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Cancer recurrence and chemoresistance are the leading causes of death in

high-grade serous ovarian cancer (HGSOC) patients. However, the unique

role of the immune environment in tumor progression for relapsed chemo-

resistant patients remains elusive. In single-cell resolution, we characterized a

comprehensive multi-dimensional cellular and immunological atlas from

tumor, ascites, and peripheral blood of a chemo-resistant patient at

different stages of treatment. Our results highlight a role in recurrence and

chemoresistance of the immunosuppressive microenvironment in ascites,

including MDSC-like myeloid and hypo-metabolic gdT cells, and of peripheral

CD8+ effector T cells with chemotherapy-induced senescent/exhaustive.

Importantly, paired TCR/BCR sequencing demonstrated relative

conservation of TCR clonal expansion in hyper-expanded CD8+ T cells and

extensive BCR clonal expansion without usage bias of V(D)J genes after

chemotherapy. Thus, our study suggests strategies for ameliorating

chemotherapy-induced immune impairment to improve the clinical

outcome of HGSOC.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.985187/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.985187/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.985187/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.985187/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.985187/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.985187&domain=pdf&date_stamp=2022-09-28
mailto:luckyan@smu.edu.cn
mailto:fanliang@smu.edu.cn
mailto:nys@smu.edu.cn
https://doi.org/10.3389/fimmu.2022.985187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.985187
https://www.frontiersin.org/journals/immunology


Ren et al. 10.3389/fimmu.2022.985187
Introduction

Ovarian cancer (OC) is the ninth most common cause of

cancer mortality in women and the second most common cause

of gynecologic malignancy death worldwide (1). High-grade

serous ovarian cancer (HGSOC), which is one of the most

common and lethal pathological types of epithelial OC, poses

a challenge to women’s health because of its recurrence and

chemo-resistance. Platinum-based chemotherapy is the classical

first-line treatment regimen for HGSOC and is usually effective

initially. However, chemo-resistance eventually develops in

about 70% of HGSOC patients after 3 years, leading to cancer

relapse and eventually death (2, 3). Immune checkpoint

blockade therapy has become a promising modality for a

number of malignancies but shows limited benefits for

HGSOC (4). Over the past two decades, primary cancer cells,

malignant ascites, exfoliated cell clusters (also called

“spheroids”) and immune cells have been identified in the

unique tumor microenvironment (TME) of OC and are

strongly associated with intra-abdominal distal organs

metastasis, tumor relapse and diverse responses to drugs (5–7).

Thus, investigation of the TME and its dynamic response to

chemotherapy intervention is vital for elucidating the

mechanisms underlying relapse and refractoriness of HGSOC.

Recently, scRNA-seq studies regarding HGSOC have

clarified its origins and heterogeneity (8, 9), including its

cellular landscape in ascites or metastatic loci (10–13), as well

as the correlation between molecular subtypes and prognosis

(14). However, several key points of understanding the impact of

chemotherapy on HGSOC remain uncovered. First, the

influence of chemotherapy on tumor tissue, ascites and

PBMCs and the relationship between tumor cells and the

TME remain elusive. Second, although the function and

subtypes of T cells in HGSOC have been identified and shown

to affect prognosis (10, 15), the role of B cells in HGSOC remains

uncertain. Third, while V(D)J rearrangement is known to be the

basis of immune system diversity that enables responses of T/B

cells to antigens (16), dynamics of the TCR/BCR repertoire upon

chemotherapy remains unclear in HGSOC. Finally, though the

heterogeneity and function of macrophages in HGSOC ascites

has been studied (10, 11), the myeloid cell shifts in the TME

during platinum-based treatment have yet to be elucidated.

To this end, we utilized scRNA-seq and TCR/BCR

sequencing to analyze the cancerous composition and immune

community of a tumor lesion, malignancy ascites and peripheral

blood from a chemotherapy-resistant relapsed HGSOC patient

with progressively shorter progression-free survival (PFS) after

several courses of platinum-based chemotherapy. We focused on

the intrinsic features of tumor cells and explored the state of

myeloid cells and T cells in the ascites. In peripheral blood

mononuclear cells (PBMCs), we identified T/B cell subtypes and

characterized the dynamics of the TCR/BCR repertoire upon

chemotherapy. Our study provides insight into mechanisms of
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chemo-resistance from the aspect of immunity, thus providing

fundamental evidence for implementing immunomodulatory

therapies and improving treatment response in HGSOC.
Materials and methods

Collection of patient specimens and
HGSOC scRNA-seq data

Specimens were collected from a patient with recurrent

HGSOC at Nanfang Hospital. This study was approved by the

Ethics Committee of Nanfang Hospital (NO. NFEC-2021-424).

Informed consent was obtained from the patient prior to sample

collection. During the second debulking surgery, solid tumor

tissue was resected, washed in Dulbecco’s phosphate-buffered

saline (DPBS, ThermoFisher Scientific, USA) and transported in

DMEM solution. The ascites fluid was drained with a syringe

and preserved in an aseptic 50 ml conical tube. Two specimens

were transported on ice for further processing. After the surgery,

the patient received the fourth course of platinum-based

chemotherapy (six cycles), and PBMC samples were collected

before and post this course of treatment. Identified patient

information, including the ovarian cancer histology, stage,

treatment history, Computed Tomography (CT) and Positron

Emission Tomography-Computed Tomography (PET-CT)

results, tumor markers and immunological indexes from

peripheral blood were collected. 10X Genomics single-cell

RNA sequencing data GSE154600 of five HGSOC patients

(17), were download from GEO database (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE154600). The dataset

includes five HGSOC samples with different chemotherapy

responses (T59, T76, T77 chemo-resistant and T89, T90

chemo-sensitive).
Preparation of single-cell suspensions

Within 6 hours after isolation, solid specimens were

enzymatically dissociated into single cells. Briefly, the tissue

was minced with a scalpel and enzymatically digested using 2

mg/mL Collagenase I (Worthington Biochemical) and 2 mg/mL

Collagenase IV (Worthington Biochemical) for 30 minutes in a

shaker (250 rpm) at 37°C. The digestion was terminated with

DMEM + 5% fetal bovine serum (Thermo Fisher Scientific). The

cell suspensions were sequentially filtered through 100 mm and

then 70 mm cell strainers. Red blood cells were lysed by

incubating the cell suspensions in RBC Lysis Solution (Sigma-

Aldrich) for 3–10 minutes at 4°C. After centrifugation and

resuspension, the concentrations of the single-cell suspensions

were adjusted to 7–12×105 cells/ml with 5% fetal bovine serum

DMEM. Ascites was centrifuged for 10 min at 4°C, and the

remaining pellet was resuspended in PBS, filtered, subjected to
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RBC lysis, and resuspended as described for the tumor samples.

Peripheral blood was collected into heparin tubes (Becton,

Dickinson and Company) and processed within 2 hours of

collection. PBMCs were isolated by density gradient

centrifugation using Ficoll-Paque Plus medium and washed

with Ca/Mg-free PBS. The isolated cells derived from above

samples were used for single cell sequencing.
Preparation of single cell RNA-seq, TCR-
seq and BCR-seq libraries

The suspensions of live cells in sterile-filtered PBS (Corning)

with 0.04% BSA (Sigma Aldrich) were used as input for the 10×

Chromium controller system (10× Genomics Inc.). Using 10×

GemCode Technology, the cells were barcoded to separately index

each cell’s transcriptome by partitioning them into Gel Bead-in-

EMulsions (GEMs). Barcoded Single Cell 50 Gel Beads, RTMaster

Mix with cells and Partitioning Oil were combined on a

microfluidic chip, and GEMs were generated. The GEM RT

reactions were activated in a thermocycler (53°C for 45 min, 85°

C for 5 min, 4°C hold overnight). Post RT incubation, the GEMs

were disrupted and the first-strand cDNA was recovered. cDNA

amplification was performed by PCR to generate sufficient

material. According to the manufacturer’s instructions, scRNA-

seq libraries of tumor tissue and ascites were generated using

Chromium™ Single Cell 3’ Library (v3 chemistry) reagents. For

PBMC samples, scRNA-seq libraries were processed using the

Chromium™ single cell 5’ library & gel bead kit and coupled

TCR/BCR libraries were obtained using the Chromium™ single

cell V(D)J enrichment kit (10× Genomics). Libraries of scRNA-

seq were sequenced on the Illumina Novaseq 6000.
Immunohistochemistry staining

The tumor tissues were collected from Nanfang Hospital.

IHC staining was carried out with anti-CD8 antibody (18187-1-

AP, 1:200 dilution; Proteintech, Rosemont, USA). The

immunostaining results were examined independently by two

researchers. Paraffin-embedded ovarian cancer tissues were cut

into 4 µm thick sections. Histological evaluation was done with

hematoxylin and eosin (H&E). Immunohistochemical staining

was performed to confirm the presence of CD8 cells. Briefly,

sections were deparaffinized and rehydrated using xylene and

serial dilutions of EtOH in distilled water. Tissue sections were

incubated in citrate buffer, pH 6 and heated in a microwave

oven. Anti-CD8 (18187-1-AP, 1:200 dilution; Proteintech,

Rosemont, USA) antibody was applied on tissue sections with

one-hour incubation at room temperature in a humidity

chamber. Antigen-antibody binding was detected with the

labeled polymer-HRP Envision system (DAKO, K4007) and

DAB+ chromogen (DAKO, K3468) system. Tissue sections
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were briefly immersed in hematoxylin for counterstaining and

were covered with cover glasses.
Single cell seq data processing

Pre-processing of scRNA-seq fastq files was conducted using

Cell Ranger v4.0.0 (10× Genomics). ScRNA-seq reads were

aligned to GRCh38, and a count matrix of cell barcodes for

downstream analysis was generated using the Cell Ranger count

function with parameter–expect-cells = 3000. The raw count

matrix for each sample was obtained from the Cell Ranger count

filter matrix output (18). The pipeline generates a UMI count

matrix, which is processed using Seurat software (4.0.5).

Integrated analysis of multimodal single-cell data was achieved

using previously established methods (19). The quality of cells

was assessed based on three metrics parameters to remove low-

quality cells and multiple-like microdropletsCells meeting the

following criteria are reserved: (1) The number of total UMI

counts per cell (≥500); (2) The number of detected genes per cell

(≥500); and (3) The proportion of mitochondrial genes (≤25%).

