer tissue to predict the immune score and stromal score in

CRC (30). TILs were associated with the clinical outcomes of CRC

(31, 32). To further evaluate the local tumor immune response of

the four ImmClusts, genome-wide DNA methylation profiling

was applied and transformed into methylation of tumor-

infiltrating lymphocyte (MeTIL) using PCA analysis (33). TIDE

is a computational method for predicting immune checkpoint

blockade (ICB) responses (34). Based on RNA expression profiles,

TIDE prediction scores were calculated to forecast the likelihood

of CRC patients responding to immunotherapy. A lower TIDE

score indicated a lower possibility of immune escape (34). In

addition, SubMap analysis was carried out to contrast gene

expression similarity between ImmClusts and the responders of

anti-PD-1 or anti-CTLA-4 therapy (35–38).
Assessment of cancer-associated
fibroblasts

Cancer-associated fibroblasts were reported to play an

essential role in the TME of CRC (38). Since cancer-associated

fibroblast (CAF) may have modeled different patient

subpopulations, CAF-related genes and signatures were
frontiersin.org
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mapped to ImmClusts. Previous studies provided seven CAF-

related genes, namely, ACTA2, PDGFRA, PDGFRB, THY1,

COL1A1, FAP, and PDPN (39–43). We obtained eight CAF-

related signatures (ecm-myCAF, detox-iCAF, IL-iCAF, TGFB-

myCAF, wound-myCAF, IFNG-iCAF, CAF-S1, and normal

fibroblast) from the study based on single-cell analysis (44).
Evaluation of mutation differences

The MOVICS package is designed for multi-omics

comprehensive clustering and visualization of cancer clusters,

which provides a unified interface and standardizes the output

for 10 algorithms (CIMLR, iClusterBayes, MoCluster, COCA,

ConsensusClustering, IntNMF, LRAcluster, NEMO, PINSPlus,

and SNF) (45). The ImmClusts of the TCGA-CRC cohorts were

comprehensively characterized by the MOVICS package,

including somatic mutation (46), tumor mutational burden

(TMB), and fraction genome altered score. The package

DeconstructSigs can put 96 mutation spectrums into 30

corresponding mutation signatures of the COSMIC database

(47). Mutations mediated by the apolipoprotein B mRNA-

editing enzyme catalytic polypeptide-like (APOBEC) family

are widespread in human cancers (48). APOBEC has been

reported to be associated with immunotherapy response (49).

We selected two APOBEC-related signatures and weighted them

to obtain the weight of the APOBEC mutant signature. Somatic

CNV (SCNA) may affect as many as thousands of genes

simultaneously, but the selective advantage that drives

variation may be mediated by only one or a few of these

genes. Based on the Genomic Identification of Significant

Targets in Cancer (GISTIC) algorithm (50), we compared the

chromosomal instability of subtypes.
Prediction of the sensibility of
chemotherapeutics

A wide range of drug screening can be performed through

the Genomics of Drug Sensitivity in Cancer (GDSC) website

(51). Based on pRRophetic package in R (52, 53), Ridge’s

regression was used to construct a prediction model between

drug sensitivity and the expression profile of cell lines.

Whereafter, we applied the aforementioned model to estimate

the half-maximal inhibitory concentration (IC50) value of

chemotherapeutics for CRC patients.
Human tissue sample collection

Formalin-fixed and paraffin-embedded (PPFE) specimens

were collected from cancerous and paracancerous tissues of CRC

patients in the First Affiliated Hospital of Zhengzhou University.
Frontiers in Immunology 04
All the samples were stored at room temperature (20°C–25°C).

