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LigA formulated in AS04 or
Montanide ISA720VG induced
superior immune response
compared to alum, which
correlated to protective
efficacy in a hamster model
of leptospirosis
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Leptospirosis is a zoonotic disease of global importance. The current vaccine

provides serovar-specific and short-term immunity and does not prevent bacterial

shedding in infected animals. Subunit vaccines based on surface proteins have

shown to induce protection in an animal model. However, these proteins were

tested with non-clinical adjuvants and induced low to moderate protective

efficacy. We formulated a variable region of Leptospira immunoglobulin-like

protein A (LAV) in clinical adjuvants, AS04 and Montanide ISA720VG, and then

evaluated the immune response in mice and protective efficacy in a hamster

model. Our results show that animals immunized with LAV-AS04 and LAV-

Montanide ISA720VG (LAV-M) induced significantly higher levels of LAV-specific

antibodies than LAV-Alum. While LAV-Alum induced Th2 response with the

induction of IgG1 and IL-4, AS04 and LAV-M induced a mixed Th1/Th2 response

with significant levels of both IgG1/IL-4 and IgG2c/IFN-g. Both LAV-AS04 and LAV-

M induced the generation of a significantly higher number of cytotoxic T cells

(CTLs). The immune response in LAV-AS04- and LAV-M-immunized animals was

maintained for a long period (>180 days) with the generation of a significant level of

B- and T-cell memory. The strong immune response by both vaccines correlated

to enhanced recruitment and activation of innate immune cells particularly DCs at

draining lymph nodes and the formation of germinal centers (GCs). Furthermore,

the immune response generated in mice correlated to protective efficacy in the

hamster model of leptospirosis. These results indicate that LAV-AS04 and LAV-M

are promising vaccines and can be further evaluated in clinical trials.
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Introduction

Leptospirosis is a life-threatening zoonotic disease caused by a

Gram-negative spirochete Leptospira that occurs throughout the

world with the highest incidence in tropical regions. More than 1

million cases of severe leptospirosis occur each year, with case

fatality rates exceeding 10% (1, 2). It has become one of the

significant causes of morbidity and mortality worldwide,

especially in impoverished populations. The disease spectrum

caused by leptospiral infection is vast and varies from sub-

clinical inapparent to severe multi-organ syndrome involving

liver, kidney, and lungs either alone or in combination (3).

Pulmonary hemorrhage is increasingly recognized as a

significant complication in several outbreaks of leptospirosis in

developing countries (4). The disease is misdiagnosed as the

symptoms overlap with the common flu, dengue fever,

hantavirus infection, encephalitis, viral hepatitis, malaria, and

COVID-19 (5, 6). Vaccination is the most effective strategy to

control the disease, but no vaccine is available for humans. The

available vaccine is inactivated whole bacterin, which is used in

livestock and companion animals, and in some countries, it is used

in humans who are at risk (7, 8). These vaccines induce short-term

and serovar-specific immunity, are associated with toxicity, and

do not provide sterilizing immunity (8). Hence, there is a need to

develop a safe and effective vaccine that can induce long-term

cross-protection and prevent transmission to a susceptible host.

In recent years, subunit vaccines based on outer membrane/

surface proteins have become an attractive alternative to the whole-

cell vaccine, and several candidates have been identified that

induced protection in a hamster model of the disease (9–18). Of

these, Leptospira immunoglobulin-like protein A (LigA) is the most

promising candidate and several investigators have established its

protective role in the hamster model of leptospirosis (19–25).

Furthermore, the C terminal or variable region of LigA (LAV),

specifically domains 10–13, was shown to be sufficient to induce

protection against disease in the hamster model (20, 26).

Adjuvants are key to the success of subunit vaccines and

alum is most widely used in licensed vaccines for various

bacterial and viral diseases (27). Although alum has been

tested with different subunit antigens for Leptospira, it induced

mainly humoral and limited Th1 response and failed to induce

sterilizing immunity (10, 20, 24, 28–30). Other adjuvants like

Freund’s, liposomes, xanthan gum, PLGA-microparticles, and

emulsions like AddaVax and Emulsigen-D and Salmonella

flagellin have also been tested with various surface proteins of

Leptospira including LigA (8, 10, 17, 19, 21, 22, 28–32). Although

these adjuvants induced significantly higher level of antibodies

and T-cell response than alum, they are preclinical adjuvants

that have not been approved for human use. There are several

clinical adjuvants like emulsions (MF59 and Montanide) and

Adjuvant Systems (AS03 and AS04), which have shown to

induce potent antibody and T-cell response correlating to
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protection against various pathogens but have not been tested

against leptospirosis (33–35). AS04 combines the TLR4 agonist

monophosphoryl lipid A (MPLA), and aluminum salt is a new-

generation adjuvant licensed for use in human vaccines (34).

Human papilloma virus (HPV) vaccine and hepatitis B vaccine

adjuvanted with AS04 induced superior antibody and T-cell

response as compared to alum-adjuvanted vaccine (36).

Emulsion-based adjuvants have been successfully used against

various diseases and few adjuvants like MF59, ASO3, and

Montanide adjuvants are approved for human use (35). Of

these, Montanide ISA720VG is a new-generation water-in-oil

emulsion adjuvant for human use. It has been used in human

therapeutic vaccines in more than 200 clinical trials involving

cancer, AIDS, malaria, or autoimmune diseases (33, 37).

In the present study, we formulated LAV in AS04 (LAV-

AS04) and Montanide ISA720VG (LAV-M) and evaluated long-

term immune response and generation of immunological

memory compared with alum in the mouse model.

