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hepatitis-induced and non-
alcoholic steatohepatitis-induced
hepatocellular carcinoma
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Hepatocellular carcinoma(HCC) is the sixth most common cancer in the

world and is usually caused by viral hepatitis (HBV and HCV), alcoholic, and

non-alcoholic fatty liver disease(NAFLD). Viral hepatitis accounts for 80% of

HCC cases worldwide. In addition, With the increasing incidence of metabolic

diseases, NAFLD is now themost common liver disease and a major risk factor

for HCC in most developed countries. This review mainly described the

specificity and similarity between the pathogenesis of viral hepatitis(HBV

and HCV)-induced HCC and NAFLD-induced HCC. In general, viral

hepatitis promotes HCC development mainly through specific encoded

viral proteins. HBV can also exert its tumor-promoting mechanism by

integrating into the host chromosome, while HCV cannot. Viral hepatitis-

related HCC and NASH-related HCC differ in terms of genetic factors, and

epigenetic modifications (DNA methylation, histone modifications, and

microRNA effects). In addition, both of them can lead to HCC progression

through abnormal lipid metabolism, persistent inflammatory response,

immune and intestinal microbiome dysregulation.
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1 Introduction

Hepatocellular carcinoma, accounting for 75-85% of

primary liver cancer cases, is the sixth most common cancer

and the third leading cause of cancer death globally in 2020, with

approximately 906,000 new cases and 830,000 deaths annually

(1). Patients with HCC are usually asymptomatic in the early

stage and are often in the advanced stage when they have typical

symptoms, such as liver pain, jaundice, ascites, and liver failure

(2). Common treatments for HCC include radiofrequency

ablation(RFA), hepatic resection, liver transplantation,

transcatheter arterial chemoembolization(TACE), tyrosine-

kinase inhibitors (sorafenib), radiotherapy, and immune

oncology (2, 3). Hepatitis B virus (HBV) or hepatitis C virus

(HCV) infection, alcohol abuse, and NAFLD are the most

common risk factors for HCC (2, 4–6).

Although the burden of nonalcoholic steatohepatitis

(NASH)-induced HCC is increasing, chronic viral hepatitis

(HBV and HCV) remains the leading cause of HCC, causing

80% of cases worldwide (5, 6). Liver cirrhosis caused by chronic

HBV or HCV infection is an important factor in the

development of HCC. It is worth noting that HCC can also

appear in patients with chronic viral hepatitis infection without

cirrhosis (7). Patients with viral hepatitis often have co-

infections. Chronic hepatitis B (CHB) infection affected

approximately 257 million people worldwide, of which 48-60

million were co-infected with HDV and 2.6 million were co-

infected with HCV (8). Individuals co-infected with HBV/HCV

have an increased incidence of HCC and a poorer prognosis

compared with HBV or HCV mono-infection (2, 9). In the

progression of CHB to HCC, synergistic risk factors include

male sex, alcohol abuse, high viral load(HBV DNA > 106 U/mL),

HBV genotype C, presence of cirrhosis, and hepatitis B e-antigen

positivity (10, 11). The main treatment for CHB is the use of

nucleotide analogues (NA) to inhibit HBV replication (1, 12).

HCV infection is another major cause of chronic liver disease.

Additional risk factors that may increase the risk of HCC in

patients with HCV infection include male sex, diabetes and

obesity, alcohol abuse, and HCV genotype 3 (6, 13). The

development of direct-acting antiviral therapy (DAA) has

improved the prognosis of HCV-induced HCC, and achieving

sustained virologic response (i.e., virological cure, SVR) is

associated with a significant reduction in HCC risk (14, 15).

With the increasing incidence of metabolic diseases such as

diabetes and obesity, NAFLD has become an increasingly serious

health problem (16). NAFLD can develop into NASH, liver

fibrosis, liver cirrhosis, and eventually HCC. In recent years, with

the widespread vaccination of the hepatitis B vaccine and the

popularization of anti-HBV and HCV treatment, the incidence

of virus-induced HCC has steadily decreased. NAFLD/NASH

has gradually developed into one of the main causes of HCC in

developed countries (16, 17). Patients with NAFLD have a very

low risk of progressing to cirrhosis, but patients with NASH have
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a significantly increased risk of progressing to cirrhosis and even

HCC. Compared with viral hepatitis-related HCC, NASH-

related HCC patients tend to be older, have a better liver

function, larger tumor size, and longer overall survival(OS)

(18). In addition, some patients can directly progress to HCC

without cirrhosis, and these patients always have a worse

prognosis (19).