According to pathological features, at least two pathologists

diagnosed all the specimens and reached an agreement. Lastly,

this study included 10 cases of CRC cancerous and

paracancerous tissues. The study was approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou

University (Ethics No. 2021-KY-0147-002).
Immunohistochemical staining

According to themanufacturers’ protocol, immunohistochemistry

(IHC) staining of CRC cancerous and paracancerous tissues

was performed. First, we dewaxed, hydrated, and blocked the

paraffin-embedded sections and then incubated them

overnight at 4°C with a CD29 antibody (Affinity, China). The

next day, sections were washed three times with PBS and then

incubated with secondary antibodies at 37°C. Again, sections

were washed with PBS, dropped into a DAB reagent, and

restained with hematoxylin for 2 min. Finally, these sections

were visualized by light microscopy, and the results of Masson

staining and IHC were analyzed using ImageJ software.
Results

Immune-related cluster establishment

If the sample dataset collection time, collection institutions,

sequencing platform, and other factors are different, they may

automatically form different batches, thus affecting the real data.

Therefore, batch effects should be checked and removed before

subsequent analysis; otherwise, all subsequent analysis results

will be invalid. Figure 1A shows the PCA diagram of the TCGA-

COAD and TCGA-READ data before and after batch removal,

indicating that batch effect removal was relatively successful.

We developed an immune-related cluster using the Hcluster

function of the Pheatmap package, and four immune clusters

(ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and ImmClust-

CS4) were identified for CRC (Figure 1B). The heatmap showed

the differences in the distribution of the four ImmClusts in

clinicopathological features, TME compositions, functional

orientation, and immune checkpoints (Figure 1B). The four

ImmClusts exhibited distinct TME compositions. ImmClust-

CS1 was characterized by a high enrichment of immune cells

and low fibroblasts (Figure 1B). ImmClust-CS2 was dominated by

immune-cell-related genes, as well as endothelial cells and

fibroblasts (Figure 1B). ImmClust-CS3 and ImmClust-CS4 were

both characterized by immune low and fibroblast high and

fibroblast low, respectively (Figure 1B). As for the functional

orientation (immunosuppression, T-cell activation, T-cell

survival, regulatory T cells, major histocompatibility complex

class I, myeloid cell chemotaxis, and tertiary lymphoid
frontiersin.org
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structures), on the whole, the expression values of related genes

were relatively high in ImmClust-CS1 and ImmClust-CS2 and

relatively low in ImmClust-CS3 and ImmClust-CS4 (Figure 1B).

The expression of immune checkpoint genes was consistent with

the above findings (Figure 1B).

Furthermore, we compared the clinical outcomes of patients in

the four ImmClusts. Although the survival patterns of the four

ImmClusts exhibited were not statistically significant (P = 0.335),

ImmClust-CS1 did not reach the median survival period in

10 years and had a better prognosis than other ImmClusts

(Figure 1C). Hence, we compared the differences in enrichment

pathways between CS1 and the other ImmClusts. GSEA analysis

showed that compared with the other three ImmClusts, CS1 was

enriched in interferon-alpha response, interferon-gamma

response, and TGF beta signaling pathways, while the epithelial–

mesenchymal transition (EMT) pathway was downregulated,

indicating that CS1 was enriched in immune-related pathways

but downregulated in the EMT pathway (Figure 1D).
Immunotherapy response analysis

ESTIMATE is an algorithm that uses transcription profiles

of cancer samples to estimate the number of tumor cells, as well

as the number of infiltrated immune and stromal cells. Among

the ESTIMATE scores of the four ImmClusts, the highest
Frontiers in Immunology 05
immune (Figure 2A) and stromal scores (Figure 2B) were