Furthermore, we tested the protective efficacy of LAV-AS04

and LAV-M in the hamster model of leptospirosis.
Results

LAV-AS04 and LAV-M induced superior
antibody and T-cell response compared
to LAV-Alum

To test whether LAV formulated in AS04 or Montanide

ISA720VG induced better humoral immune response than

LAV-Alum, we analyzed the antibody levels in mice at 21 and

28 days post-immunization. Our results show that significantly

higher levels of IgG was generated in animals immunized with

LAV-AS04 and LAV-M than those immunized with LAV-Alum

(Figure 1A). Both LAV-AS04 and LAV-M induced IgG1 but the

level was significantly higher in the latter (Figure 1A). IgG2c was

only detected in animals immunized with LAV-AS04 or LAV-

M. Animals immunized with LAV-Alum or LAV without any

adjuvant induced low levels of IgG and IgG1 and could not

induce significant levels of IgG2c (Figure 1A). LAV formulated

in any of the adjuvant failed to induce significant levels of IgA

(Figure 1A). To analyze whether LAV formulated in AS04 or

Montanide adjuvants can induce strong T-cell response, we

stimulated splenocytes isolated from various groups with recall

antigen LAV on day 28. Our result showed that splenocytes

isolated from LAV-AS04 or LAV-M exhibited significantly

higher (p < 0.05) levels of proliferation as compared to those

from LAV-Alum (Figure 1B). Analysis of cytokines in culture

supernatant showed that while alum induces Th2 response by

inducing mainly IL-4 and low level of IFN-g, AS04 and

Montanide induced a mixed Th1/Th2 response with

significantly higher levels of both IL-4 and IFN-g (Figure 1C).
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FIGURE 1 (Continued)

Humoral and cell-mediated responses mediated by LAV formulated in various adjuvants. Mice were immunized subcutaneously with PBS or
LAV in alum or AS04 or Montanide on days 0 and 21 and then euthanized on day 28 to remove spleen to determine antigen-specific immune
response. (A) Antibody response. LAV-specific antibody levels (IgG, IgG1, IgG2c, and IgA) at various time points (days 0, 21, and 28) analyzed by
ELISA as detailed in Materials and Methods. (B) Lymphocyte proliferation. The splenocytes isolated from various immunized groups at day 28
were subjected to in vitro stimulation with recall antigen (LAV) and proliferation was assessed by counting the cells after 72 h. (C) Cytokine
analysis. Splenocytes were stimulated with varying concentrations (1, 2, and 10 µg/ml) of LAV for 48–72 h and culture supernatant was
analyzed for IL-4 and IFN-g by using a sandwich ELISA kit following the manufacturer’s instructions. Data are representative of three different
experiments. Significant differences were calculated using the one-way ANOVA (***, **, *, and ns indicate p < 0.001, p < 0.01, p < 0.05, and
non-significant, respectively).
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LAV-AS04 and LAV-M induced
generation of cytotoxic T cells

To analyze whether LAV formulated in AS04 or Montanide

adjuvants can induce production of cytotoxic T cells (CTLs), we

isolated effector cells from splenocytes of animals immunized

with LAV-Alum, LAV-AS04, or LAV-M and determined the

lysis of target cells by using LDH assay. Our results show that a

higher number of target cell (DCs stimulated with LAV antigen)

lysis (70%–80%) was demonstrated by CTLs obtained from

animals immunized with LAV-AS04 or LAV-M as compared

to LAV-Alum or LAV (20%–30%) at the highest E:T ratio

(Figure 2). Effectors obtained from both LAV-AS04 or LAV-M

were not able to lyse non-specific targets (DCs stimulated with

unrelated antigen OVA), further confirming the specificity of
Frontiers in Immunology 04
CTLs (data not shown). Thus, animals immunized with LAV

formulated in AS04 or Montanide adjuvant were able to generate

cytotoxic T cells.

Strong adaptive response induced by
LAV-AS04 and LAV-M correlated to the
enhanced recruitment and activation of
innate cells at draining lymph nodes

Since adaptive immune response is driven by strong innate

response, we analyzed adjuvant-induced recruitment of innate

cells at draining lymph nodes (DLNs) at 4 h and 24 h post-

injection. The cell numbers, type, and activation status were

assessed by flow cytometry in pooled DLNs taken from

individual mice (Figure 3A). Our results show that LAV-AS04
FIGURE 2

Cytotoxic T-cell response induced by various vaccines. Effector cells generated in vitro from splenocytes isolated from various groups were
added to specific targets (DCs pulsed with LAV) in varying E:T ratios. Cytotoxicity was measured using a Cytotox kit (LDH method) following the
manufacturer’s instructions. Data are representative of three different experiments.
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FIGURE 3 (Continued)

Humoral and cell-mediated responses mediated by LAV formulated in various adjuvants. Mice were immunized subcutaneously with PBS or
LAV in alum or AS04 or Montanide on days 0 and 21 and then euthanized on day 28 to remove spleen to determine antigen-specific immune
response. (A) Antibody response. LAV-specific antibody levels (IgG, IgG1, IgG2c, and IgA) at various time points (days 0, 21, and 28) analyzed by
ELISA as detailed in Materials and Methods. (B) Lymphocyte proliferation. The splenocytes isolated from various immunized groups at day 28
were subjected to in vitro stimulation with recall antigen (LAV) and proliferation was assessed by counting the cells after 72 h. (C) Cytokine
analysis. Splenocytes were stimulated with varying concentrations (1, 2, and 10 µg/ml) of LAV for 48–72 h and culture supernatant was
analyzed for IL-4 and IFN-g by using a sandwich ELISA kit following the manufacturer’s instructions. Data are representative of three different
experiments. Significant differences were calculated using the one-way ANOVA (***, **, *, and ns indicate p < 0.001, p < 0.01, p < 0.05, and
non-significant, respectively).
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and LAV-M induced recruitment of a higher number of innate

immune cells than LAV and LAV-Alum. LAV antigen without

any adjuvant was also able to recruit a significantly higher

number of cells as compared to the PBS group (Figure 3B).

LAV-AS04 induced early recruitment (at 4 h) of a large number

of DCs (CD11c+MCHII+), macrophages (CD11b+F4/80+),

granulocytes/inflammatory monocytes (CD11b+Ly6C+), and

neutrophils (CD11b+Ly6G+), which was significantly higher

than LAV-Alum. While LAV-M was only able to induce early

recruitment of DCs (CD11c+MCHII+), LAV-Alum recruited a

large number of macrophages (CD11b+F4/80+) and significant

levels of neutrophils (CD11b+Ly6G+), but failed to recruit

significant levels of DCs or granulocytes/inflammatory

monocytes (Figure 3C). We then tested the effect of these

adjuvants in terms of their ability to cause activation and

maturation of the recruited immune cells. Our result showed

that LAV-AS04 and LAV-M caused significant activation and

maturation as evident by enhanced expression of costimulatory

molecules (CD80 and CD86) and maturation marker (MHC-II)

at 4 h post-injection (Figure 3D). After establishing that LAV-

AS04 and LAV-M generally induced a more powerful cell

migration and activation compared to alum, the impact on

antigen uptake was assessed. LAV labeled with Alexa Fluor™

488 was used to enable tracking of antigen after delivery. LAV+

cells were rapidly detected in DLNs 4 h after injection in only

LAV-AS04; however, these cells were detected at 24 h in all

groups where LAV was predominantly taken up by DCs

(Figure 3E). We then analyzed the ability of LAV-AS04 and

LAV-M to induce expression of various cytokines, chemokines,

their receptors, and adhesion molecules at the site of injection.