In this review, we discuss the similarities and differences in

the molecular mechanisms of viral hepatitis and NASH-induced

HCC. We accept that this review will help clinicians in the

diagnosis and treatment of HCC patients, and provide guidance

for the development of new molecular therapeutic targets and

therapeutic drugs.
2 HBV-specific induced HCC

2.1 General features of the HBV

HBV is a para-retrovirus that was discovered by American

geneticist Baruch Blumberg in 1965. Its genome is a 3.2-kb

double-stranded loop of DNA (20). HBV has 10 genotypes (A

to J), with genotypes C, B, F, D, and A are associated with the

development of HCC (6). The HBV genome consists of 4

overlapping open reading frames (ORFs): Pre-S/S, X, P, and

pre-C/C, which are transcribed to produce 5 messenger RNAs

(mRNAs) (21). Viral protein products include 3 surface proteins

(also known as large/pre-S1 (L-HBsAg), medium/pre-S2 (M-

HBsAg), and small/major (S-HBsAg)), the excreted “e” antigen

(HBeAg), the core antigen (HBcAg), the X protein (HBx), and the

viral polymerase (DNA polymerase, reverse transcriptase, and

RNaseH activity) (Figure 1). HBx is required for HBV replication

and plays an important role in both HBV and HBV-induced HCC

progression (21).
2.2 HBV DNA integration in
host chromosomes

HBV DNA integration into the host chromosome is not an

essential step in the HBV life cycle (22). However, this

phenomenon can lead to the instability of the host genome,

insertional mutations in proto-oncogenes and tumor suppressor

genes, which in turn promote the occurrence of HCC (23). HBV

DNA integration was observed in approximately 80% of HBV-

induced HCC patients, and the frequency of integration was

significantly higher in tumor tissues than in adjacent tissues

(24). Integration sites tend to be located near repeat regions,

CpG islands, and telomeres, leading to chromosomal instability

(24). There are many target genes affected by HBV genome

integration, such as TERT, MLL4, CCNE1, MLL2, ARID1A,

ARID1B, ARID2, MLL3, et al. (25–27). Integration of HBV

DNA can also induce the persistent expression of mutated and
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truncated HBsAg, HBcAg, and HBx proteins. High expression

rates of these proteins can promote HCC development through

endoplasmic reticulum and mitochondrial stress responses

(28, 29).
2.3 HBV-induced
epigenetic dysregulation

Epigenetic changes include all chromatin changes, while

DNA sequence does not change, and can be divided into three

types: DNA methylation, histone modification, and RNA-

related silencing.
2.3.1 DNA methylation
In HBV-related HCC, DNA hypermethylation occurs at CpG

islands in the promoter regions of specific tumor suppressor

genes, resulting in the silencing of tumor suppressor genes,

which in turn promotes the occurrence of HCC (30, 31).

Persistent HBV infection can cause hypermethylation of

p16INK4A, and HBx may play a key role in this process (32).

RASSF1A (a cell cycle-related tumor suppressor protein)

methylation occurs in more than 50% of HBV-infected livers,

and its methylation level is also considerably increased early in the

pathogenesis of HCC (33). CDH1 encoded a protein named

epithelial cadherin (E-cadherin), which plays a crucial role in

the epithelial-mesenchymal transition process. HBx can

downregulate E-cadherin protein levels via promoting CDH1

hypermethylation (34). In contrast to hypermethylation, DNA

hypomethylation is assumed to be a genome-wide event in HCC,

which can lead to genomic instability. HBx can selectively

promote regional hypermethylation of specific tumor suppressor
Frontiers in Immunology 03
genes by upregulating DNMT1, DNMT3A1, and DNMT3A2, and

can also induce global hypomethylation of HSATII by

downregulating DNMT3B (35).

2.3.2 Histone modification
Histones can be reversibly modified by acetylation,

methylation, phosphorylation, or ubiquitination. These

modifications have implications for gene activation, gene

repression, DNA repair, and cancer development (36).

