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SARS-CoV-2 plasma viremia has been associated with severe disease and

death in COVID-19. However, the effects of viremia on immune responses in

blood cells remain unclear. The current study comprehensively examined

transcriptional signatures of PBMCs involving T cells, B cells, NK cells,

monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells

(pDCs) respectively, from three different groups including individuals with

moderate (nM), or severe disease with (vS) or without (nS) detectable plasma

viral load. Whole transcriptome analysis demonstrated that all seven immune

cell subsets were associated with disease severity regardless of cell type.

Supervised clustering analysis demonstrated that mDCs and pDCs gene

signatures could distinguish disease severity. Notably, transcriptional

signatures of the vS group were enriched in pathways related to DNA repair,

E2F targets, and G2M checkpoints; in contrast, transcriptional signatures of the

nM group were enriched in interferon responses. Moreover, we observed an

impaired induction of interferon responses accompanied by imbalanced cell-

intrinsic immune sensing and an excessive inflammatory response in patients

with severe disease (nS and vS). In sum, our study provides detailed insights into

the systemic immune response to SARS-CoV-2 infection and reveals profound

alterations in seven major immune cells in COVID-19 patients.
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Introduction

Over six million deaths globally are caused by SARS-CoV-2

infection (1). Recent studies indicated that approximately 5 to

10% progress to critical disease and develop acute respiratory

distress syndrome (ARDS), and higher fatality rates have been

observed in elderly individuals with comorbidities infected with

the Wuhan strain (2–4). Recent studies have demonstrated that

SARS-CoV-2 plasma viremia in hospitalized patients is

associated with severe disease and death (5–7). Although

substantial progress has been made toward understanding

SARS-CoV-2 immune responses and pathogenesis in different

disease severity settings using single cell or bulk RNA sequencing

approaches (8, 9), very little is known about immune responses

in COVID-19 patients who have detectable plasma viral load.

In general, the viremic phase of viral infections is frequently

correlated with the severity of the disease and worse clinical

outcomes, such as rhinoviruses (10), respiratory syncytial virus

(RSV) (11), adenovirus (12), SARS-CoV (13), and MERS (14).

Previous studies found that up to 79% of serum samples have

detectable SARS-CoV RNA during the first week of infection,

and the rates were similar in MERS (15). We detected 27% of

patients with viremia in our cohorts, and other studies have

shown detectable plasma SARS-CoV-2 RNA ranging from 0 to

73%, which consistently revealed that it was associated with

worse clinical outcomes (15–17). However, the mechanisms

behind this association remain elusive. Recently, one study

highlighted a cascade of vascular and tissue damage associated

with SARS-CoV-2 plasma viremia (6).

Immune dysfunction was observed in patients with COVID-

19. Plasma proinflammatory cytokines, including IL-6 and

tumor necrosis factor (TNF), and several chemokines, have

been detected at elevated concentration in patients with

COVID-19 and were associated with disease severity (18). In

general, Type I interferons (IFNs) are crucial for restricting viral

replication through type I IFN receptor signaling. However, it

has been shown that severe COVID-19 patients expressed

minimal amounts of IFNs in the peripheral blood, which is in

contrast to what has been observed in patients infected with

highly pathogenic influenza viruses (19, 20). In addition,

interferon dysfunction was also associated with innate defects

in TLR-3 and IRF7-dependent type I IFN production (21) and

with preexisting neutralizing autoantibodies to type I IFN (22).

Innate immune cells act as the first line of defense to activate

signaling pathways resulting in the expression of anti-viral

molecules, including interferons (IFNs), interferon-stimulated

genes (ISGs), and inflammatory chemokines and cytokines (23).

Studies have been shown that infected myeloid dendritic cells

failed to trigger a significant production of anti-viral cytokines

such as IFN-a, IFN-b, IFN-g upon SARS-CoV-2 infection, while

promoting a moderate increase of pro-inflammatory cytokines

including TNF-a and IL-6 (24). In addition, recent studies also
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inflammatory responses and cause cytokine storm, tissue-

damage, and cell death (25). Furthermore, a recent study has

shown that pDCs are resistant to SARS-CoV-2 infection but can

be efficiently activated by the virus (26, 27).