Our gene expression analysis at 4 h and 24 h shows that LAV

antigen without adjuvant modulated the expression of various

cytokines/chemokines or their receptors, which peaked at 4 h,

and then the level progressively declined at 24 h (Figure 3F).

While AS04 modulated the expression at an early time point (4

h), LAV-M modulated expression at both 4 h and 24 h. PBS

injection also induced basal level of expression of these

cytokines/chemokines owing to injury due to needle at the site

of injection.
Frontiers in Immunology 06
LAV-AS04 and LAV-M induced long-term
immune response and generation of
immunological memory

The success of vaccines often depends on the induction of a

strong and persistent memory response. To evaluate whether

immunization with LAV-AS04 and LAV-M can induce long-

term immune response with generation of immunological

memory, we analyzed the antibody level in various groups 180

days post-immunization. Of various groups, only LAV-AS04

and LAV-M were able to induce long-term persistent response

as significant levels of antibodies were detected in these groups

even after 180 days post-immunization (Figure 4A). While LAV-

AS04 was able to induce IgG and IgG1, LAV-M induced

significantly higher levels of IgG and IgG1 with significant

levels of IgG2c. To test the capacity of these adjuvants to elicit

functional immune memory, we boosted the animals with a

lower dose of non-adjuvanted recall antigen, and our results

show enhanced level of antibodies in both AS04 and Montanide

groups (Figure 4A). Animals immunized with LAV without

adjuvant and LAV-Alum showed a subsequent drop in antibody

titers and failed to evoke significant memory response following

Ag boost (Figure 4A). To test the generation of memory T cells,

we isolated the splenocytes and stimulated with recall antigen.

Our results show a significantly higher level of lymphocyte

proliferation in LAV-AS04 and LAV-M groups (Figure 4B).

Moreover, lymphocytes isolated from animals 1 week after

booster exhibited a significantly higher level of proliferation in

both LAV-AS04 and LAV-M groups (Figure 4B). We then

analyzed the memory phenotype of both CD4 and CD8 T cells

characterized as CD44high and CD62Lhigh (central memory,

TCM) and CD44high and CD62Llow (effector memory, TEM).

Animals immunized with LAV-AS04 and LAV-M induced

significantly higher levels of both central and effector memory

CD4T cells as compared to alum (Figure 4C). However, only

LAV-M was able to induce significant levels of both central and

effector memory CD8T cells (Figure 4C). Animals immunized

with PBS or LAV without adjuvant did not induce any

significant level of memory T cells. Formation of germinal
frontiersin.org
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FIGURE 4 (Continued)

Humoral and cell-mediated responses mediated by LAV formulated in various adjuvants. Mice were immunized subcutaneously with PBS or
LAV in alum or AS04 or Montanide on days 0 and 21 and then euthanized on day 28 to remove spleen to determine antigen-specific immune
response. (A) Antibody response. LAV-specific antibody levels (IgG, IgG1, IgG2c, and IgA) at various time points (days 0, 21, and 28) analyzed by
ELISA as detailed in Materials and Methods. (B) Lymphocyte proliferation. The splenocytes isolated from various immunized groups at day 28
were subjected to in vitro stimulation with recall antigen (LAV) and proliferation was assessed by counting the cells after 72 h. (C) Cytokine
analysis. Splenocytes were stimulated with varying concentrations (1, 2, and 10 µg/ml) of LAV for 48–72 h and culture supernatant was
analyzed for IL-4 and IFN-g by using a sandwich ELISA kit following the manufacturer’s instructions. Data are representative of three different
experiments. Significant differences were calculated using the one-way ANOVA (***, **, *, and ns indicate p < 0.001, p < 0.01, p < 0.05, and
non-significant, respectively).
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centers (GCs) is crucial for generation of long-lived plasma cells

that secrete high-affinity antibodies and also for development of

immunological memory. These GCs are formed in secondary

lymphoid tissues like spleen and lymph nodes (specifically

DLNs). To assess whether higher and long-term antibody

response induced by LAV-AS04 and LAV-M correlates to

their ability to modulate GCs, we isolated the inguinal lymph

nodes (DLNs) from animals euthanized at 28 days post-

immunization, and the presence of GCs was evaluated by

identifying B220+GL-7+ cells by immunofluorescence. Our

results show that LAV-AS04- and LAV-M-immunized mice

developed more lymph node GCs than LAV-Alum as evident

from the increased frequency of B220+GL7+ cells (Figure 4D).
LAV-AS04 and LAV-M induced
enhanced protective efficacy
compared to LAV-Alum in the
hamster model of leptospirosis

Golden Syrian hamsters are the preferred and most widely

used model for testing vaccines due to susceptibility to infection

and reproducibility of results. Hence, we evaluated the immune

response and protective efficacy of various vaccines in the

hamster model of leptospirosis. The antibody response

analyzed at days 21 and 28 (1 week after booster) shows

significantly higher levels of IgG generated in animals

immunized with LAV-AS04 and LAV-M (Figure 5A).

Similarly, lymphocytes isolated from the LAV-AS04- or LAV-

M-immunized group exhibited significantly higher (p < 0.05)

levels of proliferation as compared to LAV-Alum (Figure 5B).

Killed vaccine (HKL) was not able to generate LAV-specific

antibodies and T cells (Figures 5A, B). To test if the immune

response correlates to protection, we challenged animals at day

35 with virulent Leptospira and evaluated the protective efficacy

in terms of progressive loss of body weight, survival (using

endpoint criteria), histopathology, and bacterial load. The

challenged animals in the non-vaccinated control group (PBS)

showed typical signs of acute leptospirosis with necrosis and

small foci of gross and microscopic pulmonary hemorrhage.