Experiments by Liu et al. demonstrated that HBx can promote

the expression of IGF-II by inducing the hypomethylation of the

P3 and P4 promoters in HCC cells and HCC specimens. HBx

can bind to MBD2 and CBP/p300 to promote MBD2-HBx-CBP/

p300 complex formation, which in turn promotes the acetylation

of the corresponding histones H3 and H4, providing new

insights into the pathogenesis of HBx-mediated HCC (37).

Arzumanyan’s study revealed that HBx protein can promote

epigenetic modulation of E-cadherin transcriptional activity

through histone deacetylation and miR-373 (34). Histone H3

lysine 4 methyltransferase SMYD3 has been shown to promote

the transcriptional activation of genes involved in the

development of HCC, such as C-MYC, JAK/STAT3, CDK2,

and MMP2 (38–40).

2.3.3 MicroRNAs in HBV- HCC
MicroRNAs are small non-coding RNA with 19-25

nucleotides in length, which lead to gene silencing through

translation inhibition or targeted degradation of mRNA. In

recent years, more and more studies have shown that some

MicroRNAs can be regulated by HBV infection and play a key

role in hepatocarcinogenesis (41, 42). For example, miR-18a,

miR-21, miR-221, miR-222, and miR-224 were upregulated in
FIGURE 1

Structural of HBV. HBV, Hepatitis B virus.
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HBV-related HCC tissues, while miR-26a, miR-101, miR-122,

miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-

223 were upregulated in HBV-related HCC tissues. These

miRNAs have been proved to affect HCC progression via

targeting JAK/STAT, PI3K/MAPK, TP53, WNT/b-catenin
pathways (41).
2.4 The role of HBV-encoded proteins
in HCC

HBx protein plays an indispensable role in the life cycle of

HBV and the progression of HCC. HBx plays its role mainly

through the following four mechanisms: 1) HBx gene can be

integrated into hepatocyte genome and affect genomic stability;

2) Induced epigenetic modifications such as DNA methylation,

histone acetylation, and MicroRNA expression; 3) Oxidative

stress induced by interaction with mitochondria and other

proteins; 4) Participate in the regulation of proto-oncogene

activation and tumor suppressor gene inactivation (8). The first

two of these mechanisms have been described above. HBx is

the most common open reading frame(ORF) integrated into

the host genome in HBV-induced HCC specimens and the

integrated HBx is frequently mutated (43, 44). And both of

them appear to be important steps in HCC tumorigenesis (45,

46). HBx can trans-activate cellular promoters and enhancers

and participate in the regulation of inflammatory proliferation-

related signaling pathways, such as NF-kB, Ras/Raf mitogen-

activated protein kinase (MAPK), c-Jun N-terminal kinase,

Jak1/STAT, protein kinase C (PKC) and Src kinase, etc (47,

48). HBx in the cytoplasm can also bind to p53, prevent p53

nuclear localization, lead to dysregulation of cell cycle

checkpoints, and inhibit p53-dependent apoptosis and DNA

repair (49, 50).

HBx can also induce upregulation of vascular endothelial

growth factor (VEGF) and angiogenic factor ang2(ANG2),

stabilize HIF1a, and promote the angiogenesis of HCC (51, 52).
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In addition, HBsAg can enhance the malignant potential of

HBV-induced HCC by enhancing the IL-6-STAT3 pathway

(53). HBV core protein can increase the production of

cytokines and is related to the host immune response, both of

which play a role in HBV-related HCC (54, 55).
2.5 Genetic variations in HBV

Due to the lack of proofreading function of HBV reverse

transcriptase, the replication error rate of HBV DNA is much

higher than that of other DNA viruses. Among the three

envelope protein forms of HBsAg (L-HBsAg, M-HBsAg, and

S-HBsAg), the amino acid position between 99-169 of S-

HBsAg is called the main hydrophilic region (MHR), and the

antigenic cluster “A” is located in it. Mutations in MHR will

affect HBsAg antigenicity and lead to vaccine-induced immune

escape (56). Pres/S region mutations may give rise to

endoplasmic reticulum stress, oxidative DNA damage, and

genomic instability in hepatocytes (57). In addition, K130M/

V131I double mutations in the X gene, A1762T/G1764A

double mutations in the basic core promoter (BCP), and

mutations in the reverse transcriptase region will increase the

risk of HCC (58–61).
3 HCV-specific induced HCC

3.1 General features of HCV

HCV genome is a 9.6 kb positive-strand single-stranded RNA

virus with highly conserved 5’ and 3’ untranslated regions,

encoding 3 structural proteins (core, E1, E2) and 7

nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, and

NS5B) (Figure 2) (62). Unlike HBV viruses, HCV cannot stably

integrate into the host genome and requires continuous

replication to gain viability (63). There are 6 major genotypes of
A B

FIGURE 2

Structural (A) and genetic organization (B) of HCV. HCV, Hepatitis C virus.
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HCV, and genotypes 3 and 6 infections have been reported to

have a higher risk in hepatocarcinogenesis (13, 64).
3.2 HCV-induced epigenetic dysregulation

Unlike HBV, HCV is not integrated into the host

genome, but can promote HCC progression through

epigenetic dysregulation.