observed in CS2, in contrast to the lowest scores in CS4

(Figures 2A, B). A study has shown that the MeTIL score

system may assess immune and immunotherapy responses in

CRC (54). Interestingly, our data suggested that CS2 had the

highest MeTIL score (Figure 2C), while CS4 had the lowest

MeTIL score, which further suggested the differences in

immunotherapy responses among the four ImmClusts. A

lower TIDE score indicated a lower possibility of immune

escape. From Figures 2D, E, we found that patients in CS1

were more likely to respond to immunotherapy (Fisher’s exact

test, P < 0.001). In mapping CAF-related genes and signatures to

ImmClusts, we found a highly positive correlation between CS2

and CAFs (Figure 2F). At the same time, the immune gene

expression profiles of CS1 and CS2 were found to be similar to

those of melanoma patients responding to anti-PD-1 therapy

using SubMap analysis (Figure 2G). To sum up, CS1 may

respond to immunotherapy, while CS2 may respond to

immunotherapy after anti-CAFs.
Verification analysis based on GEO data

To validate the results of the above analysis, four external

CRC cohorts from the GEO database were included in the

follow-up study. First, the data of the GEO cohorts were
A
B

D

C

FIGURE 1

Immune-related cluster establishment for The Cancer Genome Atlas (TCGA). (A) Batch effect removal of the TCGA-COAD and TCGA-READ
cohorts using PCA analysis. (B) The heatmap showed the differences in the distribution of the four ImmClusts in clinicopathological features,
TME compositions, functional orientation, immune checkpoints, and so on. (C) K‐M survival curves showed the differences of overall survival
and recurrence rate among the four ImmClusts. (D) GSEA analysis comparing the differences of enrichment pathways between CS1 and the
other ImmClusts.
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combined and PCA analysis was performed. The batch effect

removal was observed successfully (Figure 3A). Subsequently,

considering the large cohort size and uneven distribution of

tumor purity in GEO, we removed the samples with a tumor

purity larger than 0.8 (the higher the tumor purity, the less

accurate the TME estimate), leaving 833 CRC samples. Here,

four subtypes were obtained by unsupervised clustering, and the

distribution of subtypes in clinicopathological features, TME

compositions, functional orientation, and immune checkpoints

was consistent with the TCGA cohort (Figure 3B). Happily, for

survival analysis, we found statistically significant differences in

survival curves, and CS1 and CS2 subgroups with high levels of

immune cell infiltration fared better, while CS3 with lower

immune cell infiltration but higher fibroblast infiltration had a

poor prognosis (Figure 3D). Conclusively, GSEA analysis

showed that CS1 was associated with interferon-alpha

response, interferon-gamma response, TGF beta signaling, and

epithelial–mesenchymal transition pathways (Figure 3C), which

was consistent with the previous findings.

In addition, the same results as the above findings were

confirmed. The immune (Figure 4A) and stromal (Figure 4B)

scores were the highest in CS2 and the lowest in CS4. CS1 with

the lowest TIDE score (Figure 4C) remained the subgroup most

likely to respond to immunotherapy (Figure 4D). The heatmap

revealed that CS2 was positively correlated with CAF-related
Frontiers in Immunology 06
genes and signatures (Figure 4F). SubMap analysis uncovered

that CS1 and anti-CAF-CS2 may respond to anti-PD-1

immunotherapy (Figure 4E).
Evaluation of mutation differences

The distribution variations of the somatic mutations among

the four ImmClusts were also analyzed based on MOVICS. The

top 15 markers with the highest mutation frequency were

PIK3CA, FAT4, FAT3, DNAH5, NEB, PCLO, HMCN1,

AHNAK2, PCDH15, CACNA1E, DNAH8, ATM, VPS13B,

DNAH2, and KMT2B (Figure 5A). TMB and TiTv were

calculated by MOVICS, and it was found that CS1 had a

higher TMB (Figure 5B). As for APOBEC, mutation weights

were significantly different among the four ImmClusts, with CS3

having the highest and CS1 the lowest (Figure 5C). In addition,

we found a significant negative correlation between immune

enrichment score (IES) and APOBEC mutation weight

(R = −0.12, P = 0.012, Figure 5D), while APOBEC mutation

weight was positively correlated with TIDE score (R = 0.13,

P = 0.0065, Figure 5E), suggesting that APOBEC is involved in

immunotherapy response.

From the Manhattan plot, we can see CNV at the

chromosomal level, which was computed by the GISTIC
A B

D

E

F

G

C

FIGURE 2

Immunotherapy response analysis for the TCGA. (A) Immune enrichment score for the four ImmClusts. (B) Stromal enrichment score for the
four ImmClusts. (C) MeTIL score for the four ImmClusts. (D) TIDE score for the four ImmClusts. (E) Response to immunotherapy of the four
ImmClusts. (F) The heatmap showed the differences in the distribution of the four ImmClusts in cancer-associated fibroblast (CAF)-related
genes and signatures. (G) SubMap analysis for the four ImmClusts.
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A B