The remaining cells were subjected to further analyses.
Integration, dimension reduction and
unsupervised clustering

Core scRNA-seq analysis was performed using Seurat v4.0.5.

The counts for each library were normalized using the

NormalizeData function. The most highly variable genes were

selected using the FindVariable function in Seurat and a PCA

matrix with 20 components employing variable genes by using

the RunPCA function implemented in the Seurat package. To

integrate datasets into a mutual space from different tissues for

unsupervised clustering, we used the harmony algorithm,

followed by PCA-reduced dimensionality. Then, the mutual

nearest neighbor (MNN) was calculated. The shared nearest

neighbor (SNN) algorithm, which is the default algorithm for

clustering in the pipeline of Seurat, was used for clustering. It

includes two steps corresponding to the two functions. First,

FindNeighbors was used to calculate the K-nearest neighbors

(KNN) of each cell and construct the SNN graph image. Second,

FindClusters was used to find cell clusters according to the SNN

graph results (“graph-based clustering”). Cells were reclustered

separately according to specified parameters without engaging

the other cell types. After clustering based on gene expression

patterns employing the FindClusters function, cells were

visualized with the RunTSNE function in Seurat. Cluster

identification was performed at a resolution that best separated

the different cell types. Clusters were annotated based on the

expression of known marker genes of each cell type. To identify

clusters within each major cell type, we performed a second

round of clustering for specified cell populations. To discover the
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relationship among specific samples, the expression matrix was

integrated, clustered, and annotated again. The procedure of

each round of clustering was the same as the first round, starting

from the expression matrix, including finding the most highly

variable genes, calculating the PCA matrix, as well as performing

integration analysis using the harmony algorithm, dimensional

reduction and unsupervised clustering analysis by Seurat.
Identification of differentially expressed
genes and gene set enrichment analysis

We applied the FindAllMarkers function (test. use =Wilcox)

in Seurat to identify marker genes of each cluster. For a given

cluster, positive markers were compared with other cell groups.

The signification threshold was set as P<0.05 and |log2
foldchange|>0.25. GO (Gene Ontology Enrichment Analysis)

and KEGG analyses of differentially expressed genes were

conducted using R package clusterProfiler (20). Specific gene

sets were obtained from the Molecular Signature Database

(MSigDB; https://www.gsea-sigdb.org/gsea/downloads.jsp). To

characterize subclusters of epithelial cells (tumor cells), we

performed single-sample gene set enrichment analysis

(ssGSEA) of 50 hallmark gene sets (h.all.v7.1.symbols.gmt

downloaded from MSigDB) for each subcluster and single cells

using R package GSVA. Heatmaps were used to display the

results of GSVA based on the average expression, and violin

plots were used to display the pathway enrichment results based

on the expression of each tumor cell. The pre‐ranked gene set

enrichment analysis method (R package fgsea) that was designed

for GSEA of single-cell sequencing was also conducted to

compare functional differences in macrophage populations

between the tumor and ascites samples. Genes were ranked by

the average log‐fold change calculated by the FindMarkers

function in Seurat.
G2/M phase identification

For G2/M phase analysis in the tumor compartment, we

calculated a G2/M score for each tumor cell using the

CellCycleScoring function in Seurat. The per-cell scores were

added to the metadata matrix to assess the cell phase of the

subclusters in tumor cells, and the stage of the cell phase of each

cell was displayed as a t-SNE plot.
Trajectory analysis of single cells

We used the R package Monocle2 (v2.20.0) to perform

pseudotime analysis to project high-dimensional transcriptomic

data to one dimension that characterizes the relationship between

monocytes and macrophages from tumor tissue, ascites and PBMCs.
Frontiers in Immunology 04
The matrix in the scale of raw UMI counts derived from Seurat

objects were converted into new objects by the newCellDataSet

function. Genes with mean expression ≥0.1 were used in the

trajectory analysis. Selected genes with q-value < 0.01 between the

cell groups were applied for dimensional reduction using the

reduceDimension function with the parameter reduction_method=

“DDRTree” and max_components=2. The trajectory plots were

visualized using the plot_cell_trajectory function.
CellChat analysis

Cell communication analysis was performed between

epithelial cells and macrophages in tumor and ascites tissues.

R package CellChat (v1.1.2), which contains ligand-receptor

interaction databases, analyze the intercellular communication

networks between different cell clusters from scRNA-seq data

(21).First, CellChat was used to evaluate the major signaling

inputs and outputs among all epithelial cells and macrophages

subclusters in tumor tissue. Next, netVisual_bubble function was

utilized to show the significant ligand-receptor interactions

between subclusters included.
inferCNV analysis

CNVs analysis of six tumor samples were performed by R

package inferCNV(v1.8.1). The inferCNV cutoff parameter was

set to 0.1 and HMM option was set to TRUE. The CNVs of

tumor cells were calculated by raw expression data compared to

myeloid subclusters from each sample. For inferCNV, 400 cells

per subcluster were pseudorandomly chosen. CNVs values of

each cell were finally limited as -1 to 1. The CNVs score of each

cell was calculated as quadratic sum of CNV region.
Flow cytometry analysis

Flow cytometry analysis on patient peripheral blood samples

was conducted at three times during the fourth cycle of

chemotherapy (T1: before the second chemotherapy began;

T2: two days after the sixth chemotherapy; T3: fourteen days

after the sixth chemotherapy). Single cell suspensions were

stained with antibodies for surface markers. Cells were washed

and resuspended in FACS Buffers (PBS+0.5% HI-FBS) until data

collection. Flow cytometry was performed with LSR II flow

cytometer (BD Bioscience), and data analysis was conducted

by FlowJo software. MultitestTM 6-color TBNK (Cat:644611),

Fluorescein isothiocyanate (FITC)-conjugated anti-CD4

(Cat:340133), Fluorescein isothiocyanate (FITC)-conjugated

anti-CD3 (Cat:349201), allophycocyanin (APC)-conjugated

anti-CD25 (Cat:662525), chlorophyll protein complex-

(PerCP)-conjugated anti-CD3 (Cat:652831), chlorophyll
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protein complex-(PerCP)-conjugated anti-CD45 (Cat:561047),

allophycocyanin (APC)-cyanine 7-conjugated anti-CD4

(Cat:341115), phycoerythrin (PE)-cyanine 7-conjugated anti-

CD8(Cat:1292923), phycoerythrin(PE)-conjugated anti-CD25

(Cat:652834), Fluorescein isothiocyanate (FITC)-conjugated

anti-CD45RA (Cat:662840), and hemolysin for flow cytometry

were purchased from BD Biosciences, USA. Absolute number of

tubes were purchased from BD Biosciences, USA. Phycoerythrin

(PE)-conjugated anti-CD127 (Cat: P010034-B) were bought

from Jiangxi CELGENE Biotechnology corporation, P.R. China.
Cytokine assay

Interleukin level assessment on patient peripheral blood

samples was conducted at three times during the fourth cycle of

chemotherapy (before the second chemotherapy began, two

days after the sixth chemotherapy and fourteen days after the

sixth chemotherapy). Utilizing an ELISA kit (Biosource,

Invitrogen, USA) in accordance with the manufacturer’s

instructions, inflammation markers including tumor necrosis

factor-a(TNF-a), interferon-gamma (IFN-g), interleukin-2
(IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-

10 (IL-10) and interleukin-17 (IL-17) concentrations

were measured.
TCGA data analysis

We evaluated the function of core IFN-associated genes

(obtained from hallmark gene sets (h.all.v7.1.symbols.gmt) of

MSigDB in HGSOC. The TCGA ovarian carcinoma (OV) data

were used to predict the correlation of selected genes and patient

survival. The gene expression data (counts matrix) and the

clinical data were downloaded from UCSC Xena (http://xena.

ucsc.edu/). Transcriptional matrices with paired clinical data

were selected for analysis. Signatures were dichotomized into

high-expression and low-expression groups based on the median

GSVA values of per TCGA sample. Quartiles were plotted using

R packages survival and survminer, and the p-value of the IFN

signatures was calculated using the log-rank test.
Processing of single cell TCR and BCR
sequencing libraries

The TCR and BCR sequences for T/B cells were collected

from single-cell RNA-Seq data provided by 10× Genomics. Gene

quantification and TCR/BCR clonotype assignment were

performed using Cell Ranger (v.4.0.0) vdj pipeline with

GRCh38 as reference. In this way, we obtained a TCR/BCR
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diversity metric, containing clonotype frequency and

barcode information.

For the TCR, cells with no obvious TCR forms were

excluded first, and TCR a/b chains were then obtained with

reference to previous work (22). The target TCR a/b chains were
defined as follows: (1) TCR barcodes could be found in T cells

population from single cell mRNA sequencing data; (2) TCR

with only one productive TCR a and b chain were retained. If

multiple TCR a or b chains were identified in a T cell, only cells

with dominant forms of a and b were retained.

For the BCR, similar filtration steps were conducted. Only

cells with productive, paired heavy chain (IGH) and light chain

(IGK or IGL) were reserved. After filtration, there were 6201

TCR-positive T cells and 1631 BCR-positive B cells in two

blood samples.
Single cell TCR and BCR clonotype
analysis

Clonotype analysis of TCR was conducted using the

scRepertoire toolkit (23) based on TCR-seq libraries. Each

unique TRA(s)-TRB(s) pair was defined as a clonotype in

TCR, while each unique IGH(s)-IGK/IGL(s) pair was

considered as a clonotype in BCR. If one clonotype was

present in at least two cells, the cells possessing this clonotype

were regarded as clonal.

For TCR and BCR clonotype analyses, the clonal

homeostasis and clonal space occupied by clonotypes of

specific proportions were first identified, and the proportion of

clonal space occupied by specific clonotypes was visualized using

the clonalHomeostasis and clonalProportion functions. Next,

using the clonalDiversity function, the diversity across cell

clusters was measured using Shannon, Inverse Simpson, Chao,

and abundance-based coverage estimator (ACE) indices. Based

on the clonalOverlap function, the clonotype overlap between

cell clusters was then calculated and visualized using Morisita

index methods. With quantContig function, unique clonotypes

were scaled to the size of the sample library. Furthermore, the

distribution of CDR3 amino acid sequences (whole, TRA, and

TRB) was then identified using the lengthContig function.