3.2.1 DNA methylation
As with HBV-positive HCC, DNA methylation also plays

an important role in HCV-positive HCC. The clinical study of

Zekri showed that the progression of HCV-induced HCC was

associated with increased DNA promoter methylation (65).

SOCS-1, as a negative regulator of the JAK/STST pathway,

often acts as a tumor suppressor gene (66). The methylation of

SOCS-1 is more common in HCV-positive HCC (compared to

HCV-negative HCC) (67). HCV protein can down-regulate

Gadd45b expression by promoting hypermethylation of

Gadd45b promoter, resulting in defective cell cycle arrest

and leading to hepatocarcinogenesis (68). Duong’s study

revealed that HCV could reduce the transcriptional

activation of interferon- alpha(IFN-a) by promoting STAT1

and PP2Ac hypome thy l a t i on ( 69 ) . I n add i t i on ,

Hypermethylation of APCap15ap14ap73ap16aO6MGMT,

and IGF2 can also affect the progression of HCV-induced

HCC (30, 70, 71).

3.2.2 Histone modification
Hamdane’s research exposed a paradigm that chronic

HCV infection induces 27 histone 3 (H3K27Ac) acetylation

modifications can promote hepatocarcinogenesis (72). In

addition, acetylation of histone H3 lysine 9 (H3K9Ac)

plays a similar role in HCV-mediated carcinogenesis (73).

Histone demethylase member KDM5B/JARID1B can

enhance HCV-induced HCC cel l prol i ferat ion via

regulating its downstream genes E2F1 and E2F2 (74). HCV

core protein can induce dysregulation of HOX gene by

impairing histone H2A mono-ubiquitination, which will

promote HCC development (75).

3.2.3 MicroRNAs in HCV-induced HCC
Studies have reported that specific liver and serum

MicroRNAs are involved in the pathogenesis of HCV-

induced HCC, including miR-193b, miR-155, miR-122, etc

(76). In general, the mechanism of MicroRNAs in HCV-

related HCC is not in-depth enough, and the number of

related reports is smaller than that of HBV-related

HCC reports.
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3.3 The role of HCV-encoded proteins
in HCC

There are 10 kinds of HCV gene products, among which the

core, NS3, NS5A, and NS5B proteins potentiate carcinogenic

pathways. They play an important role in promoting cell

proliferation, regulating cytokines, oxidative stress, apoptosis,

and HCV-related metabolic disorders and liver disease

progression (77). HCV NS5B can form cytoplasmic complexes

with Rb, leading to activation of E2F-dependent transcription

and increased cell proliferation (78). HCV NS5A and NS3 can

bind to P53 and down-regulate the expression of cell cycle

regulation gene P21 (79, 80). P73 can interact with HCV core

protein, leading to nuclear translocation of the core protein and

promotes cell proliferation in a p53-dependent manner (81).

HCV core protein can also induce oxidative DNA damage,

enhance ROS production, and inhibit apoptosis (82).
3.4 Genetic variations in HCV

There are relatively few studies on the correlation between

HCV characteristic mutations and HCC development

(compared with HBV), among which HCV core gene

mutations are the most studied. Studies have shown that HCV

core A028C, G209A, C219U/A, U264C, A271C/U, C378U/A,

G435A/C, and G481A mutations were significantly associated

with increased HCC risk, while U303C/A mutation predicted

reduced HCC risk (83).
4 NASH-induced HCC

4.1 Pathophysiology of NASH

The progression of NAFLD to NASH is a complex multi-

factor process, whose detailed mechanism has not been fully

elucidated. It is currently mainly accepted by the public as the

“two-hit hypothesis” (84). The core idea is that liver steatosis and

insulin resistance are the “first hit”, which leads to riglycerides

accumulate in liver cells (85). Then, under the joint action of

inflammatory factors, oxidative stress and endoplasmic reticulum

stress, liver dysfunction such as hepatocyte inflammation, liver

fibrosis and cirrhosis is developed, namely the “second hit” (86).