In the present work, we have conducted a parallel, unbiased

transcriptional profiling analysis of CD4 T cells, CD8 T cells, B

cells, natural killer (NK) cells, monocytes, myeloid DCs (mDCs)

and plasmacytoid DCs (pDCs) from three different disease

severity groups with healthy controls. Our data show that

COVID-19 disease severity is associated with the induction of

interferon-stimulated genes (ISGs). In addition, antigen-

presenting cells showed imbalanced type I interferon sensing

pathways and proinflammatory responses. Together, these data

highlights important roles of type I interferon in immune

defense during acute SARS-CoV-2 infection in humans.
Material and methods

Participant enrollment
and sample collection

We enrolled COVID-19 patients at Massachusetts General

Hospital. The blood sample was collected and processed within

24 h of collection by the Ragon Institute. PBMC samples were

used under protocols approved by the Mass General Brigham

Institutional Review Board. Clinical information and

demographical characteristics of study patients were collected

from the clinical medical record. The disease severity was

defined by oxygenation status and hospitalization status to

classify the disease severity as mild, moderate, severe and

critical by clinicians (Table S1). Study patients gave written

informed consent to participate in accordance with the

Declaration of Helsinki.
Markers of inflammation
and disease severity

Levels of CRP, D-dimer, Trop, bFGF, and absolute

lymphocyte count were recorded from the electronic medical

record from Massachusetts General Hospital. Thirty-five

additional markers of inflammation were evaluated in plasma

by the Luminex xMAP assay (ThermoFisher): epidermal growth

factor, Eotaxin, fibroblast growth factor-basic, granulocyte

colony-stimulating factor (CSF), granulocyte-macrophage CSF,

hepatocyte growth factor, IFN-a, IFN-g, IL-1a, IL-1b, IL-1RA,
IL-2, IL-2R, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12

(p40/p70) IL-13, IL-15, IL-17A, IL-17F, IL-22, IP-10, MCP-1,

MIG, MIP-1a, MIP-1b, RANTES, tumor necrosis factor-a, and
vascular endothelial growth factor as described previously (5).
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PBMC processing

The EDTA anticoagulant blood was centrifuged at 2600rpm

for 15min at room temperature to collect plasma and store at

-80, the remaining blood was diluted with HBSS at 1:1ratio and

layered to 14ml Ficoll-plus(sigma), centrifuge at 1500 rpm for

30min with brake on. The PBMC layer was collected and washed

with PBS twice, cells were counted and stored in liquid nitrogen

for a long-term storage.
SARS-CoV-2 viral load quantification

Levels of SARS-CoV-2 viral load were quantified using the

US CDC 2019-nCoV_N1 primers and probe set as previously

described for wild-type virus (5). Briefly, the supernatant was

removed and TRIZOL Reagent (Thermo Fisher, USA) was

added to the pellets and then incubated on ice, followed by

chloroform (MilliporeSigma, USA). The mixtures were

separated by centrifugation at 21,000 x g for 15 minutes at 4°

C, and subsequently the aqueous layer was removed and treated

with an equal volume of isopropanol (MilliporeSigma, USA).

GlycoBlue Coprecipitant (ThermoFisher, USA) and 100 µL 3M

sodium acetate (ThermoFisher, USA) were added to each

sample. RNA was pelleted by centrifugation at 21,000 x g for

45 minutes at 4°C. The supernatant was discarded and the RNA

was washed with cold 70% ethanol and resuspended in DEPC-

treated water. 1× TaqPath™ 1-Step RT-qPCR Master Mix kit

(ThermoFisher) was used to quantify viral load, the CDC N1

forward and reverse primers, and probe, and an in-house N1

standard curve was used to calculate viral copy number. SARS-

CoV-2 viral loads below 40 RNA copies/ml were categorized as

undetectable and set at 1.0 log10 RNA copies/ml.
Flow cytometry and cell sorting

For cell sorting, PBMCs were stained with antibodies from

Biolegend against CD3 (clone OKT3), CD4 (clone OKT4), CD8

(clone SK1), CD19 (clone HIB19), CD56 (clone HCD56), CD16

(clone B73.1), CD14 (clone HCD14), HLA-DR (clone L243),

CD11c (clone 3.9), CD123 (clone 6H6), and Live/Dead

fixable violet stain (BVD, Life Technologies). Cell sorting for

total CD4 T cells (CD3+ CD4+), total CD8 T cells (CD3+ CD8+),

total monocytes (CD3− CD19−CD14+), total NK cells (CD3−

CD19− CD14−CD56bright/+/dimCD16-/+), total B cells (CD3−

CD14− CD19+), total pDCs (CD3−CD14−CD19−CD56−HLA-

DR+ CD11c− CD123+), and total mDCs (CD3−CD14−

CD19−CD56− HLA-DR+ CD11c+ CD123−),were performed

using BD FACSAria Fusion by the Ragon Institute Imaging

Core Facility and resulted in the isolation of these seven subsets
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(Figure S1). For entry receptor staining, ACE2(clone 535919),

CD26(clone BA5B), CD13(clone WM15), CD147(clone HIM6),

CD249(clone 2D3) and TMPRSS2(clone 1038105).
Transcriptional profiling
by RNA sequencing

The sorted seven cell populations were used for RNA

extraction using a commercial PicoPure RNA Isolation Kit

(Thermo Fisher Scientific) and DNA was removed by in-

column DNAse treatment(RNase-Free DNase Set, Qiagen).