D

E

F

C

FIGURE 4

Immunotherapy response analysis for the GEO. (A) Immune enrichment score for the four ImmClusts. (B) Stromal enrichment score for the four
ImmClusts. (C) TIDE score for the four ImmClusts. (D) Response to immunotherapy of the four ImmClusts. (E) SubMap analysis for the four
ImmClusts. (F) The heatmap showed the differences in the distribution of the four ImmClusts in CAF-related genes and signatures.
A B

D

C

FIGURE 3

Immune-related cluster establishment for the Gene Expression Omnibus (GEO). (A) Batch effect removal of four external independent datasets using
PCA analysis. (B) The heatmap showed the differences in the distribution of the four ImmClusts in clinicopathological features, TME compositions,
functional orientation, immune checkpoints, and so on. (C) GSEA analysis comparing the differences of enrichment pathways between CS1 and the
other ImmClusts. (D) K–M survival curves showed the differences of overall survival and recurrence rate among the four ImmClusts.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2022.984480
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2022.984480
algorithm (Figure 6A). By counting copy number amplification

(Figure 6B) and deletion (Figure 6C), respectively, we found that

CS1 had a significantly lower CNA at the focal level than

other subtypes. Fraction genome-altered scores (threshold 0.2)

were calculated using MOVICS packages to characterize

chromosomal instability. The results showed that CS1 and CS2

patients had more stable chromosomes than CS3 and

CS4 (Figure 6D).
Univariate Cox regression analysis for
CAF-related genes

Since CAF plays an important role in shaping the ImmClusts

of CRC, 289 CAF-related genes (CRGs) were extracted from the

literature and analyzed by univariate Cox regression analysis. In

the TCGA-CRC cohort, 49 risky CRGs and 8 protective CRGs

were identified. In the GEO-CRC dataset, 56 risky CRGs and 13

protective CRGs were found. We selected 25 intersection genes

to map the forest plot. As can be seen from Figure 7, there were

20 risky CRGs (SERP2, CILP, GRP, COMP, C7, SNAI1, LAMP5,

TGFB3, OLFM2, GAS1, IGF1, CYP1B1, PRICKLE1, ZFHX4,

UST, CD36, EBF2, PCOLCE2, PLIN4, and STEAP4) and 5

protective CRGs (CEBPA, PID1, CD177, DNASE1L3, HRCT1)

in the intersection genes (Figure 7).
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Prediction of the sensibility of
chemotherapeutics

To further investigate the treatment strategies for the four

ImmClusts of CRC, we conducted a prediction of the sensibility

of chemotherapeutics to evaluate the IC50 value using the

pRRophetic package. The IC50 value can be used to measure

the ability of a drug to induce apoptosis, that is, the higher the

inducing ability, the lower the value, and of course, it can also be

used to reverse the tolerance of a certain cell to the drug. We

screened out drugs that showed consistent sensitivity in the

TCGA (Figure 8A) and GEO (Figure 8B) databases for display.

Compared with the other three ImmClusts, patients in CS1 were

most sensitive to metformin, epothilone B, and VX-680; patients

in CS2 were most sensitive to DMOG, AICAR, AZD7762,

temsirolimus, TW.37, and elesclomol; patients in CS3 were

most sensitive to MG.132, A.770041, and cyclopamine; and

patients in CS4 were most sensitive to lapatinib.
Validation of the protein expression
levels of CD29 using IHC

A comparison of cancer and paracancer IHC results revealed

that CD29 stained significantly darker in the cancer samples,
A

B D EC

FIGURE 5

Evaluation of mutation differences among the four ImmClusts. (A) The waterfall plot of somatic mutation features established with ImmClusts.
(B) TMB and distribution of TiTv calculated by MOVICS for the four ImmClusts. (C) Apolipoprotein B mRNA-editing enzyme catalytic
polypeptide-like (APOBEC) mutation weights of the four ImmClusts. (D) Correlation between immune enrichment score (IES) and APOBEC
mutation weight. (E) Correlation between TIDE score and APOBEC mutation weight.
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indicating that CD29 was highly expressed in colon cancer