While LAV-Alum and LAV-AS04 groups showed alleviated

features, animals in LAV-M and HKL groups were close to

normal (Figure 5C). As decline in body weight is considered as
Frontiers in Immunology frontiersin.org08
the earliest sign of progression of disease (leptospirosis), we

included it as one of the clinical parameters and examined the

body weight on a daily basis; ≥20% weight loss was considered as

the endpoint criterion to prevent spontaneous death. Our results

show that there was progressive weight loss in the control (PBS)

group (Figure 5D). While LAV-Alum showed significant

alleviation, the LAV-AS04-immunized group could significant

delay this progression and then regained the weight 15 days

post-challenge. In contrast, LAV-M-immunized animals showed

a decline in weight 15 days post-infection for a very short

window and quickly regained the weight whereas HKL showed

no weight loss during the same period and increased their body

weight until the end of the experiment (Figure 5D). The survival

data on the 28th day post-infection showed 83% survival of the

animals in LAV-M, 67% in LAV-AS04, and 50% in LAV-Alum,

while none of the animals survived in the control PBS group

(Figure 5E; Supplementary Table 1). Killed vaccine (HKL)

provided 100% protection. Overall, there was a significant

enhancement in the survival of animals vaccinated with LAV-

M and LAV-AS04 as compared to the LAV-Alum group

(Figure 5E). The leptospiral burden in the liver, lungs, and

kidneys were measured by qPCR in terms of DNA copy

number per milligram of tissue. While LAV-Alum-immunized

animals showed a significant decrease in bacterial load, the

burden was significantly higher than LAV-AS04 in all the

organs (Figure 5F). The bacterial load in animals immunized

with LAV-M was significantly lower than LAV-AS04 but similar

to HKL. There was no significant difference in bacterial burden

in all organs of animals vaccinated with LAV-M and HKL;

however, HKL induced sterilizing immunity in more animals

(Figure 5F). The histopathological analysis of organs (kidneys

and liver) from various groups demonstrated varying degrees of

lesions. PBS control animals showed severe kidney lesions

characterized by marked chronic tubulointerstitial nephritis

with severe atrophy, fibrosis, and infiltration of lymphocytes.

Liver lesions in the PBS group were characterized by

centrilobular necrosis with a lot of inflammatory foci

(Figure 5G). Analysis of histopathological scores revealed that

in the HKL group, 75% of animals were normal and 25% had

mild lesions. Animals immunized with LAV-M (50% normal,

33% mild, and 17% moderate lesions) or LAV-AS04 (42%

normal, 33% mild, and 25% moderate lesions) had

significantly reduced lesions as compared to LAV-Alum. In
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FIGURE 5 (Continued)

Evaluation of immune response and protective efficacy in hamster model of leptospirosis. Golden Syrian Hamsters (male, 4–5 weeks) were
immunized subcutaneously with PBS or HKL or LAV in alum or AS04 or Montanide ISA720VG at day 0 and then boosted at day 21. (A) Antibody
response. LAV-specific total IgG levels in serum (collected at 0, 21, and 28 days) analyzed by ELISA as described in Materials and Methods.
(B) Cell proliferation. Splenocytes isolated from various immunized groups on day 28 were subjected to in vitro stimulation with recall antigen (LAV) and
proliferation was assessed by counting the cells after 72 h. (C) Clinical manifestations in challenged animals. Gross appearance of the organs of the
animals from various groups examined 28 days post-challenge with virulent Leptospira. (D) Bodyweight measurement. Challenged hamsters were
weighed on a daily basis for 28 days and plotted as percent body weight as described in Materials and Methods. (E) Survival data. Kaplan–Meier’s plot
showing percent survival of the immunized animals post challenge with virulent Leptospira and analyzed based on criteria described in Materials and
Methods. (F) Leptospira burden. DNA was extracted from tissues (kidney, liver, and lungs) of the survived animals from various groups at 28 days post-
challenge and subjected to RT-PCR to detect LipL32 and 16s using specific primers and then determine bacterial burden per milligram of tissue as
described in Materials and Methods. Means are depicted as bold horizontal bars along with standard deviations. (G) Histopathology. Representative H&E
staining of the liver and kidney sections was obtained 28 days after the challenge showing various pathological conditions. Data are representative of
three different experiments. Significant differences were calculated using the one/two-way ANOVA (****, ***, **, *, and ns indicates P < 0.0001, P <
0.001, < 0.01, P < 0.05 and non-significant respectively).
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the LAV-Alum group, only 25% of animals had mild lesions,

50% of animals had moderate lesions, and 25% of animals were

severely affected (Figure 5G; Supplementary Table 2).
Discussion

The currently available killed vaccine for leptospirosis is used

mainly in animals and suffers from several limitations like toxicity,

short-term and serovar-specific immunity, and inability to

provide sterilizing immunity (8). The immune response

generated against natural infection or killed vaccine induces

protection, which is primarily mediated by antibodies against

LPS. Since LPS is a T-independent antigen, there is a low, serovar-

specific, and short-term response, which lacks immunological

memory. Thus, the vaccine based on T-dependent protein

antigens that are conserved among different serovars and can

induce long-term humoral and T-cell response is urgently needed

(38). In recent years, major focus has been on the development of

subunit vaccines based on protein antigens that are conserved

among different pathogenic serovars (39). Several surface proteins

have been identified, which, when used in recombinant form with

adjuvant, have shown to induce significant levels of protection

against challenge in the hamster model of leptospirosis (9–18). Of

these proteins, Leptospira immunoglobulin-like proteins (LigA

and LigB) are the most promising subunit vaccine candidate (19,

20, 22, 25, 26, 28). LigA is not present in all pathogenic species of

Leptospira, but has been found in only L. interrogans (serovar Lai

is an exception) and L. kirschneri (40). LigA, specifically its

variable C-terminal region (LAV), has been demonstrated to be

a very good vaccine candidate in different platforms like subunit

protein, DNA, encapsulated, lipidated, and carbon nanotubes

conferring high level of protection (efficacy varying from 60% to

100%) against challenge in animal model as tested by several

groups (19–26, 41–44). Although the protective role of LigA is

well established, recent studies showed that mutants of LigA and

LigB (LigAB) are attenuated in virulence and Lig proteins are

involved in serum resistance of pathogenic Leptospira, further

indicating that these proteins are an important target and anti-
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LigA immune response can be protective (45, 46). Adjuvants have

been key to the success of these subunit vaccines, and several

adjuvants have been evaluated to enhance the immune response

and efficacy of these protective antigens including LigA (8, 17, 19,

21, 22, 28, 31, 32). While alum was most widely used, it provided

partial protection, and Freund’s adjuvant being very potent has

been associated with reactogenicity, pain, and distress to animals

(10, 20, 24, 28–30, 47). Moreover, none of the vaccine

formulations including these adjuvants provided sterilizing

immunity or prevented renal colonization of Leptospira (9–18).