The RNA purity and concentration was measured by

Nanodrop 2000. RNA-Seq libraries were generated using the

SMART-seq2 protocol as described in a previous study (28).

Briefly, a total of 10 ng of RNA and 1 ml 1:106 dilution of external

ERCC RNA spike-in control as input material for all cell subsets.

Whole transcriptome amplification and tagmentation-based

library preparation was performed using the SMART-seq2

protocol, followed by sequencing with 35bp Pair-end using a

75-cycle kit on a NextSeq 500 instrument (Illumina, CA). The

raw reads were aligned to the Hg38 human genome database and

SARS-CoV-2 Wuhan-Hu-1 strain was used as reference for

virus alignment.
Computational data analysis
of RNA-Seq data

DESeq2 implemented in the Bioconductor/R-project

package to detect DEGs was used to calculate FDR-adjusted p-

values (29). IPA was used to functionally categorize DEGs,

including canonical pathways, upstream regulators and

disease&functions. IPA is a software program which can

analyze the gene expression patterns using a build-in scientific

literature-based database (QIAGEN Inc.). Pathway analysis was

carried out using gene set enrichment analysis (GSEA) (30), and

Networkanalyst Reactome(https://www.networkanalyst.ca/)

(31). Principal component analysis (PCA) and Linear

discriminant analysis (LDA)plots were generated using the

package in R.
Interferon stimulated genes
and ISG score

Human Interferon stimulated genes were downloaded from

the Interferome v2.0 database. An ISG score was calculated based

on the mean expression of six ISGs (IFI44L, IFI27, RSAD2,

SIGLEC1, IFIT1, and ISG15) as described previously (19).
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Statistics

Statistical significance between the different subsets was tested

using Mann–Whitney U-tests orWilcoxon matched-pairs signed-

rank tests. Experiments were conducted once with each described

sample unless indicated otherwise in the text. NS, not significant;

*:p < 0.05, **:p < 0.01, ***:p < 0.001, ****:p < 0.0001. Statistical

significance was analyzed in GraphPad Prism v7, and RNA-seq

data analysis was performed in R v3.5.2.
Results

Characteristics of subgroups of COVID-
19 patients with different severity

Current studies suggest that SARS-CoV-2 plasma

viremia can be associated with a higher risk for severe disease

and death in COVID-19 cases, but detailed mechanisms are not

well defined. To gain systemic insights into the immune

response caused by SARS-CoV-2 infection in different disease

severity conditions, we conducted transcriptional profiling

experiments to characterize gene expression changes in seven

immune cell populations (CD4 T cells, CD8 T cells, B cells, NK

cells, monocytes, mDCs, and pDCs) from the peripheral blood of

three different groups, including individuals with moderate

disease (nM, n=5), with severe disease without detectable

plasma viral load (nS, n=5), and with a severe disease with

detectable plasma viral load (vS, n=5), and cells from five

gender- and age-matched healthy individuals (HD, n=5) were

treated identically and were used as reference samples

(Figures 1A, B). The clinical characteristics of these four study

groups were described in Supplementary Table 1 and disease

severity was classified by oxygenation status and hospitalization

status by clinicians at the Brigham and Women’s Hospital and

Massachusetts General Hospital. Consistent with previous

studies, we observed the vS group had significantly lower

absolute leukocyte counts than the other two groups

suggesting more severe lymphopenia (Figure 1C). To allow for

an in-depth analysis of cell subset frequency, we performed

phenotyping of surface marker expression by flow cytometry.

We observed that the frequency of T cell populations in

COVID19 patients were significantly lower compared to

healthy controls ; these changes were more pronounced for in

CD8+ T cells, consistent with previous reports in a larger cohort

(32, 33). Similarly, there were significantly lower frequencies of

mDCs and pDCs in COVID-19 patients compared to patients

with healthy controls. We further found there are no changes in

B cell frequency. In contrast, NK cell frequency only significantly

lower in the vS group, and monocytes were significantly higher

in the vS group compared to other groups (Figure 1C). In

addition, a previous study from our study cohort has shown
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that higher plasma viral loads were significantly associated with

inflammation (5). In line with the previous observation (5), we

also observed that the plasma levels of inflammatory markers

such as IL-6, D-dimer, HGF, and CRP were correlated with

disease severity (Figure 1D).
Systemic inflammatory
responses in COVID-19

To better understand how the cellular response to SARS-

CoV-2 infection might shape the disease course, we next

analyzed transcriptomic data for seven immune cell types in

detail. We observed that gene expression signatures differed

profoundly on a global transcriptional level among the

individual cell populations (Figures 2A, S1A). Specifically,

CD8 T cells showed relatively minor transcriptional differences

between COVID-19 patients and controls, with less than 400

transcripts meeting our criteria for differential expression.