In recent years, there is a new consensus on the “multiple

parallel hit hypothesis” to replace the “two-hit hypothesis”. The

multiple parallel hit hypothesis suggested that NASH is the

result of a combination of genetic differences, insulin resistance,

lipid metabolism abnormalities, endoplasmic reticulum stress,

mitochondrial dysfunction, and intestinal microbiota (87, 88).
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4.2 Genetic factors

Genetic mutations in the protein-like phospholipase domain-

containing protein 3 PNPLA3 gene is the most well-known

mutations associated with NASH-related HCC progression (89,

90). PNPLA3 rs738409 c.444C>G minor allele (encoding the

I148M variant) is associated with increased lipid accumulation

and fibrosis in the liver. It also predisposes individuals to fatty

liver-related diseases ranging from simple steatosis to

steatohepatitis, NASH, and HCC (91). Overexpression of I148M

PNPLA3 protein in mouse liver promoted steatosis by triggering

metabolic reprogramming and driving inflammatory

pathways (92).

17b-HSD13 is thought to be the pathogenic protein of

NAFLD development (93). Chen et al. demonstrated that

hydroxysteroid 17-Beta Dehydrogenase 13 (HSD17B13) was

low expression in HCC and was associated with poor

prognosis (94). HSD17B13 rs72613567 (a splice variant with

an adenine insertion) reduced the risk of NASH and progressive

liver injury (95).

In addition, TM6SF2 rs58542926 variant and MBOAT7

rs641738 variant have also been proved to be genetic variants

susceptible to NAFLD-related HCC, and their effects are not

necessarily mediated by the development of liver fibrosis

(96–98).
4.3 NASH-induced
epigenetic dysregulation

4.3.1 DNA methylation
Epigenetic changes such as abnormal DNA methylation are

considered to be an important mechanism for NASH

progression. It induced gene silencing associated with DNA

damage and repair, lipid and glucose metabolism, and fibrosis

progression via enzyme methyltransferase (DNMT) (99).

Kuramoto’s study further confirmed that NASH-specific DNA

methylation change may be involved in the development of

NASH-associated multistage HCC (100, 101).

4.3.2 Histone modification
The histone deacetylase 8 (HDAC8) has been defined as a

modifier of chromatin tissue in NASH-associated HCC (102,

103). HDAC8 can inhibit p53/P21 mediated apoptosis and

stimulate b-catenin dependent cell proliferation. Knockdown

of HDAC8 can reverse insulin resistance and reduce NAFLD-

related tumorigenicity (103).

4.3.3 MicroRNAs in NASH-induced HCC
Accumulating evidence has demonstrated the role of

microRNAs in epigenetic dysregulation of metabolic processes

in NAFLD, NASH, and HCC. Takaki’s study showed that
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silencing of miR-122 is an early event in NASH and may be a

novel molecular marker for assessing HCC risk in NASH

patients (104). In addition, miR-21, miR-29, miR-23, miR-155,

miR-221, miR-222, miR-106, miR-93, and miR-519 have also

been confirmed to be associated with carcinogenic effects

associated with NASH (105).
5 Connections between viral
hepatitis-induced and
NASH-induced HCC

Viral hepatitis-induced and NASH-induced HCC have been

described in detail in a large number of previous reviews, but

there is no article to summarize and discuss them together. In

the previous section, we have discussed the specific pathways of

viral hepatitis-induced and NASH-induced HCC, respectively.

In this section, we will describe the common mechanism of

them, and we will select the most important research hotspots

for description, including metabolic pathways, inflammatory

pathways, and intestinal microbiota dysfunction.
5.1 Metabolic pathways

Metabolic disorders, including dyslipidemia, insulin

resistance and impaired blood glucose control have been

identified as contributing factors to the progression of NASH

(17). Insulin resistance and hyperinsulinemia can enhance the

expression of IGF-1, trigger IRS-1/2 signal cascades, activate

downstream PI3K-Akt and MAPK pathways, induce cell

proliferation and inhibit apoptosis (105, 106) (Figure 3). In

addition, the accumulation of excess lipids can also lead to the

over-production of free fatty acids (FFA), which produce specific

lipid toxicity and influence liver cell metabolism through a

cascade of signals (107). It is worth mentioning that elevated

iron levels have been observed in NASH patients and are

considered a risk factor for HCC development (108).