Additionally, these adjuvants are non-clinical, which is a major

hurdle in further refining them to be used in human or animal

vaccination. Recently, several clinical adjuvants have become

available but have not yet been evaluated along with subunit

antigens of Leptospira (48). The choice of adjuvant included in

vaccine depends on the type of protective immune response

desired against a particular infection. Although correlates of

protective immunity against Leptospira is not very well

understood, it is believed that antibodies play a major role in

protection although they themselves are not sufficient to eliminate

the bacteria (49, 50). Furthermore, inferences from several studies

in small and large animals like cattle conclude that apart from

antibodies, CD4 or gd T cells producing IFN-g play a major role in

inducing protective immune response (51–53). Moreover, the

presence of Leptospira in monocytes/macrophages and/or Vero

cells indicate that it could have a short intracellular phase that

might help in immune evasion (54–56). Thus, an ideal vaccine

should include adjuvant that is capable of inducing a strong

antibody response (Th2 response) as well as a significant level

of IFN-g (Th1 response) for killing leptospires residing in immune

cells. Since innate response activated specifically through TLR2

and TLR4 plays a major role in protection against Leptospira, we

speculated that a vaccine or adjuvant formulation having TLR4

agonist like Monosphosphoryl lipid A (MPLA) might induce

strong innate and subsequent adaptive response (49, 57). MPLA

from Bordetella pertussis in combination with chimeric protein

rChi, which includes LAV in its sequence, has shown to induce

protection against challenge with virulent Leptospira in an animal

model (58). AS04 (alum + MPLA) is a clinical adjuvant that has
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shown strong immune response correlating to better efficacy than

alum against various infections in animal models and humans

(33–36). Emulsion-based adjuvants have been successfully used

against various diseases and few adjuvants like MF59, Montanide

adjuvants, and ASO3 are approved for human use. Freund’s

adjuvant, which is a water-in-oil adjuvant capable of generating

a balanced immune response, is good for initial screening;

however, severe toxicity has precluded its use in clinical studies.

To overcome this toxicity issue, non-metabolizable mineral oil

(paraffin oil) was replaced with metabolizable oil squalene and

modified water-in-oil Montanide adjuvants (ISA51, ISA720VG,

etc.) were developed by Seppic, France. Montanide adjuvants have

shown to generate enhanced humoral and cellular immune

response to malaria vaccine compared to alum and also did not

show any serious side effects (33, 37, 59).

Keeping these reports in view in the present study, we

evaluated the immune response and protective efficacy of LigA
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(LAV) formulated in clinical adjuvants AS04 and Montanide

ISA720VG and compared with the widely used alum. Due to the

unavailability of hamster-specific reagents, we used mice to

evaluate immune response and decipher the mechanism of

action of these adjuvants. Our results show that LAV

formulated in AS04 or Montanide adjuvant induced

significantly higher levels of antibodies than LAV-Alum. Both

LAV-AS04 and LAV-M induced significantly higher levels of T-

cell proliferation and induction of both IL-4 and IFN-g. While

LAV-Alum induced a Th2 response, LAV-AS04 and LAV-M

induced a balanced or mixed Th1/Th2 response (Figure 1).

Thus, low to moderate levels of protection induced by various

subunit vaccines against Leptospira formulated with alum and

other adjuvants may be attributed to their inability to induce a

balanced or mixed Th1/Th2 response. These results also

correlate to the previous observation of association of these

responses with enhanced protective efficacy in a hamster model
FIGURE 6

Schematic presentation of mechanism by which LAV-AS04 or LAV-M induces superior immune response and protective efficacy than LAV-Alum
in mice and hamster model. Mice immunized with LAV-Alum were able to recruit few innate immune cells at DLNs leading to induction of low
level of B cells (antibodies), T cells (mainly Th2 cells), low GC reaction, and limited immunological memory (low numbers of effector memory
cells). In contrast, LAV-AS04 recruited a significantly higher number of innate immune cells leading to induction of enhanced level of antibodies
and T cells (both Th1 and Th2 cells) and also generation of both effector and central memory T cells. LAV-M recruited a much higher number of
innate immune cells correlating to higher level of antibodies and T cells than LAV-AS04, along with enhanced GC reaction and generation
strong memory response. Hamsters immunized with LAV-M and LAV-AS04 generated significantly higher levels of antibodies and T cells than
LAV-Alum. These antibodies and T cells were protective and were able to kill the Leptospira leading to reduced bacterial load in organs.
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(10, 28–30). Although generation of CD8T cells, specifically

cytotoxic T lymphocytes (CTLs), is important against

intracellular pathogens, the existence of cytotoxic CD8T cells

in leptospirosis patients has been previously reported (60).

Furthermore, these CD8T cells were able to elicit specific CTL

responses when stimulated with the LigA peptide. Our results

show that immunization with LAV-AS04 and LAV-M induced

the generation of CTLs capable of killing 70%–80% target cells,

highlighting the importance of these adjuvants and their ability

to generate CD8T cells, specifically CTLs (Figure 2).

Vaccine antigen is first recognized by local and infiltrating

innate immune cells at the injection site and DLNs; hence, the

unique repertoire of these cells may greatly influence the

adaptive immune responses (61). Several adjuvants have

shown to modulate the expression of chemokines, cytokines,

or their receptors at the site of injection (62). Our results show

that both LAV-AS04 and LAV-M were able to recruit more

innate immune cells and cause a significant level of activation

and also modulate the expression of several cytokines,

chemokines, and receptor genes (Figure 3). AS04 is known to

induce local inflammatory response leading to recruitment of

DCs and monocytes (63). Several emulsion adjuvants have

shown to be capable of recruiting innate cells, which is greatly

influenced by their droplet size (64). Thus, our results are in

agreement with previous studies demonstrating the ability of

adjuvants to recruit innate cells and traffic the antigen to the

DLNs to induce antigen-specific adaptive immune responses

(65, 66).