Moreover, we chose the top ten most-expanded clonotypes as

dominant clonotypes and used alluvialClonotypes function to

examine their dynamics in T/B cells after chemotherapy.
Single-cell TCR/BCR V(D)J sequencing
and analysis

V(D)J sequence assembly, and paired clonotype calling was

performed using CellRanger vdj with -reference = refdata-

cellranger-vdh-GRCh38-atlas-ensembl-4.0.0 for each sample.

Subsequent work was conducted based on the basic statistic
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function in R. We first calculated the usage of TRAV/J, TRBV/J,

IGHV/J and IGLV/J gene segments. Next, we identified the

percentage of each gene segments used. V-J pairs of TCR a/b
chains and corresponding frequencies were later confirmed. For

the CDR3 amino acid (aa) length, we measured the frequency of

TCR/BCR segments with the same aa length, to explore the

distribution of the CDR3 aa length.
Survival analysis

Analysis of the association of interferon-associated genes

with survival times in TCGA-OV datasets downloaded from

UCSC Xena was conducted using the Survival Package, and p-

values were calculated using the log-rank test.
Statistical analysis and data visualization

All statistical analyses were performed in software R.

Significance was defined as a p value less than 0.05. The

Wilcox-test in the Findmarker function in Seurat was

performed to distinguish differential expressed genes between

different clusters. Pairwise wilcoxon tests were calculated to

compare the expression of specific genes between different

samples or cell subclusters. The usage bias of V(D)J genes in

TCR/BCR was identified by FDR (adjusted p values) using the

Fisher test (< 0.05). Clinical statistical analyses (Supplementary

Figure S6) were visualized using Graphpad PRISM

(version 8.1.0).
Results

The cellular composition of a solitary
lesion and ascites from a relapsed
chemo-resistant ovarian cancer patient

To elaborate the characteristics of ovarian cancer patients

who experience a gradual transition from chemo-sensitivity to

-resistance and repeated tumor recurrence despite having

received standard and extensive treatment, we evaluated a

stage IIIC HGSOC patient. The patient initially underwent

primary optimal surgical debulking followed by paclitaxel

combined with nedaplatin and experienced the first recurrence

after 17 months, indicating platinum-sensitive recurrent

relapsed ovarian cancer (24). Unfortunately, she experienced

three additional relapses indicated by re-ascending serum

CA125/HE4 and imaging, and her PFS became shorter within

each recurrence (from 7 months to 4 months to 2 months),

suggesting that she developed chemo-resistance (Figure 1A).
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After three complete courses of platinum/taxol-based

chemotherapy, she encountered a third relapse and accepted

secondary cytoreductive surgery. To dissect the cellular

composition and function of the TME at a key transient

period from chemo-sensitiveness to chemo-resistance, as well

as the impact of multi-cycles chemotherapy on the immune

system, we collected a solitary mass from the vaginal cuff,

peritoneal cavity ascites, and PBMCs for further study, with

informed consent from the patient and approval of local

institutional ethical review board.

To characterize the cellular components of these samples, we

generated and analyzed single-cell transcriptomic profiles using

10× Genomics platform (Figure 1B). Based on known cell type

markers, we identified and classified 5 cell types displayed by t-

distributed stochastic neighbor embedding (t-SNE) as follows:

tumor cells (EPCAM, PAX8, WT1), myeloid cells (CD14, AIF1,

CSF1R), NK/T cells (CD2, CD3E, CD3D, GZMA, GNLY, NKG7),

B lymphocytes (CD19, CD79A, MS4A1), and cancer-associated

fibroblasts (CAFs) (PDPN, DCN, THY1) (Figures 1C, D). Similar

with previous HGSOC single-cell sequencing reports (8, 11, 25),

epithelial cancer cells were the most abundant cellular

components followed by myeloid cells in tumor tissues.

Contrary to previous research (8), immune cells dominates in

ascites but rarely are found in the tumor in our study. CAFs were

sparse in both the tumor tissue and ascites (Figure 1E).

Moreover, T cells were less abundant in the tumor compared

with the ascites (Figure 1E). Thus, these findings are suggestive

of potential roles for both epithelial cells and immune cells

in recurrence.
Functional and biological features of
epithelial tumor cells from the relapsed
lesion or ascites

We next analyzed the inherent features of cancer cells from

the relapsed solitary tumor and ascites. Nine clusters of epithelial

malignancy cells were identified (Figure 2A and Supplementary

Figure S1A). The fallopian tube epithelium (FTE) markers PAX8

and KRT7 (9) were overexpressed in all subclusters, suggesting

that the tumor may originate from FTE (Figure 2B).

Furthermore, the C3-EOC-MKI67 (EC3) subpopulation

displayed higher expression of chemotherapy resistance-related

genes (FEN1, NEK2, TOP2A and MKI67) (Figure 2C) (8). Using

the CellCycleScoring function of Seurat, we determined that the

EC3 subgroup of cells were mainly in the S and G2/M phases,

indicating that they were characterized by hyperproliferative

status (Figure 2D). To functionally annotate the malignant

epithelial clusters, we conducted Gene Set Variation Analysis

(GSVA) based on hallmark gene sets from Molecular Signatures

Database (MSigDB) (Supplementary Figure S1B). The EC3
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FIGURE 1

Single-cell sequencing to characterize the diverse cellular components of specimens derived from a recurrent ovarian cancer patient. (A)
Overview of the clinical course and sample collection time of an HGSOC patient. The curved lines indicate changes of tumor biomarkers
(CA125, HE4). The timepoints of chemotherapy treatment are shown in the label. (B) Overview of the sample collection, profiling strategy and
analysis workflow. (C) t-SNE visualization of diverse cell types in sample Tumor and Ascite, colored by each cell type. (D) t-SNE plots show cell-
type marker genes expression level. (E) t-SNE visualization of cells from samples Tumor and Ascite, colored by sample origin (left panel).
Fraction and frequency of cells (x axis) from tumor tissues and ascites in each cell type (y axis) (right panel).
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FIGURE 2

Tumor-intrinsic features uncovered by single cell analysis. (A) t-SNE visualization of tumor cell subclusters from samples Tumor and Ascites, colored
by tumor cell subclusters. (B, C) Violin plots display the expression of fallopian tube epithelium (FTE) markers (B) and chemotherapy resistance-
related genes (C) in each tumor cell subclusters. Distribution of the per cell signature expression Is based on normalized data. (D) t-SNE visualization
of cell cycle phases of tumor cells in sample Tumor and Ascites, colored by cell cycle phase. (E) Violin plots shows the enrichment level of specific
pathways among each tumor cell subcluster. Distribution of the per cell signature expression was based on the GSVA scores. (F) Violin plot shows
CNV level among tumor cells from our data and five additional HGSOC samples. (Tumor, T59, T76, T77: chemo-resistant; T89, T90: chemo-
sensitive) (G) Heatmap shows the expression of antigen presentation related genes in tumor cell subclusters from sample Tumor. (H) Heatmap
shows the expression of interferon response pathway-associated genes in tumor cells from six HGSOC samples (Tumor, T59, T76, T77, T89, T90).
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population exhibited relatively higher enrichment in several

pathways, including oxidative phosphorylation, cellular

senescence, G2/M checkpoint, DNA repair pathways,

glycolysis, and fatty acid metabolism (Figure 2E). These results

suggest that EC3 cells, with features of hyperproliferation,

hypermetabolism and chemo-resistance, may account for the

progression and recurrence of ovarian cancer.

To validate our findings, scRNA-seq datasets of five HGSOC

patients (T59, T76, T77, T89, T90) were downloaded from GEO

database (GSE154600) (17), which contains respective

chemotherapy response. After the integration, dimension

reduction and unsupervised clustering mentioned in methods,

the same cell types were identified (Supplementary Figure S1C).

Tumor cells in chemo-resistant samples showed higher

expression of chemoresistance and proliferation related genes

(FN1, LCN2, CD44, FEN1) (Supplementary Figure S1D) (8, 26–

28). Given the association between the malignant tumor and

large-scale chromosomal alterations, copy-number variation

(CNV) of epithelial ovarian cancer (EOC) cells in six samples

were contrasted with myeloid cells (Supplementary Figure S1E).

Result of CNV analysis showed that our sample (EOC_Tumor)

displayed elevated CNV levels (Figure 2F). Moreover, we explore

whether the EC3 cluster is a characteristic cluster in chemo-

resistant tumors. The top 10 expressed genes in this cluster were

selected to assess the correlation among six samples

(Supplementary Figure S1F). Results showed that our sample

(EOC_Tumor) harbored higher similarity with two chemo-

resistant samples (T76 and T77) in expression profile contrast

to two chemo-sensitive samples (T89 and T90) (Supplementary

Figure S1G). In conclusion, these results suggest that MKI67

positive cancer cells may contribute to chemotherapy resistance

in HGSOC.

Next, we evaluated the expression of antigen presentation-

related genes in cancer cells. Similar with the previous report (10),

HLA-B and HLA-C had commonly obvious expression among

subclusters (Figure 2G). Furthermore, interferon (IFN) pathway-

associated genes were uniformly enriched amongmost subclusters

of tumor cells. Genes associated with the IFN response (e. g. IFI27,

IFITM3, LY6E), which represents core genes of the IFN pathway,

were significantly elevated in tumor cells (Supplementary Figure

S1H). To validate our findings, we characterized the expression of

these genes in GEO database (GSE154600) and obtained the

similar expression profile (Figure 2H). To further predict

potential functions of IFN-associated genes in HGSOC,

we performed survival analysis based on these genes using

the OV-TCGA dataset, which suggested that high expression of

IFN-associated genes is related to a better prognosis (log-rank

method, P= 0.039) (Supplementary Figure SI). Thus, enrichment

of the IFN expression profile (Figure 2H) in relapsed tumor

may suggest stronger immune response and good prognosis in

this patient. However, the progressively shorter PFS3 of this

patient calls for further investigation on tumor immune

microenvironment (TIME).
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Dissection of the components and role
of myeloid cells in TIME

To better elucidate TIME, we analyzed 17301 immune cells

from samples collected before the fourth course of

chemotherapy, including 910 cells from the tumor, 5949 cells

from ascites and 10442 cells from PBMCs. Four major cell types

were identified based on previously characterized markers (8,

10), including T cells (CD3D, CD3G, CD2), NK cells (NKG7,

GNLY, KLRD1, KLRF1), B cells (MS4A1, CD19, CD79A, CD79B)

and myeloid cells (CD14, AIF1, CSF1R) (Supplementary Figures

S2A–C). T cells and myeloid cells were the dominant immune

cells in the ascites and tumor (Supplementary Figure S2D),

which is consistent with other studies (8, 10, 29).