However, in the remaining cell types, SARS-CoV-2 infection

was associated with a markedly altered transcriptional profile,

with numbers of differentially expressed genes (DEGs) ranging

from 700 in mDCs to more than 1800 in CD4 T cells (Figure 2B).

Notably, the vS group in all cell types tended to have more DEGs

when compared with healthy controls than other COVID-19

groups. Next, we performed principal component analysis

(PCA) to compare the effects of infection among different

cohorts. Clearly, we observed that the nM patients grouped

together with the HD patients, while being very different from

the two severe groups, which also grouped together.

Unexpectedly, all types of cells among PBMCs clustered

together according to the disease groups instead of cell types,

suggesting that seven major blood immune cells may be

influenced by common inflammatory mediators regardless of

cell types (Figure 2C). Indeed, computational canonical pathway

analysis of DEGs predicted that key common functional entities

involved in inflammation pathways were upregulated except in B

cells, these pathways included, IL-8 signaling, IL-15 production,

HMGB1 signaling, HIFA signaling. We observed that 7 immune

cells mounted antiviral responses, especially within the nM

group, in which a slightly higher z-score for interferon

signaling was noted compared to the nS and vS groups

(Figure 2D). Moreover, this computational analysis also

predicted that upstream regulators in all cell types involved

the inflammatory cytokines such as members of the IL-1 family,

the IL-6 family, and the TNF family cytokines, these

inflammatory markers were potentially more prominent in the

nS and vS groups while the IFN family represented a more

dominant predicted upstream regulator in the nM groups

suggesting that an imbalance between inflammatory responses

and type I interferon responses in patients with severe diseases

(Figure 2E). We next focused on the genes involved in severe
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FIGURE 1

Cell frequency and cytokines changes observed in participants with different disease severity. (A) Overview of experimental design. PBMCs from
three groups of COVID-19 patients with moderate (nM, n=5), a severe disease without detectable plasma viral load (nS, n=5), severe disease with
detectable plasma viral load (vS, n=5), and healthy donors (HD, n=5) were collected. Seven major cell types were sorted and subjected to bulk
RNAseq. (B) Levels of SARS-CoV-2 plasma viral loads were measured by qRT-PCR and the dashed line indicated the limit of detection (l.o.d).
(C) Violin plots of 7 major cell lineage composition in PBMCs from the nM, nS, vS, and HD groups by flow cytometry analysis. (D) Heat map showed
secretion level of 36 cytokines in plasma from different study groups, and any group that shows statistical significance were highlighted in red star
and also shown in the dot plot. A p-value was calculated by the Kruskal-Wallis test. *: p < 0.05, **: p < 0.01, n.s., not significant.
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FIGURE 2

Dysregulated transcriptional immune profiles in COVID-19 infection. (A) Heatmaps demonstrated transcriptional patterns of highly variable
genes (n=3452) among the three groups of COVID-19 patients and the non-infected individuals in indicated immune cell subsets. The colored
square on the bottom of the heat map indicated the cell types and study cohort information. (B) Bar diagram indicating the total number of
upregulated (red) and downregulated (blue) genes in indicated cell populations from three groups of COVID-19 patients relative to non-infected
individuals (|FC| = 0.5, nominal p< 0.01). Each pathway was grouped according to its functions. (C) PCA analysis of global transcriptional
signatures from indicated cell populations derived from COVID-19 group, nM(green), nS(red), vS(blue), and healthy control (HD, purple).
(D) Common Canonical pathways inferred by IPA from DEGs between COVID-19 patients and non-infected individuals in indicated immune cell
subsets. Pathways were grouped by functions. Red and blue denote functional pathways predicted to be up or downregulated, respectively;
gray indicates indeterminate directional. (E) Common predicted upstream regulators for genes differentially expressed between indicated
immune cell subsets from COVID-19 patients and non-infected individuals. Color coding reflects a z-score, indicating activation or inhibition of
the upstream regulators. Missing values were in gray. (F) Diseases and Functions inferred by IPA involving virus infections were shown. The red
gradient indicated the p-value and missing value in gray. The genes related to severe COVID-19 were listed, and expression levels (log2FC) were
shown in indicated immune cell types.
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COVID-19, specifically on HLA class II-encoding genes ,which

were downregulated in all antigen-presenting cells, including

mDC, pDC, monocyte, and B cells from the three groups of

COVID-19 patients relative to healthy controls (Figure 2F),

concordant with other studies (34, 35). Given the profound

degree of transcriptional changes and the polyadenylation of the

SARS-CoV-2 genome and subgenomic RNA (sgRNA), we

sought to determine which cell types were positive for viral

RNA. We recovered viral reads from the sequencing data and

mapped them to the reference viral genome of SARS-CoV-2

isolate Wuhan-Hu-1 (36). We found there were no reads that

mapped to the SARS-CoV-2 genome from any cell subsets, and

these results were further confirmed by RT-PCR from total

PBMC samples, suggesting that immune cells circulating in

blood are not susceptible to SARS-CoV-2 infection in vivo

despite the detection of low-level expression of the entry

receptor ACE2 in monocytes and mDCs (Figure S1).
Type I interferon-driven inflammatory
signatures in mDCs and pDCs are
characteristics of COVID-19 severity