Generation of immunological memory against Leptospira is

very important as natural infection or vaccination does not seem

to generate memory T cells that can be activated by in vitro

stimulation (67). Although several subunit vaccines (containing

different adjuvants) have been tested for immune response and

protective efficacy, no attempt has been made to evaluate the

generation of long-term response or check immunological

memory generated by these adjuvanted vaccines. Our results

show that both LAV formulated in AS04 or Montanide

generated strong B- and T-cell memory (Figure 4). Although

AS04 induced strong CD4 T-cell memory, Montanide was able

to induce memory CD8 T cells as well. Moreover, no skewing of

the Central vs. Effector memory populations in either CD4 or

CD8 T cells was observed regardless of the adjuvant being used.

The formation of GCs is a critical element for the production of

high-affinity antibodies and long-lived plasma cells, and the

generation of immunological memory (68). It has been

demonstrated that high antibody titers without GC reaction is

not protective, suggesting that GCs are critical for long-term

vaccine efficacy (69). Our results clearly show that both AS04

and Montanide were able to form GCs as indicated by the higher

number of GL7+ B cells; however, the GC reaction was

significantly higher in LAV-M (Figure 4). The ability of

emulsion adjuvants like Montanide to enhance GC reaction is

multifactorial and may be attributed to the increased availability
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of antigen, the selective polarization of naïve T cells to TFH cells,

and the modulation of memory B-cell formation. Additionally,

the slow degradation of oil coupled with the ability to retain

antigen by emulsion adjuvants is also critical for GC reaction

and maintenance of long-term memory (70).

To check if the immune response in mice correlates to

protective efficacy, we used the hamster model of leptospirosis.

Our results show that hamsters immunized with LAV-AS04 or

LAV-M induced significantly higher levels of antigen-specific

antibodies and enhanced levels of T-cell proliferation than those

immunized with LAV-Alum (Figure 5). The immune response

correlated to a higher level of protection as evident from

enhanced survival, and reduced bacterial load and lesions in

vital organs (Figure 5; Supplementary Tables 1, 2). To be more

consistent with survival data, we used endpoint criteria to assess

the survival of the challenged animals due to inconsistency in

getting 100% lethality and also unexpected recovery of the

control group. Interestingly, LAV formulated in AS04 adjuvant

induced a much higher level of protection (67%) with sterilizing

immunity in some animals as compared to only 60% in

previously tested MPLA containing the LMQ adjuvant (71).

Furthermore, this efficacy was achieved with only two doses of

LAV-AS04 as compared to three doses of LAV-LMQ. LAV-M

imparted protective efficacy similar to HKL with sterilizing

immunity in some of the animals (Figure 5). Although HKL

induced the best protective efficacy, it was not contributed by

LAV-specific antibodies and T cells correlating to previous

reports of lack of expression of LigA in bacteria cultured in

vitro (72, 73).

In conclusion, our study demonstrated that LAV formulated

in clinical adjuvants AS04 and Montanide ISA720VG induced

superior immune response compared to alum, which may be

attributed to their ability to enhance recruitment and activation

of immune cells leading to induction of strong innate and

subsequent adaptive immune response. Furthermore, the

strong immune response correlated to the enhanced protective

efficacy in the hamster model of leptospirosis (Figure 6). Thus,

both AS04 and Montanide ISA720VG are promising adjuvants

and can be further tested against leptospirosis in clinical trials.
Materials and methods

Animals

Male C57BL/6 mice (5–6 weeks) were obtained from the

Animal Resource and Experimental Facility of the National

Institute of Animal Biotechnology (NIAB), Hyderabad. Mice

were kept under standard specific pathogen-free conditions and

received water and food ad libitum at the facility. Male Golden

Syrian hamsters (4–5 weeks old), originally procured from the

Jackson Laboratory, USA, was maintained at Jeeva Life Sciences

Pvt. Ltd., Hyderabad, and experiments were performed in their
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facility. All the animal procedures were performed according to

the norms of the Institutional Animal Ethics Committee (IAEC)

regulated by the Committee for the Purpose of Control and

Supervision of Experiments on Animals (CPCSEA) of India.
Chemicals and reagents

Cell culture reagents were procured from Sigma-Aldrich

(USA) unless otherwise mentioned; ELISA kits were procured

from R&D Biosystems. Flow cytometry reagents and antibodies

were from BD Biosciences and Santa Cruz, respectively, unless

specified. Monophosphoryl Lipid-A and Alhydrogel<sp>®

adjuvant 2% (alum) were purchased from In vivogen.

Montanide ISA720VG, originally procured from SEPPIC,

France, was a kind gift from Dr. S. N Singh, Biovet Pvt. Ltd.
Preparation of antigen and vaccine
formulation

The LAV was purified as described previously (74). Briefly,

BL21(DE3) carrying the expression plasmid (pET28a-LAV) were

grown at 37°C overnight on LB broth containing 50 mg/ml

kanamycin, and the expression of the protein was induced with

1 mM isopropyl b-D-1-thiogalactoside (IPTG). The cells were

harvested by centrifugation at 10,000 rpm, and the cell pellet was

resuspended in 100 mM Tris-HCl and 150 mM NaCl, pH 8.0,

followed by sonication at constant pulses. The lysate was

centrifuged to remove cell debris, and the supernatant was

subjected to affinity chromatography using Ni-NTA beads

column (Takara). Eluted protein was dialyzed against 1×PBS

with four changes for 2 days at 4°C. The protein was then

passed through Detox-Gel (Pierce, USA) to remove any

contaminating LPS from E. coli, and a residual trace amount of

LPS was monitored by Limulus amoebocyte lysate (LAL,

Endotoxin Detection Kit, Pierce, Thermo, USA) assay following

the manufacturer’s instructions. The endotoxin level as determined

by LAL assay was found to be <0.012 EU/ml. The purified protein

was checked for size and purity by SDS-PAGE, and concentration

was estimated using the Bradford reagent (Sigma, USA).
Immunization

Mice (10 animals/group) were immunized subcutaneously

with various vaccine formulations as detailed in Table 1.
ELISA

Serum samples from individual mice were collected at

various time points and total antibody or isotypes (IgG, IgG1,
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IgG2c, and IgA) were evaluated by ELISA using standard

protocol. Briefly, 96-well microtiter plates (Nunc, Denmark)