In contrast to HBV viral hepatitis, HCV is commonly

associated with hepatic steatosis (109). HCV core protein plays

an important role in regulating lipid metabolism. Transgenic

mice that express HCV core protein can develop insulin

resistance, lipid accumulation in the liver, and eventually

progresses to HCC (110, 111). Koike et al. revealed that HCV

core protein can bind to retinol-like X receptor (RXR)-a and

continuously activate peroxisome proliferator-activated

receptor-a (PPAR-a), continuously activate peroxisome

proliferator-activated receptor-a (PPAR-a), promote steatosis,

and induce oxidative stress, eventually leading to the occurrence

of liver cancer (112, 113).

Overall, hepatitis C and NASH have similar metabolic

dysregulation, including hepatic steatosis, dyslipidemia, insulin
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resistance, and oxidative stress. But at the same time, there are

differences. The metabolic dysfunction of HCV is mainly

induced by the core protein, while the metabolic dysfunction

of NASH is more complicated and the specific mechanisms

remain to be explored. Compared with NASH, the incidence of

HCV-induced HCC is higher (114).
5.2 Inflammatory and
immunologic pathways

More than 90% of HCC occurs in the context of liver

inflammation. Chronic inflammation induces immune cells to

secrete a variety of cytokines, including TNFa, IL-6, leptin,
adiponectin, chemokines, and so on (115) (Figure 4). In

NASH, chronic HBV, and HCV, common mechanisms driving

HCC development include: the persistence of liver

inflammation, immune-mediated liver injury, and ultimately

up-regulated release of pro-inflammatory factors TNF-a and

IL-6. TNF-a is one of the most clearly characterized pro-tumor

cytokines in HCC. It can simultaneously activate NF-kB and

JNK signaling pathways, promote cell survival, inhibit cell

apoptosis (116–118). IL-6-mediated STAT3 activation is a

major driver of hepatocyte repair and replication, which
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promotes HCC development (117). Studies have also shown

that IL-6 expression is upregulated and STAT3 is over-activated

in HCC patients (119). The chemokine CKLF1 is overexpressed

in HCC and is associated with tumor stage, vascular invasion,

and prognosis. It can promote the progression of HCC by

activating the IL6/STAT3 pathway (120).

Specifically, PNPLA3 polymorphism can also enhance

inflammatory signaling through the IL-6/STAT3 and CCL5

pathways. PNPLA3-I148M mutant mice have been reported to

spontaneously develop hepatic steatosis (121). PNPLA3-I148M

HCC cells can promote proliferation via IL6/STAT3 and enhance

the activation of hepatic stellate cells by upregulating the

expression of chemokine ligand 5 and collagen 1a1 (120, 122).

HBx protein has carcinogenic activity and can regulate a

variety of inflammatory pathways in hepatocarcinogenesis,

including MAPK, NF-kB, IL-6/STAT3, and PI3K signaling

pathways (48). HBsAg can inhibit the activation of STAT3 in

NK cells, leading to HBV clearance disorder and accelerate the

progression of HBV hepatitis to HCC (123, 124). Meanwhile,

immunosuppressive microenvironment also plays an important

role in promoting tumor progression. In HBV-related HCC

patients, increased peripheral blood neutrophil/lymphocyte ratio

(NLR) and increased Foxp3 + Treg cell number are positively

correlated with disease progression (125, 126).
FIGURE 3

Transduction mechanism of the IGF1 signaling pathway in HCV, NASH-induced HCC. IGF, Insulin-like growth factor; IRS, Insulin receptor substrate.
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As for hepatitis C, the pro-inflammatory status is

maintained mainly by affecting STAT3 and NF-kB pathways

(127). HCV core proteins, NS4B, and NS5B can enhance TNF-

a-induced cell death by inhibiting NF-kB activation (128). HCV

can also promote the transcription of STAT3 by upregulating

miR-135A-5p and inhibiting its regulatory factor PTPRD,

driving the progression of HCC (129).
5.3 Gut microflora dysregulation

Due to the tight anatomical functional crosstalk between the

gut and liver, the gut microbiota and its metabolites can

influence liver disease progression through the “gut-liver axis”