(Figure 9). These results are consistent with our subtype results,

indicating the reliability and reproducibility of the classification.
Discussion

CRC is the third most common malignant tumor in the

world and the second leading cause of cancer death worldwide,
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with about 1.8 million new cases and 800,000 deaths every year

(55, 56). The tumor microenvironment plays an important role

in tumor genesis, development, and tumor immunity. Studies

have shown that the infiltration and metastasis of immune cells,

memory CD4+ T cells, and CD8+ T cells in the TME can regulate

tumor immunity and participate in the three stages of tumor cell

clearance, tumor and body balance, and tumor immune escape

(57). They not only inhibit tumor growth but also screen tumors

for hypoimmunogenicity, leading to tumor escape (58).
A B

D

C

FIGURE 6

The chromosomal instability of the four ImmClusts. (A) Manhattan plot showing the CNV at the chromosomal level. (B) Copy number
amplification of the four ImmClusts. (C) Copy number deletion of the four ImmClusts. (D) Fraction genome-altered scores of the four
ImmClusts. ****p < 0.001.
A B

FIGURE 7

Univariate Cox regression analysis for the CAF-related genes in TCGA (A) and GEO (B) datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.984480
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2022.984480

Frontiers in Immunology 10
Our data revealed that CS1 was enriched in the interferon-

alpha (IFN-a) response and interferon-gamma (IFN-g) response
signaling pathways, while it was downregulated in the EMT

pathway. EMT is the process by which cells lose epithelial

features and gain mesenchymal properties, such as increased

motility of tumor cells (59). EMT processes are a series of

changes and transformations resulting from environmental

stimuli, depending on the organization and signal transduction

environment (60). In CRC, EMT is strongly associated with

aggressive or metastatic phenotypes (61). In-depth research on

the mechanism of action and interaction of the related signaling

pathways in CRC EMT will help to develop more new methods

for CRC treatment and promote individualized treatment. IFN-

a can inhibit the proliferation of tumor cells through the

adaptive and innate immune system (62). IFN-a can also

activate important components of the immune system such as

CD8+ T cells and NK cells and promote the mature

differentiation of B cells and DC cells (62). NK cells and CD8+

T cells can inhibit tumor cell metastasis (63); hence, IFN-a can

regulate the immune system to play an antitumor role. The

secretion of TNF-a, IFN-g, IL-6, and other cytokines by CD4+ T

cells can change the TME (64, 65), induce the local invasion of T

lymphocytes into the tumor (66), inhibit the synthesis of DNA

and RNA of tumor cells, and thus, induce the apoptosis of tumor

cells (65).

In order to further improve the overall survival (OS) rate of

CRC, immunotherapy has gradually attracted our attention. For

example, the gradual discovery of immune checkpoints such as

PD-1, PD-L1, CTLA-4, and OX40 has led to the emergence of

immune checkpoint inhibitors for CRC therapy (67). There are
A B

FIGURE 8

Prediction of chemotherapeutic sensibility. (A) Prediction of chemotherapeutic sensibility for the TCGA. (B) Prediction of chemotherapeutic
sensibility for the GEO.
FIGURE 9

Comparison of cancer and paracancer IHC results revealed that
CD29 stained significantly darker in the cancer samples,
indicating that their CD29 was highly expressed in colon cancer.
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significant differences in treatment outcomes among different