We next performed cluster analysis of the myeloid cells and

revealed 12 clusters (Figure 3A). Based on previous report (30),

we applied genes predominantly expressed in blood-derived

monocytes (S100A8, S100A9 and CSF3R) and classical

monocytes markers (CD14, CD16 and FCN1) together as

monocytes markers. Consistently (30), high expression of

these six markers in monocytes reflect that monocytes are

probably educated by TIME. The cluster populations were

primarily comprised of six monocyte clusters with high

expression of S100A8, S100A9, RPS2P5, CDKN1C, and MKI67,

and three macrophage clusters with high expression of ADAP2,

MARCO and APOE (Supplementary Figures S2E, F). Of note,

MKI67 monocytes and APOEmacrophages were mainly derived

from tumor, while ADAP2 and MARCO macrophages were

mainly from ascites (Figure 3B). Using markers identified in a

previous report (31), we found that APOE macrophages

exhibited TAM-like signatures (TREM2, APOE), whereas

ADAP2 macrophages highly expressed MDSC-like signatures

(S100A8, FCN1) (Figure 3C). In addition, these two clusters

showed high expression of M2-like signatures (CD163, MRC1),

while ascites-derived MARCO macrophages highly expressed

MDSC-like signatures with both M1- (CD68, CD86) and M2-

like signatures (Figure 3C). Next, we explored the trajectory of

myeloid cells from different sites by pseudo-time analysis. Except

for MKI67 monocytes, PBMC-derived monocytes bifurcated to

ascites-resident macrophage populations (ADAP2 and MARCO

macrophages) and tumor-resident populations (MKI67

monocytes and APOE macrophages) (Figure 3D), suggesting

that peripheral monocytes may migrate to ascites and tumors,

and be educated as different subtypes in the TIME.

To characterize the different functions of macrophages in the

ascites and tumor, we compared KEGG pathways that were

enriched in different subpopulations. Compared with the APOE

cluster, both the ADAP2 and MARCO clusters showed lower

enrichment of cytokine receptor interactions (Figures 3E, F),

indicating impaired activation and cytotoxicity of macrophages

in ascites. Moreover, we investigated expression of CCL/CXCL

ligand in tumor clusters (Supplementary Figures S3A, B) and

CCR/CXCR receptors in myeloid clusters (Supplementary
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Figures S3C, D). CXCL16-CXCR6, known tumor cell-immune

cell crosstalk in immune infiltrated tumors (10), showed rare co-

expression (Supplementary Figures S3B, D), suggesting the lack

of immune cells recruitment mediated via CXCL16. To further

inspect the interaction between tumor cells and myeloid cells, we

performed communication analysis using R package CellChat.

We observed top-ranking ligand-receptor pairs of macrophage
Frontiers in Immunology 10
migration inhibitory factor (MIF) in cancer cells and (CD74

+CD44) in macrophages (Supplementary Figures S3E, F).

Contributing to anti-inflammatory, and immune evasive

phenotypes in malignant disease (32), MIF was also reported

to be elevated in ovarian cancer cells (33). In addition, Midkine

(MDK)-LRP1 pairs, which promotes immunosuppressive

macrophage differentiation (34), markedly exist from epithelial
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FIGURE 3

Characteristics of myeloid cells in distinct TMEs of ascites, tumor and PBMCs. (A) t-SNE visualization of myeloid cells profiles from three
samples (Tumor, Asicite, blood_before) before the fourth course of chemotherapy, colored by myeloid cell subclusters (left panel) and sample
origins (right panel). (B) Fraction and frequency of myeloid cells (x axis) from samples (Tumor, Asicite, blood_before) in each myeloid subcluster
(y axis). (C) Violin plots display the expression TAM- (TREM2, APOE), MDSC- (S100A8, FCN1) and M1-like (CD68, CD86), M2-like (CD163, MRC1)
signatures expression among three macrophage subclusters (ADAP2+ Macrophages, APOE+ Macrophages, MARCO+ Macrophages). (D)
Pseudotime analysis of monocytes and macrophages from samples (Tumor, Asicite, blood_before), colored by each myeloid subcluster (left
panel), derived-samples (middle panel) and pseudotime trajectory (right panel). (E, F) Gene set enrichment analysis between APOE subcluster
and ADAP2 subcluster (E), APOE and MARCO subcluster (F) using KEGG gene sets. Pathway enrichment is expressed as normalized enrichment
score (NES).
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clusters to macrophages (Supplementary Figures S3E, F).

Together, these results suggest an immune-suppressive state of

macrophages in this patient.

In order to confirm whether above characteristics in TIME

are unique to drug-resistant tumors, we integrated GSE154600

and our data to identify T cells, B cells, and myeloid cells in all

samples. The results showed that proportion of myeloid cells was

higher in chemo-resistant tumors, especially in our sample

(Supplementary Figure S3G). Myeloid cells were selected for

further clustering and macrophages, monocytes and DC cells

were identified (Figure S3H). As expected, expression of the M2

signatures (CD163, MRC1) was higher in chemo-resistant

samples while M1 signatures (CD68, SOCS3) (35) expression

was low. Immune-suppressive genes (GPNMB, TREM2) (36)

had elevated level in chemo-resistant samples as well

(Supplementary Figure S3I). In summary, these results indicate

that macrophages with immune-suppressed phenotype may be a

character of chemo-resistant HGSOC.
The inhibitory status of gdT cells
contributes to the immunosuppressive
environment in ascites

To clarify the role of T cells in TME, we clustered T cells

based on the expression of surface markers of cells from tumor,

ascites, and PBMCs (Figures 4A, B). Seven T cell clusters were

characterized as follows: activated T cells (PRF1), memory T

cells (S100A4, GPR183), naïve T cells (SELL, LEF1, CCR7), Tregs

(CTLA4, FOXP3, FOXO1), cytotoxic T lymphocytes (CTL)

(GZMA, NKG7, GZMH, GZMB), mucosal-associated invariant

T cells (MAIT) (SLC4A10, TRAV1-2) and gdT cells (TRGV9,

TRDV2) (Figure 4C). The TC2-XIST (TC2), TC4-FOSB(TC4)

and TC8-BCL2 (TC8) clusters were mostly derived from ascites,

while other clusters were mainly from PBMCs (Figure 4B).

Notably, TC2 and TC4 clusters were characterized by low

expression of T cell markers (Figures 4C, D), such as RORC,

TRDC and ZBTB16 (37).

Since gdT cells are characterized by negative expression of

CD4 and CD8 (38), we annotated TC4 as Vd2 gdT cells and TC2

as non-Vd2 gdT cells using R package SingleR (Figure 4E),

suggesting that TC2 might represent a new subcluster of T

cells. Furthermore, gene set enrichment analysis of the TC2

cluster revealed significant enrichment in genes of chromatin

organization regulation, thus implicating its potential roles in

shaping the immune community of T cells in ascites (Figure 4F).

Interestingly, significantly enriched pathways in the TC2 cluster

included the apoptosis, RIG-I-like receptor signaling, lysine

degradation, and sulfur metabolism pathways, while the

ribosome and oxidative phosphorylation (OXPHOS) pathways

displayed low level enrichment (Figure 4G). Given that the

OXPHOS pathway is a characteristic metabolic phenotype of

T cells within the TIME (39), its low level enrichment, along
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with high enrichment of the apoptosis pathway and low

enrichment of the ribosome function pathway, indicate a

weakened immune function in TC2.
Chemotherapy induced senescence and
TCR clonal expansion of T cells derived
from PBMC

Immunohistochemistry (IHC) results showed that CD8+ T

cells were more abundant in recurrent tissue than primary

lesions (Supplementary Figure S4A), suggesting that local

CD8+T cells infiltration in tumor tissue is dynamic during

progression of HGSOC. To investigate the peripheral T cell

status, which may reflect the systemic immune response (40), we

analyzed T cells from PBMCs before and after chemotherapy.

Immune cells were classified into populations of myeloid cells, T

cells, NK cells and B cells based on known markers

(Supplementary Figures S4B–E), among which T cells were the

most abundant population of immune cells (Supplementary

Figure S4D). We also classified T/B cells according to the

TCR/BCR distribution (Supplementary Figure S4E). Consistent

with our scRNA-seq results (Supplementary Figure S4F), an

increase of NK cells proportion after chemotherapy was detected

by flow cytometry (Supplementary Figures S6B, C).

In peripheral blood-derived T cells, we identified eleven

subsets based on canonical markers (Figures 5A–C). The CD4+

cells included memory CD4+ T cells (S100A4+GPR183+),

regulatory CD4+ T cells (Treg) (FOXP3+IL2RA+) and naïve

CD4+ T cells (CCR7+SELL+) (constituted of CD4-C1-naïve-LTB

and CD4-C2-naïve-LEF1). Five subsets of CD8+ T cells, including

a naïve CD8+ T cell subset (CCR7+ SELL+) and four effector CD8+

T cell subsets (constituted of CD8-C1-effector-NKG7, CD8-C2-

effector-GNLY, CD8-C3-effector-GZMB and CD8-C5-effector-

ZNF683), expressed high levels of GZMA and NKG7. In

addition, a MAIT subset (SLC4A10+TRAV1-2+) and a gdT
subset (TRGV9+TRDV2+) were defined. Expression of

exhaustion markers LAG3, CD244 and EOMES were detected in

all CD8+ T cell clusters (Figure 5C), among which the CD8+-C2-

effector-GNLY group harbored the most extensive TCR clonal

expansion (Figures 5D, E).