(130). Animal models and human studies have demonstrated

that increased intestinal permeability can lead to dysbiosis,

resulting in the influx of pathogen-associated molecular

patterns(PAMPs) and gut microbiota-derived metabolites into

the liver, which further triggers hepatic inflammation and

hepatocarcinogenesis (131). At the molecular level, PAMPs,

such as lipopolysaccharide (LPS), enter the liver through the

portal vein and are recognized by TLRs (TLR4 and TLR9) in

immune cells, resulting in the production of a series of cytokines
Frontiers in Immunology 08
(IL, TNF, IFN) that cause liver cell damage (132). It has been

reported that changes in intestinal flora and dysbiosis exist in

both NASH and chronic viral hepatitis (131, 133–135).
6 Conclusions

In general, the progression from HBV, HCV, and NASH

infection to HCC is the result of the accumulation of multiple

factors and the interaction of multiple mechanisms. For HBV-

induced HCC, HBV DNA integration was observed in nearly

80% of tumor tissues. HBV-induced epigenetic dysregulation

(DNA methylation, Histone modification, MicroRNAs), HBV-

encoded proteins (HBx, HbsAg, and core protein), and genetic

variations play a central role in HCC development. For HCV-

induced HCC, HCV-induced epigenetic dysregulation, HCV-

encoded proteins (NS3, NS5A, NS5B, and core protein), and

genetic variations can lead to hepatocarcinogenesis. For NASH-

induced HCC, it is more dependent on genetic factors (PNPLA3,

17b-HSD13, TM6SF2 variant) and epigenetic dysregulation.

In addition, some of the same mechanisms also exist in the

process of viral hepatitis and NASH-induced HCC, lipid

metabolism disorders, persistent pro-inflammatory, immune
FIGURE 4

Schematic diagram of IL6 and TNF-a inflammatory pathways in HBV, HCV, NASH-induced HCC. IL-6, Interleukin-6; TNF-aa Tumor necrosis
factor-alpha; HCC, Hepatocellular carcinoma.
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responses, and intestinal microbiota dysbiosis are all involved

and play a crucial role. Abnormal lipid accumulation, insulin

resistance, oxidative stress, and other metabolic disorders are

present in both hepatitis C and NASH-induced HCC. Persistent

liver inflammation, immune-mediated liver damage, and

upregulation release of proinflammatory cytokines TNF-a and

IL-6 are present in NASH, chronic HBV, and HCV-induced

HCC. Due to the presence of the gut-liver axis, intestinal

microbiological changes and dysbiosis caused by viral hepatitis

and NASH can further trigger hepatic inflammation and

hepatocarcinogenesis through PAMPs.

In early stage HCC, the most effective treatment options are

surgical resection, liver transplantation, or percutaneous local

ablation. Systemic therapy with various drugs targeting the

tumor microenvironment (TME) for unresectable HCC has

been shown to be effective. Multi tyrosine kinase inhibitors

(TKIs), such as sorafenib, lenvatinib, regorafenib, cabozantinib,

and the vascular endothelial growth factor inhibitor

(ramucirumab), have been widely used in clinical. Sorafenib

exerts anti-tumor effects via inhibiting vascular endothelial

growth factor receptor (VEGFR), Raf-1, B-Raf, and platelet-

derived growth factor receptor (PDGFR) (136, 137). In addition

to TKIs, new therapeutic strategies such as immune checkpoint

inhibitors (ICIs) have also progressed in recent years (138). Two

anti-PD-1 drugs, nivolumab and pembrolizumab, have been

approved as second-line treatment for patients with sorafenib-

refractory advanced HCC in the United States (139, 140). Even

so, the prognosis of patients with advanced HCC is still not

optimistic, and the prognosis of unresectable HCC remains

poor. Exploring the pathogenesis of viral hepatitis and NASH-

induced HCCmay provide guidance for the development of new

molecular therapeutic targets and therapeutic drugs. At the same

time, it may also play an important role in judging the prognosis

of patients and providing individualized treatment.

In general, the innovation of this paper is that we discuss

viral hepatitis-induced and NASH-induced HCC together for

the first time, and analyze differences and connections of them,

which have not been seen in the published reviews. However, the
Frontiers in Immunology 09
description of the potential molecular pathogenesis in the article

is not in-depth. We will focus on a certain direction to further

investigate the underlying molecular mechanism in our

future studies.
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