were coated with LAV (100 ng/well) in 0.1 M bicarbonate buffer

and incubated overnight at 4°C. The plates were washed three

times with 1 × PBS containing 0.05% Tween 20 (PBST). The

plates were then blocked with 1% BSA for 2 h at room

temperature. After the usual washing steps, 100 µl of serum

(control and vaccinated) diluted 1:100 to 1:100,000 in PBST was

added to each well and incubated for 1 h at 37°C in a humid

chamber. The plates were washed three times with PBST and

incubated with 100 µl of a 1:6,000 (Southern Biotech) dilution of

HRP-conjugated goat anti-mouse IgG or IgA for 30 min at room

temperature. For isotype determination, both HRP-conjugated

anti-mouse IgG1 and IgG2c were added in separate wells with

specific dilutions (1:6,000, Southern Biotech) and incubated for

30 min. After washing the plates five times with PBST, 100 µl of

TMB substrate was added to each well. The plates were

incubated in the dark at room temperature for 20 min. The

enzymatic reaction was stopped by the addition of 2N H2SO4,

and the optical density was read at 450 nm by using an

ELISA reader.
Cell proliferation and cytokine estimation

Animals were euthanized on the 28th day post-immunization,

and splenocytes were prepared from each group using standard

procedure. Spleens pooled from three to four mice were

homogenized and cells were pelleted down by centrifugation at

1,500 rpm for 5 min. RBCs were lysed using ACK lysis buffer

(Invitrogen, USA), and the cells were resuspended in wash buffer

(PBS with 2% FCS). Cells were centrifuged at 1,500 rpm for 5 min,

resuspended in RPMI supplemented with 10% fetal bovine serum

(Invitrogen), 100 U/ml penicillin, and 100mg/ml streptomycin, and

counted using the trypan blue exclusion method. Splenocytes

(1×105cells/well) were seeded in a 24-well plate and induced with

varying concentrations of LAV (1, 2, and 10 µg/ml) for 48 to 72 h.

Cells were recovered by gentle pipetting and counted. In another set

of experiment, culture supernatant was collected and cytokine levels

of IL-4 and IFN-g were estimated using sandwich ELISA kits (R&D

Systems) as per the manufacturer’s instructions.
Generation of bone marrow-derived DCs

Bone marrow-derived dendritic cells were prepared as

described previously (32). Briefly, bone marrow recovered

from femur and tibia of mice was passed through a 70-µm cell

strainer in sterile culture dish containing complete DMEM

medium. The cell suspension was centrifuged at 1,000 rpm for

5 min, and the supernatant was discarded. The RBCs were lysed

by ACK lysis buffer and washed three times and finally

suspended in complete medium. 107 bone marrow cells per
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well were cultured in six-well plates in 4 ml of complete DMEM

medium supplemented with GM-CSF (20 ng/ml) and IL-4 (5 ng/

ml) (Peprotech). On days 2 and 7, half of the medium was

replaced with new medium supplemented with GM-CSF (40 ng/

ml) and IL-4 (10 ng/ml). On day 9, non-adherent and loosely

adherent cells were removed. The adherent cells were then

harvested by gentle washing with PBS, pooled, and used for

specific assays.
CTL assay

T-enriched cells were prepared from spleens of various

immunized groups, and cytotoxicity assay was performed

using the LDH method as described previously (32, 75).

Briefly, 5×105 DCs (prepared as described above) were pulsed

with LAV. For the last hour of culture, mytomycin C (50 mg/ml

for 45 min) was added. A total of 3×107 spleen cells were added

in 10 ml of RPMI plus 10% FBS containing 0.2 ng/ml IL-2, in 25-

cm2 tissue culture flasks, kept upright. After 5 days at 37°C in a

humidified atmosphere supplemented with 5% CO2, the non-

adherent cells were recovered from the flask and used as effector

cells (E). The cells were counted and incubated with DCs pulsed

with LAV (specific target) or DCs pulsed with OVA (non-

specific target). The reaction mixture was set up with varying

E:T ratios (10:1, 25:1, and 50:1) for 5 h at 37°C in a humidified

atmosphere supplemented with 5% CO2, and lysis of target cells

was determined using a non-radioactive cytotoxicity assay kit

(Cytotox 96, Promega) following the manufacturer ’s

instructions. Specific target cell lysis by CTLs was calculated as

the percentage of total LDH activity of target cells as follows: %

specific lysis = (experimental release − spontaneous release)/

(maximum release – spontaneous release).
Flow cytometry

The antigen (LAV) was labeled with the Alexa Fluor™ 488

(Invitrogen-A10235) as per the manufacturer’s instructions to

assess the antigen uptake in the cell recruitment studies. Cells
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from DLNs isolated at various time points (4 h and 24 h) were

washed and Fc receptors were blocked with anti-mouse CD16/

CD32 antibody in FACS buffer at 4°C. The cells were stained

with anti-mouse CD11c and MHC-II (DCs), CD11b/F4/80

(Monocytes/Macrophages), CD11b/Ly6C (Monocytes),

CD11b/Ly6G (Neutrophils), CD80, CD86, and MHC-II for

analysis of specific cell type and their activation status.

Splenocytes isolated from immunized mice of various groups

were stained with anti-mouse CD3, CD4, CD8, CD44, and

CD62L. The cel ls were washed and fixed with 1%

paraformaldehyde. A total of 50,000 or 100,000 events were

acquired depending on type of experimental sample using a BD

FACS Fortessa. All the data were analyzed by using FlowJo

software (Tree Star Inc.).
Lymph node sectioning and
immunofluorescent staining

Lymph nodes were obtained from various groups,

sectioned, and stained as described previously (76, 77).

Briefly, lymph nodes were placed in 10 ml of 4%

paraformaldehyde (PFA) for a 1h duration and then

transferred into 30%, 20%, and 10% sucrose solutions

gradually for dehydration at 4°C. Lymph nodes were frozen

in OTC in cryomold, by Tissue-Tek using liquid nitrogen.

Frozen lymph node samples were stored in a −80°C fridge.

Sections were obtained at a thickness of 12 mm using a Leica

Cryostat (Leica Geosystems, Heerbrugg, Switzerland). After

rehydration in Tris-buffered saline and blocking in Tris-

buffered saline with 5% BSA and 0.05% Tween 20, the

sections were stained with FITC-conjugated rat anti-mouse

CD3 (555274, BD Biosciences, 1:300), Per-CP-conjugated

CD45R (B220), Anti-mouse (130-102-815, Miltenyi Biotec,

1:100), and PE-conjugated T- and B-Cell Activation Antigen

(GL-7) Rat Anti-Mouse (561530, BD Biosciences, 1:200). Slides

were incubated overnight at 4°C in a moist chamber. Stained

slides were mounted with VECTASHIELD<sp>® Antifade

Mounting Medium with DAPI (Vector laboratories) to stain

the nucleus. Immunofluorescence-stained lymph node sections
TABLE 1 Vaccine formulation and immunization schedule.