We next assessed overall differences among COVID-19

patients with different disease severities. The first principal

component (PC1) of PCA clearly explained the differences

between COVID-19 patients with severe diseases (red and blue

dots) and those with moderate disease (green dots), healthy

donors (purple dots) (Figure 2C). The top 30 positive and

negative loading scores from Principal Component 1 (PC1)

were plotted, and interestingly, we observed that the most

differences were associated with innate immune responses and

inflammation-related genes in positive score genes, such as

CD68, CD36, CD14, S100A8, S100A9, while the gene list with

negative scores related to T cell hyperactivation, including genes

encoding for IL7R, IL32, CCR7, ZAP70, CD69, consistent with

previous studies showing that T cell hyperactivation is associated

with disease severity (Figure 3A). A GSEA analysis showed that

inflammatory responses, interferon-gamma responses, hypoxia,

and apoptosis gene sets were positively enriched in the nM

group. In contrast, cell proliferation and cell cycle-related E2F

targets gene sets were enriched within the severe patient

groups (Figure 3B).

To further achieve maximum separation between the four

groups, we performed a supervised linear discriminant analysis

(LDA). We found different types of cells could be distinctly

separated by LD1, LD2, and LD3, but not with disease severity

(Figure S2A). Thus, we applied LDA to each individual cell type

and demonstrated mDC and pDC cells have the best separation

among the four groups (Figures 3C, D, S2B). LD1 in mDCs

separated the nM group from the rest of the groups by

interferon-alpha responses and interferon-gamma responses

that were enriched by GSEA analysis. LD2 distinguished both
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the nS and vS groups based on IL6 signaling, oxidative

phosphorylation, and inflammatory responses from the nM

and HD groups. Similarly, LD1 in pDCs showed that the vS

group is more enriched with cell cycle-related signature such as

G2M checkpoint and E2F targets; in contrast, in LD2,

transciptional signatures of pDCs from COVID-19 patients

were enriched with inflammatory response, IL6 signaling and,

interferon-gamma responses, consistent with other studies (26,

37) (Figures 3C, D). In addition, to further illustrate the detailed

differences among the nM, nS, and vS groups when compared

with HD groups, we visualized the DEGs as heatmaps and also

performed a canonical computational pathway analysis by IPA.

Overall, the nM had a higher z-score for Interferon signaling

when compared with the nS and vS groups, and pathways such

as glycolysis metabolism were more enriched in the nS and vS

groups compared with the nM group implying that interferon

signaling may be associated with better disease outcome; this is

consistent with our GSEA results (Figures S2C-I). Furthermore,

in order to investigate the detailed difference between the nS and

vS group, we next calculated the DEGs for mDCs, monocytes

and pDCs. IPA pathway analysis suggested that the vS group

were enriched in cell cycle-related and cell death pathways such

as cell cycle control of chromosomal replication and apoptosis

signaling (Figure S3).Together, we suggested that three COVID-

19 patient groups demonstrated distinct gene signatures and that

mDCs, and pDCs were able to separate each COVID-19 patient

group distinctly.
Enhanced interferon response
across immune cell populations
defines protective immunity in
moderate patients

ISGs are the effectors of the initial host antiviral response and

are engaged in a wide array of functions in the cell (38). Our DEG

analysis suggested that the nM group has better interferon

signaling responses than the severe patient group. We next

aimed to investigate the Interferon stimulated genes (ISGs) in

person with different disease severity. The heatmap showed a

similar pattern of gene signatures with DEGs analysis, and

detailed individual heatmaps reflected that each cell type

revealed dramatic changes compared with the healthy controls

(Figures 4A, S4A). Gene enrichment analysis with the Reactome

database revealed a higher enrichment of “interferon-alpha/beta

signaling”, “interferon signaling”, “antiviral mechanism by ISGs

“ISG15 antiviral mechanism” in all seven immune cell subsets in

the nM group. In contrast, we observed that the transcriptional

signatures in the nS group were more enriched for metabolism

pathways, including “tryptophan catabolism”, “lipoprotein

metabolism”,” glycolysis”,” pyruvate metabolism”. Notably, the

vS groups were uniquely enriched for cell cycle-related pathways,

for instance, “cell cycle, mitotic”, “M phase”, “S phase”, and
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inflammasome pathways (Figures 4B, S4B). Specially, we focused

on antiviral ISGs expression profiling in each cell type.