We further conducted cellular proportion analysis before

and after chemotherapy. Among CD8+ T cells, C3-effector-

GZMB (4.1% vs 3.7%) and C5-effector-ZNF683 (0.8% vs 0.7%)

populations increased while C1-effector-NKG7 (14.7% vs 16.0%)

and C2-effector-GNLY (8.4% vs 9.4%) populations decreased

after chemotherapy (Figure 5F). Importantly, CD8+ GZMB T

cells and CD8+ ZNF683 T cells are thought to be exhausted or

exhausted-like cells, despite their ascribed cytotoxic function

(10, 41). Therefore, changes of cellular proportion in CD8+ T cell

subsets indicate the tendency towards an exhaust state, which

may reflect the cumulative effects of chemotherapy.
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To investigate whether chemotherapy affects the activation or

exhaustion status of T cells via regulation of co-stimulatory

molecules, which play important roles in the T cell response to

antigenic stimuli (42), we compared the expression of co-

stimulatory molecule receptors in PBMC-derived T cell clusters

before and after chemotherapy. Low expression of immune

checkpoint PD-1 (PLDCD1) and CTLA4 were observed

(Supplementary Figure S5A), suggesting poor immune

checkpoint blockade status, which is consistent with the low

sensitivity of ovarian cancer to immune checkpoint therapy (43,
Frontiers in Immunology 12
44). Among the co-stimulatory molecules, upregulation of CD27,

which participates in the generation of memory CD8+ T cells (42),

was observed in all CD4+ T cell clusters except for the CD4-C4-

Treg-FOXP3 cluster; TNFRSF14, which enhances the tumor-

specific immune response (45), increased in all CD4+ T cell

clusters except for the CD4-C2-naive-LEF1 cluster; and LAG3, a

marker of exhaustion (46), showed no significant change in CD4+

T cell clusters (Supplementary Figures S5B–E). We noted that

most CD4+ T cell clusters generally showed a higher secretion

of pro-inflammatorymolecules (CD27, TNFRSF14) after
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FIGURE 4

Characteristics and dynamics of T cells from samples before chemotherapy at single-cell resolution. (A, B) t-SNE visualization of T cell clusters
from samples (Tumor, Ascite, blood_before) before chemotherapy, colored by the identified T cell subclusters. (B) Fraction and frequency of T
cells (x axis) from samples (Tumor, Ascite, blood_before) in each T cell subcluster (y axis). (C, D) Dot plots show expression level of signature
genes in each T cell subcluster. (E) Heatmap shows the classification result of each T cell subclusters using singleR. (F, G) Gene set enrichment
analysis of T cell subcluster TC2-XIST using GO gene sets (F) and KEGG gene sets (G). Pathway enrichment is expressed as normalized
enrichment score (NES).
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chemotherapy, indicating an activated state, while CD8+ T cell

clusters did not show the same pattern. Among CD8+ T cells,

higher expression of CD27 was only observed specifically in the

CD8-C2-effector-GNLY cluster, while elevated expression of

TNFRSF14 was observed in the CD8-C1-effector-NKG7 and
Frontiers in Immunology 13
CD8-C2-effector-GNLY clusters. Of note, we found a significant

higher expression of exhaustion marker LAG3 in most CD8+

effector T cell and gdT cell clusters (Supplementary Figures S5F–

J), suggesting that impaired CD8+ effector T cells, which were

promoted towards a more exhausted state by chemotherapy, are
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FIGURE 5

Comparative analysis of T cell features and dynamics in peripheral blood. (A, B) t-SNE visualization of T cells, colored by subclusters (A) and
samples (B). (C) Heatmap shows the expression level of marker genes in each T cell subcluster. (D) t-SNE visualization of TCRs identified in T
cells. (E) t-SNE visualization of clonal expansion detected in T cells. (F) Proportion(left panel) and frequency(right panel) of T cell subclusters (y
axis) in two blood samples(x axis). (G) Split violin plots show the enrichment level of cell senescence grouped by T subclusters and colored by
samples. The results above are generated by comparison between samples (blood_before, blood_after).
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likely to have contributed to recurrence and a shorter PFS in

this patient.

Next, to investigate whether chemotherapy can promote T cell

senescence, we employed the GSVA method to compare the

enrichment level of cellular senescence gene sets (obtained from

KEGG, hsa04218) among PBMC-derived T cell clusters. T cell

senescence is characterized by the accumulation of dysfunctional

and terminally-differentiated cells (47), and a senescence-related

gene set was significantly enriched in the CD8-C3-Effector-GZMB

T cell cluster (Figure 5G). Of note, all T cell clusters, including the

CD8-C3-Effector-GZMB cluster, gained a higher enrichment of

cellular senescence-related genes after chemotherapy, strongly

implying that chemotherapy promotes and accelerates T cell

senescence (Figure 5G). Therefore, our results suggest that

chemotherapy induces senescence-like T cell including CD8-C3-

Effector-GZMB T cells, which may serve as a dysfunctional

subpopulation with exhausted phenotype in HGSOC (10).

To prove our findings, flow cytometry and cytokines assay

were performed (Supplementary Figure S6A). The levels of

interleukin-6 (IL6), a classical senescence-associated secretory

phenotype (SASP) and pro-inflammatory factor, were increased

during the treatment period, while TNF-a and IFN-g displayed a
declined level (Supplementary Figure S6E). IL6/IL10 ratio

increased gradually (Supplementary Figure S6F), implying a

pro-inflammatory status in circulating immune system.

However, despite once elevated, the proportion of CD8+ T

effector ce l l s (CD3+CD8+ CD25+) decreased af ter

chemotherapy (Supplementary Figures S6B, C). Similarly,

CD8+ T effector cells/Treg cells (CD4 +CD25 +CD127-) ratio

increased initially and then decreased after the treatment

finished (Supplementary Figure S6D), suggesting a weakened

antitumor activity. These results collectively indicate an initially

activated but eventually suppressed phenotype of peripheral T

cells after chemotherapy, probably caused by T cell senescence.

Whether chemotherapy induces changes in TCR clonal

expansion remains unclear. Therefore, we analyzed the

dynamic of TCR repertoire during chemotherapy. Notably, we

observed that the quantity and proportion of unique T cell

clonotypes, which accounted for more than 70% of all

clonotypes, increased after chemotherapy (Figure 6A). Only

154 unique clonotypes were shared before and after

chemotherapy (Figure 6B). Similar trends were observed

among CD4+ and CD8+ T cell subsets (Supplementary Figures

S7A, C). These data strongly indicate that TCR clonal expansion

was changed by chemotherapy. Interestingly, higher diversity

indices (Shannon, Simpson, Chao and ACE index) were

observed in CD4+ T cells compared to CD8+ T cells. The

clonal overlap within CD4+ T cell clusters was not apparent

while a strong overlap within CD8+ T cell clusters exists,
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especially between CD8-C1-effector-NKG7 and CD8-C2-

effector-GNLY cells (Supplementary Figures S7E, F).

Moreover, the relative abundance of highly expanded

clonotypes decreased, and the low clonal index clonotypes

occupied more repertoire space after chemotherapy (Figure 6C

and Supplementary Figures S7B, D), suggesting that the TCR

clonal expansion change may be explained by clonotypes with

low clonal indices. Therefore, chemotherapy appears to have

induced TCR clonal expansion in all T cells, and the influence on

CD4+ TCR was more apparent.

As the complementarity determining region3 (CDR3) is the

TCR region that directly contacts the antigen, thus playing a

significant role in the interaction between the TCR and peptide-

MHC complex (48), we next investigated whether chemotherapy

changed the distribution of CDR3 within the a/b chains in different
clonotypes. The distribution of amino acid (aa) length in the CDR3

a/b chain was mostly consistent, with 27aa comprising the most

frequent length, both before and after chemotherapy (Figures 6D,

E). Notably, the proportion of the CDR3 region with the same

length slightly changed in CD4+ T cells (Supplementary Figures

S7G, H) but remained almost unchanged in CD8+ T cells

(Supplementary Figures S7J, K) after chemotherapy. Furthermore,

clonotypes of dominant CDR3 sequences were reduced, and the

CVSGDIPTF_CASSSRYSGNTIYF sequence disappeared after

chemotherapy (Figure 6F). In CD4+ T cells, the clonotypes with a

proportion of dominant sequences decreased significantly after

chemotherapy (Supplementary Figure S7I), while the clonotypes

in CD8+T cells remained almost unchanged, with the percentage of

several dominant clonotypes increased slightly (Supplementary

Figure S7L). These results suggest that chemotherapy changes

TCR clonal expansion, while the influence on CD8+ T cells is not

as apparent as on CD4+ T cells.

V(D)J rearrangement is the basis of TCR/BCR diversity,

enabling immune responses of T/B cells to numerous antigens

(16). Therefore, we further analyzed the bias of V-J pairs in alpha

and beta chains before and after chemotherapy. Interestingly,

TRAV5-TRAJ47, TRAV1-2-TRAJ33 and TRAV17-TRAJ54, the

three most highly used V-J pairs of alpha chains, remained

unchanged while other less-used pairs were changed much more

after chemotherapy (Figure 6G). Among the beta chains,

TRBV7-8-TRBJ2-5, TRBV20-1-TRBJ2-7 and TRBV20-1-

TRBJ2-1 were the three most used V-J pairs before and after

chemotherapy, while other less-used pairs were significant

changed (Figure 6H). Furthermore, usage bias of V/J genes in

T cell clonotypes was observed after chemotherapy

(Supplementary Figure S7M). Collectively, based on clonotype

and CDR3 analyses, these findings suggest that the TCR

repertoire changes may be related to low-expanded clonotypes

with low-frequency V-J pairs.
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Chemotherapy induces B cell activation
and changes BCR clonal expansion

Recently, different subsets of B cells have been reported to

play important roles during the dynamic progression of tumors
(49). For example, the ICOSL+ subset of B cells has been shown

to emerge after chemotherapy and may enhance the immune

response in breast cancer (50). Furthermore, IgA derived from

tumors has been shown to antagonize the growth of OC by

governing coordinated responses of tumor cells, T cells and B
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FIGURE 6

Comparative analysis of TCRs pre and post chemotherapy in peripheral blood. (A) Bar graphs show quantity and percentage of unique
clonotypes. (B) Venn diagram showing the common and specific TCR of T cells (whole T cells, CD4+ T cells and CD8+ T cells). (C) Clonal
homeostatic space representations (clonal space occupied by clonotypes of specific proportions) (left panel) and the relative proportional space
occupied by specific clonotypes (right panel) of TCRs across samples. (D) Curve graphs show CDR3 aa length distribution of TCRs (TRA: a
chains, TRB: b chains, aa: amino acid). (E) Violin plots show the CDR3 aa length distribution of TCR. (F) Dynamics of dominant CDR3 sequences
of TCRs across samples pre and post chemotherapy, colored by the types of dominant sequences. (G, H) Heatmaps show frequency of V-J
pairs in a chains (G) and b chains (H) among two samples. The results above are generated by comparison between samples (blood_before,
blood_after).
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cells (51). To assess the influence of chemotherapy on peripheral

B cell phenotype and function, we analyzed scRNA-seq and

scBCR-seq data. A total of 1690 B cells were obtained, and 1631

cells with full-length productive paired IGH-IGK/IGL chains

were retained for further analysis. Based on the expression of

canonical markers, the B cells were categorized into three

distinct subsets: naïve B cells (IGHD), memory B cells (CD27,

IGHA1, IGHG1) and plasma cells (CD38, XBP1) (Figures 7A, B).