Group Antigen (µg/50 µl) Adjuvant (µl) Volume (µl)

Immunization Booster

PBS 0 0 – 100 µl

LAV 10 5 – 100 µl

LAV-Alum 10 5 Alum 50 µl 100 µl

LAV-AS04 10 5 Alum 50 µl + MPLA 5µg 100 µl

LAV-M 10 5 Montanide ISA 720 50 µl 100 µl
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were imaged using a CarlZeiss Axio scope VII microscope with

20× Plan Apochromat 0.45 NA objective and EXFO X-Cite

metal halide light source. Images were captured using Zen

software by tile scanning mode with a Hamamatsu ORCA-ER

CCD camera and processed (stitched).
RT-PCR

Injection site tissues were taken out after various time points

and stored in 500 µl of TRIzol (Invitrogen, Carlsbad, CA) and

equal volumes of chloroform were added; samples were

centrifuged at 12,000 rpm for 5 min at 4°C. The aqueous

phase was then passed through RNA easy mini columns (MN)

and RNA was purified following the manufacturer’s protocol.

RNA quality was checked by running on a formaldehyde gel for

16s and 18s RNA bands and also on Bioanalyser. The RNA

quantity was assessed by UV spectroscopy and purity by 260/280

ratio. First-strand cDNA was synthesized using PrimeScript 1st

strand cDNA Synthesis Kit (Takara) following the

manufacturer’s instructions. RT-PCR was performed in 96-

well microtiter plates on a Bio-Rad sequence detection system.

The two-step amplification was performed in a 10-µl reaction

volume containing 50 ng of cDNA, 10 µM each primer

(Supplementary Table 3) and SYBR green (Bio-Rad). Samples

were run in triplicate and data were analyzed with the Sequence

Detection System (Bio-Rad). The experimental data were

presented as fold changes of gene expression of stimulated

cells at various time points relative to control. mRNA levels of

the analyzed genes were normalized to the amount of b-actin or

GAPDH present in each sample. All primers were synthesized by

IDT and their sequences are given in (Supplementary Table 3).
Infection experiments

Leptospira culture—The virulent L. interrogans serovar

Pomona was cultured at 28°C under aerobic conditions in

liquid Ellinghausen-McCullough-Johnson-Harris (EMJH)

medium (Difco, BD, USA) supplemented with 10% (vol/vol)

EMJH enrichment medium (BD, USA). Virulent Leptospira

were routinely maintained by iterative passage in golden

Syrian hamsters and subsequent isolation from kidneys.

Immunization and challenge—Male hamsters (4–5 weeks

old) were immunized subcutaneously with PBS, Heat killed

bacterin (109), or LAV (50 mg/animal) in alum or AS04 or

Montanide in a 200-ml volume. Animals were boosted with 25 µg

of antigen/animal on day 21. Prior to immunization, animals

were anesthetized by intraperitoneal injection of 100 µl of

ketamine (10 mg/ml)/xylazine (1 mg/ml) per 130 g of body

weight. Two weeks after booster (day 35), animals were
Frontiers in Immunology 15
challenged intraperitoneally with 100 × ED50 of virulent L.

interrogans serovar Pomona. ED50 was determined as

described previously (78). Endpoint criteria included

hematuria, loss of appetite, gait or breathing difficulty, ruffled

fur, hunched posture, prostration, or weight loss of >20%. The

clinical signs were observed thrice a day for 4 weeks and the

animals showing serious clinical signs (moribund) were

euthanized after blood collection and counted as dead. The

hamsters that survived the challenge were bled and sacrificed

at the end of observation. The kidneys, liver, and lungs were

collected aseptically for determining bacterial load

and histopathology.

Immune response—Antibody (IgG) level in sera on days 0,

21, and 28 were determined by ELISA as described elsewhere

(22, 28). Briefly, LAV (200 ng/well) in 0.1 M bicarbonate buffer

was coated on polystyrene plates at 4°C overnight. After the

usual steps of blocking and washing, hamster sera (ranging from

1:100 to 1:100,000) were added and further incubated for 1 h at

RT. After the usual steps of washing, anti-hamster total IgG

(1:6,000, Southern Biotech) was added and further incubated for

30 min at RT. The wells were washed, followed by the addition of

100 µl/well of TMB, and then after 20 min, 50 ml of 2N H2SO4

was added, and plates were read at 450 nm. Lymphocyte

proliferation was determined by stimulating splenocytes from

various groups with LAV (1, 2, and 10 µg/ml) and counting cells

after 48–72 h.

Determination of bacterial load—Bacterial load was

determined in organs of all the infected animals whenever

they reached the endpoint criteria and also for those that did

not reach the endpoint criteria and survived till the end of

experiment. Bacterial load was determined using quantitative

RT-PCR method as described previously (79). Briefly, tissues

(kidney, liver, and lung) were sliced into small pieces and total

DNA was extracted using the standard protocol. The PCR was

performed using 2× SYBR Green PCR Master Mix (Bio-Rad)

with specific primers for leptospiral 16s rRNA and LipL32 on a

Bio-Rad Real-Time PCR System according to the manufacturer’s

instructions. Leptospiral DNA standard curve was constructed

from 10-fold serially diluted DNA of L. interrogans serovar

Pomona equivalent to 2 × 101 to 2 × 109 cells/ml.

Histopathology—Hamster tissues were collected and fixed by

immersion in 10% neutral buffered formalin. The fixed tissues

were sectioned at 5 mm, stained with hematoxylin and eosin, and

examined by light microscopy. The severity of Leptospira-

induced lesions was graded by a board-certified veterinary

pathologist who was blinded to the treatment group.

Tubulointerstitial nephritis was assessed as 0 = normal, 1 =

mild, 2 = moderate, and 3 = severe, using criteria as previously

described (28). Liver pathology was graded based on the average

number of inflammatory foci in 10× fields: 0 = normal, 1 = 1–3,

2 = 4–7, and 3 = >7.
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Statistical analysis

For most of the experiments, one-way analysis of variance

(ANOVA) using Dunnett hypothesis test was executed to

analyze the results, unless otherwise mentioned. The data were

represented as the mean of triplicates ± SEM. p < 0.05 was

considered as significant.
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