Assessment of all seven immune cell populations revealed

consistent upregulation of many ISGs in the nM groups. For
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instance, IFI44L, MX1, RSAD2 (Viperin), IFI6, IFI44, IFIT3,

IFI27, which are involved in viral containment, showed a higher

level in all cell types of the nM group compared with the nS and

vS groups. In contrast, we also observed that SOCS3, a negative
A B

D

C

FIGURE 3

mDCs and pDCs can distinguish COVID-19 patients with different disease severity (A). Top 30 weighted scores for positive (red) and negative
(blue) PC1 loading. (B) gene set enrichment analysis (GSEA) by using hallmark gene sets, normalized enrichment scores are plotted (FDR
p<0.05), and Red bars show the enrichment signatures for a positive weighted score, and bars reflect negative score. (C) Linear discriminant
analysis on mDCs was used to separate HD (purple), nM (green), nS (blue), and vS (red) groups. Hallmark gene sets were used for GSEA, and the
five signatures with strongest enrichment (red) or de-enrichment (blue) are shown. Enrichment plots for the top 2 signatures are shown
individually. (D) Linear discriminant analysis on pDCs was used to separate HD (purple), nM (green), nS (blue), and vS (red) groups. Hallmark gene
sets were used for GSEA, and the five signatures with strongest enrichment (red) or de-enrichment (blue) are shown. Enrichment plots for the
top 2 signatures are shown individually.
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A

B

DC

FIGURE 4

Interferon stimulated genes correlated with disease severity. (A) Heatmap reflecting expression intensity of a known gene list of interferon-
stimulated genes (ISGs) downloaded from Interferome v2.01 during in vivo SARS-CoV-2 infection in different disease cohorts. (B) Top 10
enriched Reactome pathways, analyzing by NetworkAnalyst, identified in each cell type when compared with healthy control. The bubble size
indicates the gene enrichment ratio of a biological process GO term, with color maps reflecting the FDR value (p. adjust) of the enrichment
analysis. (C) Heatmap showing the expression of antiviral ISGs that are significantly different in COVID-19 conditions from healthy controls,
ordered by hierarchical clustering. Upregulated genes are shown in red, and down-regulated genes are shown in blue. (D) ISG score was
calculated based on the expression of six genes (IFI44L, IFI27, RSAD2, SIGLEC1, IFIT1, and ISG15) based on TPM transcripts. A p-value was
calculated by the Kruskal-Wallis test. *p < 0.05, **p < 0.01, ***p < 0.001; n.s., not significant.
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regulator of type I interferon signaling, was upregulated in mDC,

NK, CD4, and CD8 T cells from the vS group (Figure 4C). We

further computed an ISG-score for each cell population as

previously described. Indeed, the ISG score across all cell

populations revealed that the COVID-19 groups displayed a

higher score than the HD controls and those differences were

more profound in the nM groups compared to HD controls

(Figure 4D). Together, these data revealed a balanced protective

induction of ISGs in peripheral immune cells from patients with

moderate disease who were able to successfully contain SARS-

CoV-2 infection.
Unbalanced sensing pathways between
proinflammatory cytokines and type I
Interferon in mDCs, pDCs, and
monocytes

Recent studies discovered that impaired type I interferon

response and excessive inflammatory response were associated

with disease severity (19, 20). However, the host sensing factors

that balance the expression of inflammatory cytokines and type I

Interferon are largely unknown. The RNA-sensing arm is

activated by RNA viruses, while the DNA-sensing arm is

triggered by host damage-associated molecular patterns

(DAMPs) released as byproducts of viral reproduction and

tissue injury (39). Here we investigated sensor molecules and

pathways in antigen-presenting cells, namely mDCs, pDCs, and

monocytes. Importantly, we observed dramatic changes among

different groups in all three cell types. In mDCs, we found TLR3

viral RNA sensing pathways were downmodulated in all

COVID-19 subgroups. In addition, mitochondrial antiviral-

signaling protein (MAVS) and NOD1/NOD2 were more

downregulated in the vS group compared with others

suggesting impaired type I Interferon in severe COVID-19

groups, while NLRP1, AIM2, NAIP expression, involved in

different inflammasome pathways, were higher in the nS and

vS groups compared with the nM and HD groups further

suggesting an imbalance between inflammatory responses and

type I Interferon in the severe patient group (Figures 5A, B).