Comprised of IgM, IgD, IgG and IgA isotypes, naïve B cells

accounted for majority of peripheral B cells. All B cells were

median-expanded (Figure 7A). The percentages of plasma cells

(5.10% vs 3.92%) and memory B cells (22.45% vs 20.54%)

increased, and the percentage of naïve B cells decreased

(72.45% vs 75.54%) after chemotherapy (Figure 7C),

suggesting that neoantigens induced by chemotherapy may

cause naïve B cells to differentiate into plasma or memory B

cells. Several key genes related to NF-kB signaling(CD74),

MAPK signaling(FOS, DUSP1) pathways, were markedly

upregulated in both naïve and memory cel ls after

chemotherapy, suggesting that chemotherapy may induce B

cell activation, proliferation and maturation. (52, 53)

(Figure 7D). Using R package Clusterprofiler we found that a

variety of inflammatory response pathways were significantly

enriched in naïve B cells after chemotherapy, while protein

synthesis and RNA catabolism pathways were enriched in

memory B cells (Figure 7E).

Next, we explored the dynamics of BCR repertoires during

chemotherapy. Interestingly, we observed a consistent proportion

of unique clonotypes before and after chemotherapy, and no

unique clonotypes were shared (Figure 7F), suggesting significant

changes in BCR clonal expansion may be primarily attributed to

the chemotherapy. Of note, no apparent increase was observed in

the relative abundance of clonotypes and the occupied space of

corresponding clonal indices (Figure 7G), which defers from the

results of TCR analysis (Figure 6C). In addition, there were no

significant differences in the CDR3 length distribution, while the

proportion of CDR3 with the same length was less after

chemotherapy (Supplementary Figures S8A, B). Furthermore, a

mild difference in distribution was observed in memory B cells but

not naïve B cells (Supplementary Figure S8D). Notably,

completely different CDR3 dominant sequences (Supplementary

Figure S8C) and usage bias of the V-J gene segments in memory B

cells relative to naïve B cells after chemotherapy (Supplementary

Figures S7E, F) were observed. In summary, chemotherapy

promoted peripheral B cell activation and changed clonal

expansion of the BCR repertoire, potentially contributing to the

response to neo-antigens induced by chemotherapy.
Discussion

HGSOC is characterized by disseminated abdominal spread,

easy of recurrence, and chemoresistance in advanced-stage
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patients. Malignant abdominal ascites provides a complex

cancerous and immunological microenvironment for tumor

progression and recurrence. Single-cell sequencing provides a

vital method to better understand the fundamental mechanisms

of cancer relapse and chemoresistance. In this study, we revealed

the intratumor heterogeneity, immunosuppressive features in

ascites, and dynamic changes of immune status of PBMC in a

relapsed chemo-resistant HGSOC patient after chemotherapy.

Furthermore, we demonstrated that chemotherapy remodel

TIME in peripheral blood and change the clonal expansion of

TCR/BCR. These findings highlight the impact of chemotherapy

on TIME, which may contribute to future development of novel

immune-modulatory strategy for relapsed chemo-resistant

ovarian cancer patients.

We first investigated whether intrinsic properties of tumor

cells contribute to chemoresistance. FTE markers (PAX8, KRT7)

were highly expressed in all subclusters of epithelial cells,

indicating that the tumor may originate from fallopian tube

(8). Of note, EC3 subcluster showed high expression of

chemoresistance related genes and was comprised of a large

proportion of G2/M cells, along with an elevated metabolism

level, which is associated with progression and platinum-based

chemoresistance in HGSOC (54, 55). High heterogeneity and

high proliferation ability of epithelial cells were probably caused

by CNVs (56, 57). Compared with those in sensitive HGSOC

samples, chemo-resistant recurrent epithelial cells showed

higher CNVs level, implying that EOC_Tumor may be in a

more malignant state. Since cancer somatic mutations can

generate neoantigens (58), an obvious upregulation of antigen

presentation genes across all cancer cell clusters suggests clonal

expansion of TCR or BCR to neoantigens. Consistently, IFN-

associated genes, were highly expressed in cancer cells from both

GSE154600 and our case, which might predict better prognosis.

However, a shortened PFS and platinum-free interval (PFI),

along with an increased frequency of chemotherapy of this

patient still needs more investigation.

Then we further investigate whether status of TIME

contribute to chemo-resistance of HGSOC. Previous study has

shown that the high expression of M2 marker in macrophages is

associated with poor prognosis of ovarian cancer (59), and

upregulated M2 marker is considered to imply immune-

suppressive phenotype (60). Our patients showed high

expression of M2 signatures in both tumor-infiltrated and

ascites-resident macrophages, indicating that M2 TAMs

polarization may promote chemo-resistance. Our findings also

suggest that peripheral monocyte/macrophage subsets may

migrate to the ascites or tumors and be educated to perform

different functions in the TIME. Integrating GSE154600 and our

data, we affirmed our findings that chemo-resistant tumors may

share signatures of immunosuppressive myeloid phenotype. In

addition, the predominant co-expression of GPNMB in myeloid

cells (Supplementary Figure S3I) and CD44 in cancer cells

(Supplementary Figure S1C) in chemo-resistant samples may
frontiersin.org

https://doi.org/10.3389/fimmu.2022.985187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2022.985187
A B

D

E

F

G

C

FIGURE 7

Characteristics of B cell subclusters before and after chemotherapy. (A) t-SNE visualization of B cells colored by cell types (top left), BCR
isotypes (top right), derived-samples (bottom left) and clonal expansion status(bottom right). (B) Dot plots show expression level of marker
genes of B cell types. (C) Proportion of B cell subclusters (y axis) in two blood samples(x axis). (D) Volcano plots show DEGs of naive B cells (top
panel) and memory B cells (bottom panel) after chemotherapy compared with those before chemotherapy. (E) Gene set enrichment analysis of
naive B cells (top panel) and memory B cells (bottom panel) after chemotherapy. The analyses were based on the Msigdbr GO database. (F) Bar
graphs top panel and venn diagram bottom panel show the change of frequency and fraction of unique clonotypes, colored by collection time.
(G) Clonal homeostatic space representations (clonal space occupied by clonotypes of specific proportions) (left panel) and the relative
proportional space occupied by specific clonotypes (right panel) of BCR across samples pre and post chemotherapy. The results above are
generated by comparison between samples (blood_before, blood_after).
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provide us with the mechanism underlying chemo-resistance.

Macrophages-secreted GPNMB induces cancer stemness via

CD44 on cancer cells (61), suggesting that enhanced cancer

cell stemness may explain the shorter PFS of this patient, despite

high expression of IFN and antigen presentation-related genes.

Given that cancer cell and TIME are cross-talked, dual target

both parts simultaneously may overcome chemoresistance. The

role of gd T cells in tumor is still unclear and the residency of gd
T cells may play pro- or anti-tumorigenicity (42). Besides, low-

activated and immunosuppressive ascites-derived gd T cells were

observed in epithelial ovarian cancer (62), and low metabolism

level of T cells can lead to antitumor dysfunction (63). Similarly,

we found that ascites-derived gd T cells had decreased metabolic

pathways and increased apoptosis pathways, indicating its

immunosuppressive status. These observations suggest that

immunosuppressive TME may play an essential role in

chemo-resistant HGSOC.

So far, the impact of chemotherapy on phenotype and

function of peripheral T/B cells in HGSOC still requires

elucidation. Our findings revealed that that chemotherapy

promote the transformation of T cells to an exhaustive and

dysfunctional status, which interact with enriched M2-like TAM

to lead to immune dysfunction, as previous reported (60). In

addition, our data showed that chemotherapy leads to T cell

senescence, in line with increased IL-6 in peripheral blood,

which are hallmarks of cellular senescence (Supplementary

Figure S6) (64). Since senescent T cells compose suppressive

TME (65), our findings indicate chemotherapy induced

immune-suppressive transformation in peripheral blood

circulation. Furthermore, our research on TCR reveals a clonal

expansion and V(D)J rearrangement, which is not exactly

consistent with other study which found that overall repertoire

diversity remains stable after the chemotherapy (66). Besides,

our results also indicates that chemotherapy leads to the

activation, proliferation and maturation of peripheral B cells,

suggesting that chemotherapy-induced neoantigens may play a

pivotal role in anti-tumor response of B cells through

collaboration with T cells (67).

The limitations of this study should be noted here. First, lack

of large-number paired clinical resources of relapsed chemo-

resistant samples developed from chemo-sensitive, including

tumor, ascites and PBMC, leads to inadequate clarification of

our conclusion. Second, elucidating mechanism of

chemoresistance in HGSOC requires in vitro and in

vivo experiments.