subtypes of CRC. For example, immune checkpoint inhibitors

represented by the anti-PD-1/PD-L1 pathway have achieved the

most outstanding curative effect in the treatment of CRC with

deficient mismatch repair (dM-MR) or microsatellite instability-

high (MSI-H) and have been used for the second-line treatment

(68). However, most metastatic CRC patients represented by the

proficiency of mismatch repair (pMMR) or microsatellite

stability (MSS) not only do not respond to the above

treatments; moreover, it also leads to the progression of the

disease, and some patients even have adverse events related to

immunotherapy such as colitis, pneumonia, dermatitis, and

endocrine diseases after receiving the treatment (69, 70). At

the same time, the TME is also closely related to the effect of

immunotherapy. A study has shown that the accumulation of

memory B cells and T cells in the TME can not only determine

the clinical stage of CRC but also indicate the effect of the

immune system’s antitumor response (71). TIL is characterized

by tumor invasion and lymph node metastasis. As a signal of

tumor cells attacking the human immune system, TIL reflects

the immune response of the host (72, 73). The antitumor effect

of TIL can be affected by co-inhibitory immune checkpoints and

can be used as a biomarker to evaluate and predict the effect of

immune checkpoint inhibitors (74, 75). CAFs that are abundant

in CRC and accumulate substantially in the TME are usually

associated with poor prognosis (76, 77). CAFs are positively

related to PD-L1 expression in CRC tissues, and by secreting

CXCL5, CAFs could promote the expression of PD-L1 in cancer

cells (78).

In general, immunotherapy has opened a new chapter in

cancer treatment and greatly improved the prognosis of CRC,

but the therapeutic effect varies greatly among different subtypes

of CRC. Therefore, it is very important to distinguish sensitive

and insensitive populations by specific biomarkers. In the era of

precision cancer therapy, the CRC typing system we identified

has great potential to be used to predict and evaluate the effects

of immunotherapy on CRC patients. In this study, we integrated

the TME cells of CRC to identify four immune clusters

(ImmClust-CS1, ImmClust-CS2, ImmClust-CS3, and

ImmClust-CS4), which were validated using data from the

GEO datasets. The four ImmClusts exhibited distinct TME

compositions, CAFs, functional orientation, and immune

checkpoints. The highest immune, stromal, and MeTIL scores

were observed in CS2, in contrast to the lowest scores in CS4.

CS1 may respond to immunotherapy, while CS2 may respond to

immunotherapy after anti-CAFs.

Cancer develops through the gradual acquisition of somatic

genetic changes, including point mutations, CNV, and fusion

events that affect the function of key genes that regulate cell

growth and survival. The occurrence of CRC is the cumulative

result of a series of gene mutations. CRC not only mutates in well-

known tumor-related genes (such as APC, TP53, KRAS, PIK3CA,

SMAD4) but also mutates in other genes, including SMAD2,
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CTNNB1, FAM123B, SOX9, ARID1A, etc. (79, 80). The latest

research showed that mutations of TP53, APC, KRAS, BRAF, and

ATM cover most patients with CRC (81, 82). The top 15 markers

with the highest mutation frequency among the four ImmClusts

we constructed were PIK3CA, FAT4, FAT3, DNAH5, NEB,

PCLO, HMCN1, AHNAK2, PCDH15, CACNA1E, DNAH8,

ATM, VPS13B, DNAH2, and KMT2B. These mutation markers

may serve as novel molecular targets for the detection or therapy

of these ImmClusts. When every cell divides, it acquires random

somatic mutations, and only driver mutations lead to malignant

development. PIK3CA was previously defined as a driving

mutation in CRC (46). Recent studies have found that mutation

of PIK3CA can lead to continuous activation of the EGFR

signaling pathway, thus affecting the therapeutic efficiency of

anti-EGFR drugs (83). Ejima et al. found high-frequency

mutations in ATM introns in CRC cell lines (84). Genes with

different mutation frequencies are expected to be markers for the

detection or treatment of subtypes. Among the four ImmClusts,

the top 15 markers with the highest mutation frequency were

acquired, and CS1 had significantly lower CNA at the focal level

than other subtypes. In addition, CS1 and CS2 patients had more

stable chromosomes than CS3 and CS4. The most sensitive

chemotherapeutic agents in these four ImmClusts were also found.

To sum up, the high immune infiltration, low fibroblast

infiltration, high mutation load, and low chromosomal variation

of CS1 are related to the ability of this subtype to respond

to immunotherapy.

Our study was the first one to establish the cluster system

based on TME for CRC. The combined analysis of data from the

TCGA and GEO verified the accuracy of the classification

system. Nevertheless, the clustering system constructed by us

lacks large prospective studies to verify, and its specificity and

sensitivity need to be further determined.
Conclusions

This work revealed the novel clusters based on the TME for

CRC, which would guide in predicting the prognosis, biological

features, and appropriate treatment for patients with CRC.
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