Indeed, we observed that the transcripts for IL6, CCL4, IL1B,

and IFNg are highly expressed in the nS and vS group, but no

IFNa/b transcripts were detected (Figure 5C). pDCs specialize in

endosomal TLR7/9-mediated recognition of viral nucleic acids,

and primarily represent type I Interferon producing cells. We

observed that TLR7, together with MAVS, TLR9, IRF7, was

downregulated in pDCs in the COVID-19 groups but more so in

the groups with severe disease. Similar to the mDC subsets, the

NLRP1, AIM2, NAIP expression was also highly activated pDCs

from the in COVID-19 groups. Subsequently, the expression of

proinflammatory cytokines, such as IL1B, CCL3, IL8, and TNF,

were significantly upregulated in the pDC subsets (Figures 5D-

F). Similar trends for a reduced IFN signature and MHC class II
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expression but increased proinflammatory pathways were found

in the monocyte subsets from patients with severe disease

compared to moderate disease (Figures 5G-I).
Discussion

In this study, we report a comprehensive transcriptome analysis

on seven major peripheral immune cell types from SARS-CoV-2

infected patients with different disease severity. We suggested that

type I Interferon and Interferon stimulated genes (ISGs) play

protective roles in SARS-CoV-2 infection and indicate that both

severe COVID-19 patient groups with/without detectable plasma

viral loads are accompanied by a lower type I interferon response in

addition to a higher inflammatory response. Taken together, the

data presented here suggest that the response to SARS-CoV-2 are

characterized by a profound imbalance between type I Interferon

activities and inflammatory responses.

Inflammation is a double-edged sword and can result in the

development of severe disease (40). Increasing evidence suggest

that systemic inflammatory responses play a crucial role in the

progression and severity of COVID-19 (19, 41, 42). In this study,

we carried out bulk RNA-seq using sorted immune cells from

COVID-19 patients with different severity and healthy donors,

and hierarchical clustering analysis showed that all sorted cell

types were clustered together according to the disease groups

rather than cell types as shown in Figure 2C, indicating that

there is a disease-specific global impact across analyzed cell

types. In addition, IPA predicted upstream regulators show that

all immune subsets are enriched in proinflammatory cytokines,

such as IL-1, IL6, TNF family cytokines in Figure 2E. This

findings suggest that peripheral blood immune cells are

influenced by common inflammatory mediators regardless of

cell type. Indeed, recent study from Lee et al. performed scRNA-

seq using PBMCs from patients with COVID-19, Flu, and

healthy controls (43). Similar to our study, they found

peripheral blood immune cells may be influenced by common

inflammatory mediators regardless of cell type. Dysregulation of

the inflammatory response resulting in a cytokine storm has

been proposed as an important factor in the pathogenesis of

severe COVID-19. In line with this, a higher level of IL-6 was

observed in the vS patients (Figure 1D). Moreover, levels of

plasma viremia in serum correlated with extremely high levels of

IL-6 (5). Therefore, detection of SARS-CoV-2 in serum could

thus be a result of leakage from tissues damaged by the

inflammatory response.

Type I interferon response constitutes the central first line of

defense against viruses (44). The severity of SARS-CoV-2

infection is fueled by the dysregulation of the host immune

response primarily by inhibiting type I interferon (IFN) response

in acutely infected cells. Both viral and host factors determine

the outcome of IFN signaling. For instance, many proteins have

been reported to inhibit multiple steps in IFN-I production and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.984553
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2022.984553
signaling mainly involving the MAVS-RIG-I (45, 46) and the

cGAS-STING pathways (47, 48). For instance, nsp1, nsp6,

nsp13 , ORF3a , M, and ORF7b can block STAT1

phosphorylation (49). In addition, viral proteins nsp6, nsp13,

ORF7a, and ORF7b suppress STAT2 phosphorylation (50).

Furthermore, Q. Zhang et al. identified patients with severe

COVID-19 who have mutations in genes involved in the

regulation of type I and III IFN immunity (21). Upon sensing
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of coronaviruses by various pathogen recognition receptors, TLRs

(TLR3, TLR7, TLR8, TLR9) and RLRs (RIG-I, MDA5), stimulate

the production of proinflammatory cytokines and type I

interferons, respectively. In particular, TLR7 plays a critical role in

sensing coronaviruses, including SARS-CoV, MERS-CoV, and is

required for IFN-a production by pDCs (51). However, we observed

that TLR7 receptors in pDCs were significantly downregulated in

COVID-19 patients and more obvious in the vS group. In addition,
A

B
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C

FIGURE 5

SARS-CoV-2 Infection lead to a shift in immune sensing toward proinflammatory cytokines and impaired type I interferon pathways. (A, D, G).
heatmaps showing RNA expression levels of DNA and RNA sensor genes in HD, nM, nS, and vS conditions in mDC (A), pDC (D), and Monocytes
(G). (B, E, H). Graphic illustration of key molecule expression changes related to healthy controls in DNA/RNA sensing pathways. Red and blue
indicated gene expression to be up- or -downregulated, respectively. Data from mDC (B), pDC (E) and Monocytes (H) are shown. (C, F,
I).Significant differentially expressed downstream effector molecules of proinflammatory cytokines or type I Interferon are listed. mDC (IL1B, IL6,
CCL4, and IFNG) (C); pDC (IL1B, CCL3, IL8, and TNF) (F); Monocytes (IL6, IL10, M-CSF, IL8, TGF-b, and IFNB1) (I). A p-value was calculated by
the Kruskal-Wallis test. *: p < 0.05, **: p < 0.01, n.s., not significant.
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we observed that TLR3 was downmodulated in mDC, while TLR7/