In summary, through integrating cross-sectional analysis of

single-cell RNA, TCR and BCR profiles from paired ascites,

tumor and peripheral blood samples, we provided important

insight into the TME in an HGSOC patient with several cycles of

relapse and chemo-resistance. We revealed the variable changes

in clonal expansion of the TCR and BCR, laying the foundation

for understanding of host anti-tumor immune mechanisms and
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immune reconstruction induced by chemotherapy. Our research

also provides an in-depth exploration of cancerous and immune

environments of HGSOC with relapsed platinum-resistance,

which may facilitate the development of novel chemotherapy

in combination with anti-senescence agents to improve the

prognosis and overall survival of ovarian cancer patients.
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SUPPLEMENTARY FIGURE S1

Characteristics of tumor cells revealed at single-cell resolution. (A)
Fraction and frequency of tumor cells (x axis) from samples (Tumor,
Ascite) in each subcluster (y axis). (B) Heatmap displays the enriched

pathways in tumor cell subclusters performed by GSVA analysis. (C) t-SNE

plot displays main cell types from five HGSOC samples (T59, T76, T77,
T89, T90). (D) Violin plots display expression of selected chemoresistance

related genes in tumor cell populations of six samples (Tumor, T59, T76,
T77, T89, T90). The distribution of the per cell signature expression was

based on normalized data. (E) Heatmap displays large-scale CNVs of
epithelial tumor cells compared to myeloid cells using inferCNV. The

annotation on the right indicates the corresponding sample sources. The

red represents CNV amplifications and blue represents CNV deletion. (F)
Heatmap displays top 10 differentially-expressed genes (DEGs) of EC3 in

each tumor cell subcluster. (G) Expression profiles of top 10 DEGs (shown
in Supplementary Figure 1F) were examined by Spearman correlation

coefficient between epithelial tumor cells in six HGSOC samples (Tumor,
T59, T76, T77, T89, T90). (H) Violin plots show the enrichment level of

interferon-associated signature genes (shown in Figure 2H) among each

cell type. Distribution of the per cell signature expression was based on
the GSVA scores. (I)Kaplan-Meier curve for TCGA-OV cohorts based on

expression of interferon-associated signature genes (shown in Figure 2H).
The groups are distinguished by median enrichment scores. P value is

calculated with log-rank test.

SUPPLEMENTARY FIGURE S2

The landscape of immune cells in ascites, tumor and peripheral blood. (A
and B) t-SNE plots display main cell types from three samples (Tumor,

Ascite, blood_before) before chemotherapy, colored by immune cell
clusters (A) and the origins (B). (C) Dot plots display the expression level

of signature genes in each immune cell cluster. (D) Frequency and
fractions of each immune cell cluster among three samples (Tumor,

Ascite and blood_before). (E and F) Heatmaps show selected markers(E)

and DEGs (F) in each myeloid cell cluster.

SUPPLEMENTARY FIGURE S3

Characteristics of myeloid cells in distinct TMEs and chemokine

expression in tumor cell subtypes. (A, B) Dot plots show expression
level of chemokines ligand family CCL (A) and CXCL (B) in tumor cell
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subclusters. (C, D) Dot plots show expression level of chemokines
receptors family CCR (C) and CXCR (D) in macrophage cell subclusters.

(E, F) Ligand-receptor interactions from tumor cell subclusters to APOE+
Macrophages (E) and ADAP2+ Macrophages (F) in samples (Tumor,

Ascite). P values are represented by the size of each circle. The color
gradient shows the level of interaction. (G) Fraction of immune cells from

six samples (Tumor, T59, T76, T77, T89, T90). (H) t-SNE plot displays
myeloid cell types from six samples (Tumor, T59, T76, T77, T89, T90). (I)
Boxplots of immune phenotype related gene changes (CD163, MRC1,

CD68, SOCS3, TREM2, GPNMB, respectively) across macrophage cells
from six samples (*indicates a p value < 0.01, ** indicates a p value < 0.001,

*** indicates a p value < 0.0001, NS indicates no significance)..

SUPPLEMENTARY FIGURE S4

Landscape of immune cells in peripheral blood collected pre and post the

fourth course of chemotherapy. (A) Representative H&E and CD8 IHC

images for primary (pr_T) and relapsed (re_T) tumor regions shown at ×4
magnification, scale bar 600 mm; ×10 magnification, scale bar 300 mm;

and ×20 magnification, scale bar 200 mm. (B) t-SNE visualization of
immune cell clusters from samples (blood_before, blood_after). (C)
Heatmap shows the expression level of marker genes in myeloid cells, T
cells, NK cells and B cells. (D) Fraction and frequency of immune cells (x

axis) from samples (blood_before, blood_after) in each cell type (y axis).

(E) t-SNE visualization of TCR (top panel) and BCR (bottom panel)
distrubtion in all immune cells. (F) Proportion of immune cells among

samples (blood_before, blood_after).

SUPPLEMENTARY FIGURE S5

Comparative analysis of co-stimulatory molecules on T cell clusters in

peripheral blood. (A) t-SNE visualization of the expression level of CTLA4

and PDCD1 in T cells from PBMCs. (B–E) Boxplots show the expression
level of CD27, TNFRSF14, TNFRSF1A and LAG3 in each CD4+ T cell cluster

pre and post chemotherapy. (F–I) Boxplots show the expression level of
CD27, TNFRSF14, TNFRSF1A and LAG3 in each CD8+ T cell cluster pre and

post chemotherapy. (J) Boxplots show the expression of CD27,
TNFRSF14, TNFRSF1A and LAG3 in gd T cell cluster pre and post

chemotherapy. The results above are generated by comparison

between samples (blood_before, blood_after).

SUPPLEMENTARY FIGURE S6

Immune function assay of peripheral blood during the treatment of

chemotherapy. (A) Workflow of the flowcytometry assessing peripheral
immune cells and cytokine assay in peripheral blood. Sorting standard of

immune cell populations are shown. (B, C) Representative flow cytometry

plots (B) and line charts (C) of the proportion of NK cells, CD8+ Teff and
Treg in peripheral blood during the treatment of chemotherapy. (D–F) Line
charts display the change of CD8+ Teff/Treg ratio (D), cytokines
concentration (E) and IL-6/IL-10 ratio (F). (T1: Before the second

chemotherapy began; T2: Two days after the sixth chemotherapy; T3:
Fourteen days after the sixth chemotherapy when the sample blood_after

was sequenced).

SUPPLEMENTARY FIGURE S7

Comparative analysis of TCRs in CD4+ and CD8+ T cells across samples
pre and post chemotherapy. (A, C) Quantity and percentage of unique

clonotypes for CD4+ T cells (A) and CD8+ T cells (C) between samples pre
and post chemotherapy. (B, D) Clonal homeostasis and clonal proportion

of CD4+ T cells (B) and CD8+ T cells (D) between samples pre and post

chemotherapy. (E, F) Clonotypes diversity measures based on subclusters
(left panel) using Shannon, Inverse Simpson, Chao and ACE index.

Clonotypes overlap quantifications by clusters (right panel) in CD4+ T
cells (E) and CD8+ T cells (F). (G, J) Curve graphs show TCR CDR3 aa

length distribution of TRA (upper right) and TRB (bottom right) and both
(left) in CD4+ T cells (G) and CD8+ T cells (J) across samples pre and post

chemotherapy. (TRA: a chains, TRB: b chains, aa: amino acid). (H, K) Violin
plots show CDR3 aa length distribution in CD4+ T cells (H) and CD8+ T
cells (K). (I, L) Dynamics of dominant CDR3 sequences of TCRs in CD4+ T

cells (I) and CD8+ T cells (L). (M) Bar graphs show the fraction of V and J
genes in a chains and b chains among T cells. Genes with significant
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.985187/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.985187/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.985187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2022.985187
changes are labeled red. (*indicates a FDR < 0.01, ** indicates a FDR <
0.001, *** indicates a FDR < 0.0001, **** indicates a FDR < 0.00001). The

results above are generated by comparison between samples
(blood_before, blood_after).

SUPPLEMENTARY FIGURE S8

Comparative analysis of BCRs in naïve andmemory B cells across samples
pre and post chemotherapy. (A) Curve graphs show CDR3 aa length

distribution of IGL (upper right), IGH (bottom right) and both (left) of all

BCRs across samples pre and post chemotherapy. (B) Violin plots show
the CDR3 aa length distribution of IGH chains plus IGL chain. (C)
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Dynamics of dominant CDR3 sequences of BCRs across samples pre
and post chemotherapy, colored by types of dominant sequences. (D)
Violin plots show distributions of CDR3 length of naïve B cells (left) and
memory B cells(right) across samples pre and post chemotherapy. (E and

F) Bar graphs show the fraction of immunoglobulin IGHV (upper left),
IGHJ (upper right), IGLV/IGKV (bottom left), and IGLJ/IGKJ (bottom right)

genes in naïve B cells (E) and memory B cells (F). Genes with significant
changes are labeled red. (*indicates a FDR < 0.01, ** indicates a FDR <

0.001, *** indicates a FDR < 0.0001, **** indicates a FDR < 0.00001). The

results above are generated by comparison between samples
(blood_before, blood_after).
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Machaliński BB, Sompolska-Rzechuła A, et al. Assessment of selected cytokines,
proteins, and growth factors in the peritoneal fluid of patients with ovarian cancer
and benign gynecological conditions. Onco Targets Ther (2015) 8:471–85.
doi: 10.2147/OTT.S73438

7. Thibault B, Castells M, Delord J-P, Couderc B. Ovarian cancer
microenvironment: implications for cancer dissemination and chemoresistance
acquisition. Cancer Metastasis Rev (2014) 33(1):17–39. doi: 10.1007/s10555-013-
9456-2

8. Hao Q, Li J, Zhang Q, Xu F, Xie B, Lu H, et al. Single-cell transcriptomes
reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med
(2021) 11(8):e500. doi: 10.1002/ctm2.500

9. Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M, Shi T, et al. The
repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-
cell sequencing of normal fallopian tube epithelial cells. Cancer Cell (2020) 37
(2):226–242.e7. doi: 10.1016/j.ccell.2020.01.003

10. Hornburg M, Desbois M, Lu S, Guan Y, Lo AA, Kaufman S, et al. Single-cell
dissection of cellular components and interactions shaping the tumor immune
phenotypes in ovarian cancer. Cancer Cell (2021) 39(7):928–944.e6. doi: 10.1016/
j.ccell.2021.04.004

11. Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, et al. A single-cell
landscape of high-grade serous ovarian cancer. Nat Med (2020) 26(8):1271–9.
doi: 10.1038/s41591-020-0926-0

12. Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X, et al. Single-cell EMT-
related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell
clusters in epithelial ovarian cancer ascites. Oncogene (2020) 39(21):4227–40.
doi: 10.1038/s41388-020-1288-2

13. Schelker M, Feau S, Du J, Ranu N, Klipp E, MacBeath G, et al. Estimation of
immune cell content in tumour tissue using single-cell RNA-seq data. Nat
Commun (2017) 8(1):2032. doi: 10.1038/s41467-017-02289-3

14. Olalekan S, Xie B, Back R, Eckart H, Basu A. Characterizing the tumor
microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell
Rep (2021) 35(8):109165. doi: 10.1016/j.celrep.2021.109165

15. Desbois M, Udyavar AR, Ryner L, Kozlowski C, Guan Y, DürrbaumM, et al.
Integrated digital pathology and transcriptome analysis identifies molecular
mediators of T-cell exclusion in ovarian cancer. Nat Commun (2020) 11(1):5583.
doi: 10.1038/s41467-020-19408-2

16. Onozawa M, Aplan PD. Illegitimate V(D)J recombination involving
nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer
(2012) 51(6):525–35. doi: 10.1002/gcc.21942
17. Geistlinger L, Oh S, Ramos M, Schiffer L, LaRue RS, Henzler CM, et al.
Multiomic analysis of subtype evolution and heterogeneity in high-grade serous
ovarian carcinoma. Cancer Res (2020) 80(20):4335–45. doi: 10.1158/0008-
5472.CAN-20-0521

18. Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, Chowell D, et al.
Single-cell sequencing links multiregional immune landscapes and tissue-resident
T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell (2021) 39(5).
doi: 10.1016/j.ccell.2021.03.007

19. Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, et al. Single-cell RNA
landscape of intratumoral heterogeneity and immunosuppressive microenvironment
in advanced osteosarcoma. Nat Commun (2020) 11(1):6322. doi: 10.1038/s41467-
020-20059-6

20. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation (N Y) (2021) 2
(3):100141. doi: 10.1016/j.xinn.2021.100141

21. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al.
Inference and analysis of cell-cell communication using CellChat. Nat Commun
(2021) 12(1):1088. doi: 10.1038/s41467-021-21246-9

22. Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y, Guo X, et al. Landscape of
infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell (2017) 169
(7):1342–1356.e16. doi: 10.1016/j.cell.2017.05.035

23. Borcherding N, Bormann NL, Kraus G. scRepertoire: An r-based toolkit for single-
cell immune receptor analysis. F1000Res (2020) 9:47. doi: 10.12688/f1000research.22139.2

24. Berek JS, Kehoe ST, Kumar L, Friedlander M. Cancer of the ovary, fallopian
tube, and peritoneum. Int J Gynaecol Obstet (2018) 143 Suppl 2:59–78.
doi: 10.1002/ijgo.12614

25. Kim S, Han Y, Kim SI, Lee J, Jo H, Wang W, et al. Computational modeling
of malignant ascites reveals CCL5-SDC4 interaction in the immune
microenvironment of ovarian cancer. Mol Carcinog (2021) 60(5):297–312.
doi: 10.1002/mc.23289

26. Martincuks A, Li P-C, Zhao Q, Zhang C, Li Y-J, Yu H, et al. CD44 in ovarian
cancer progression and therapy resistance-a critical role for STAT3. Front Oncol
(2020) 10:589601. doi: 10.3389/fonc.2020.589601

27. Wu W, Wang Q, Yin F, Yang Z, Zhang W, Gabra H, et al. Identification of
proteomic and metabolic signatures associated with chemoresistance of human
epithelial ovarian cancer. Int J Oncol (2016) 49(4):1651–65. doi: 10.3892/
ijo.2016.3652

28. Zhao H, Ding F, Zheng G. LncRNA TMPO-AS1 promotes LCN2
transcriptional activity and exerts oncogenic functions in ovarian cancer. FASEB
J (2020) 34(9):11382–94. doi: 10.1096/fj.201902683R

29. Olbrecht S, Busschaert P, Qian J, Vanderstichele A, Loverix L, Van Gorp T,
et al. High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing:
specific cell subtypes influence survival and determine molecular subtype
classification. Genome Med (2021) 13(1):111. doi: 10.1186/s13073-021-00922-x

30. Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A pan-cancer single-cell
transcriptional atlas of tumor infiltrating myeloid cells. Cell (2021) 184(3):792–809
e723. doi: 10.1016/j.cell.2021.01.010

31. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and
dynamics of single immune cells in hepatocellular carcinoma. Cell (2019) 179
(4):829–845.e20. doi: 10.1016/j.cell.2019.10.003

32. Noe JT, Mitchell RA. MIF-dependent control of tumor immunity. Front
Immunol (2020) 11:609948. doi: 10.3389/fimmu.2020.609948

33. Agarwal R, Whang DH, Alvero AB, Visintin I, Lai Y, Segal EA, et al.
Macrophage migration inhibitory factor expression in ovarian cancer. Am J Obstet
Gynecol (2007) 196(4):348 e341–348.e345. doi: 10.1016/j.ajog.2006.12.030
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.1136/bmj.m3773
https://doi.org/10.1016/S0140-6736(18)32552-2
https://doi.org/10.2147/OTT.S205950
https://doi.org/10.2147/OTT.S205950
https://doi.org/10.3389/fonc.2013.00256
https://doi.org/10.2147/OTT.S73438
https://doi.org/10.1007/s10555-013-9456-2
https://doi.org/10.1007/s10555-013-9456-2
https://doi.org/10.1002/ctm2.500
https://doi.org/10.1016/j.ccell.2020.01.003
https://doi.org/10.1016/j.ccell.2021.04.004
https://doi.org/10.1016/j.ccell.2021.04.004
https://doi.org/10.1038/s41591-020-0926-0
https://doi.org/10.1038/s41388-020-1288-2
https://doi.org/10.1038/s41467-017-02289-3
https://doi.org/10.1016/j.celrep.2021.109165
https://doi.org/10.1038/s41467-020-19408-2
https://doi.org/10.1002/gcc.21942
https://doi.org/10.1158/0008-5472.CAN-20-0521
https://doi.org/10.1158/0008-5472.CAN-20-0521
https://doi.org/10.1016/j.ccell.2021.03.007
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1016/j.cell.2017.05.035
https://doi.org/10.12688/f1000research.22139.2
https://doi.org/10.1002/ijgo.12614
https://doi.org/10.1002/mc.23289
https://doi.org/10.3389/fonc.2020.589601
https://doi.org/10.3892/ijo.2016.3652
https://doi.org/10.3892/ijo.2016.3652
https://doi.org/10.1096/fj.201902683R
https://doi.org/10.1186/s13073-021-00922-x
https://doi.org/10.1016/j.cell.2021.01.010
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.3389/fimmu.2020.609948
https://doi.org/10.1016/j.ajog.2006.12.030
https://doi.org/10.3389/fimmu.2022.985187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2022.985187
34. Zhang Y, Zuo C, Liu L, Hu Y, Yang B, Qiu S, et al. Single-cell RNA-
sequencing atlas reveals an MDK-dependent immunosuppressive environment in
ErbB pathway-mutated gallbladder cancer. J Hepatol (2021) 75(5):1128–41.
doi: 10.1016/j.jhep.2021.06.023

35. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates
cancer progression. Cancer Res (2019) 79(18):4557–66. doi: 10.1158/0008-
5472.CAN-18-3962

36. Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, Kerr DL, et al.
Therapy-induced evolution of human lung cancer revealed by single-cell RNA
sequencing. Cell (2020) 182(5):1232–1251 e1222. doi: 10.1016/j.cell.2020.07.017

37. Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB transcription factors:
Key regulators of the development, differentiation and effector function of T cells.
Front Immunol (2021) 12:713294. doi: 10.3389/fimmu.2021.713294

38. Chitadze G, Oberg H-H, Wesch D, Kabelitz D. The ambiguous role of gd T
lymphocytes in antitumor immunity. Trends Immunol (2017) 38(9):668–78.
doi: 10.1016/j.it.2017.06.004

39. Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev
Cancer (2020) 20(9):516–31. doi: 10.1038/s41568-020-0273-y

40. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat
Rev Cancer (2021) 21(6):345–59. doi: 10.1038/s41568-021-00347-z

41. Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. Insights gained from
single-cell analysis of immune cells in the tumor microenvironment. Annu Rev
Immunol (2021) 39:583–609. doi: 10.1146/annurev-immunol-110519-071134

42. Edner NM, Carlesso G, Rush JS, Walker LSK. Targeting co-stimulatory
molecules in autoimmune disease. Nat Rev Drug Discovery (2020) 19(12):860–83.
doi: 10.1038/s41573-020-0081-9

43. Böhm S, Montfort A, Pearce OMT, Topping J, Chakravarty P, Everitt GLA,
et al. Neoadjuvant chemotherapy modulates the immune microenvironment in
metastases of tubo-ovarian high-grade serous carcinoma. Clin Cancer Res (2016) 22
(12):3025–36. doi: 10.1158/1078-0432.CCR-15-2657

44. Janjigian YY, Wolchok JD, Ariyan CE. Eradicating micrometastases with
immune checkpoint blockade: Strike while the iron is hot. Cancer Cell (2021) 39
(6):738–42. doi: 10.1016/j.ccell.2021.05.013

45. Steinberg MW, Cheung TC, Ware CF. The signaling networks of the
herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunol Rev
(2011) 244(1):169–87. doi: 10.1111/j.1600-065X.2011.01064.x

46. Zhang J-Y, Wang X-M, Xing X, Xu Z, Zhang C, Song J-W, et al. Single-cell
landscape of immunological responses in patients with COVID-19. Nat Immunol
(2020) 21(9):1107–18. doi: 10.1038/s41590-020-0762-x

47. Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol (2021)
22(6):687–98. doi: 10.1038/s41590-021-00927-z
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