8 receptor was upregulated in monocytes. Recent studies also

suggested that SARS-CoV-2-infected immune cells, such as

monocytes and macrophages, had detectable NLRP1 and AIM2

inflammasomes that recognize cell membrane damage and

cytosolic DNA, respectively (52–54). We indeed observed that

inflammasome pathways were all activated in mDC, pDC, and

monocytes. However, we only analyzed transcriptional data and

further work is needed to determine whether the described changes

also occur on a protein level and are relevant for functional

mechanisms of disease pathogenesis.

Of note, the reactome enrichment analysis showed that the

transcriptionl signatures of the vS patient group were highly

enriched in cell cycle-related pathways compared with the

other groups (Figure 4B), consistent with the GSEA hallmark

analysis indicating that E2F targets were enriched in the vS group

(Figure 3C). These results suggested that the cell cycle was arrested

in the vS group. There are several possible interpretations. First of

all, ours and the transcriptome analysis of others suggested that

SARS-CoV-2 infection induce a systemic inflammatory cytokine

responses in patients with severe disease (43) and previous studies

confirmed that higher levels of tumor necrosis factor (TNF)a,
interleukin (IL)-6, and other pro-inflammatory cytokines could

induce lymphocyte deficiency (55, 56). Secondly, inappropriate cell

hyperactivation could results in a G2/M cell cycle arrest and cell

death (57). In addition, studies have also shown that the viral N

protein and p53 of host proteins that are the key factors of

coronavirus-mediated cell cycle regulation (58, 59).

There are several limitations to this study. First, the sample

size is comparatively small, and we only analyzed 7 major cell

types because of the limited cell numbers from each sample,

although it was sufficient to find different patterns in the gene

expression with different disease severity. Second, the data

provided are mainly derived from the blood but do not reflect

immune responses within the lung. Third, we only analyzed

transcription data but no additional validation data. Also, the

longitudinal data evaluating plasma viremia of SARS-CoV-2 on

viremia is lacking. Therefore, future studies with longitudinal

samples from more patients with COVID-19 and a combination

of different validation approaches may help to determine the

cause-and-effect relationships between the immune characteristic

of different cell types and disease outcomes.
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SUPPLEMENTARY FIGURE 1

(A)The flow cytometry gating strategy of seven population and purity.
(B) the expression level of putative SARS-CoV-2 entry receptors, including

ACE2, CD13, CD26, CD147, CD249, and TMRPSS2, were accessed by flow
cytometry. The left panel shows the representative histogram plots of

antibody staining gating on monocytes. A Fluorescence Minus One (FMO)

control showed in blue and the sample in red. The right panel summarizes
each receptor expression level in different cell types (n=20).

SUPPLEMENTARY FIGURE 2

Transcriptional signatures of immune cell subpopulations during naturally
acquired COVID-19 diseases. (A) Linear discriminant analysis of immune

responses for various groups with all seven immune cell types. (B) Linear
discriminant analysis of immune responses for each cell type for different
study groups. (C-I) Heatmaps demonstrating transcriptional patterns of
Frontiers in Immunology 13
differentially expressed genes (DEGs) between COVID-19 individuals and
healthy controls in indicated immune cell subsets and canonical pathways

inferred by Ingenuity pathway analysis (IPA) from DEGs between COVID-
19 individuals and healthy controls in indicated immune cell subsets. Red

and blue denote different row z-score among nM, nS, and vS.

SUPPLEMENTARY FIGURE 3

(A) Bar diagram indicating the total number of upregulated (white) and
downregulated (dark) genes in indicated cell populations from the vS

relative to the nS individuals (|FC| = 0.5, nominal p< 0.01). (B)Common
Canonical pathways inferred by IPA from DEGs between the vS and the nS

group in indicated immune cell subsets. Red and blue denote functional

pathways predicted to be up or downregulated, respectively by predicted
z-score.

SUPPLEMENTARY FIGURE 4

Transcriptional signatures of immune cell subpopulations during naturally
acquired COVID-19 diseases. (A)Heatmaps demonstrating transcriptional

patterns of Interferon stimulated genes (ISGs) between COVID-19

individuals and healthy controls in indicated immune cell subsets.
(B) ISGs enrichment analysis was performed using NetworkAnalyst by

selecting Reactome pathways; all significant pathways (p<0.05) were
listed and grouped according to their functions highlighted in different

colors for each cell type.
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