
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Shikhar Mehrotra,
Medical University of South
Carolinarleston, United States

REVIEWED BY

Mitesh Dwivedi,
Uka Tarsadia University, India

*CORRESPONDENCE

Yan Lu
luyan6289@163.com

SPECIALTY SECTION

This article was submitted to
Vaccines and Molecular Therapeutics,
a section of the journal
Frontiers in Immunology

RECEIVED 05 July 2022

ACCEPTED 04 August 2022
PUBLISHED 31 August 2022

CITATION

Feng Y and Lu Y (2022) Advances in
vitiligo: Update on therapeutic targets.
Front. Immunol. 13:986918.
doi: 10.3389/fimmu.2022.986918

COPYRIGHT

© 2022 Feng and Lu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Mini Review
PUBLISHED 31 August 2022

DOI 10.3389/fimmu.2022.986918
Advances in vitiligo: Update on
therapeutic targets

Yifei Feng and Yan Lu*

Department of Dermatology, Jiangsu Province People’s Hospital and Nanjing Medical University
First Affiliated Hospital, Nanjing, China
Vitiligo, whose treatment remains a serious concern and challenge, is an

autoimmune skin disease characterized by patches of depigmentation. The

increasing application of molecular-targeted therapy in skin diseases, such as

psoriasis and systemic lupus erythematosus, has dramatically improved their

condition. Besides, there is a favorable effect of repigmentation in the

treatment of the above diseases combined with vitiligo, implying that

molecular-targeted therapy may also have utility in vitiligo treatment.

Recently, the role of cytokine and signaling pathways in vitiligo pathogenesis

are increasingly recognized. Thus, investigations are underway targeting the

molecules described above. In this paper, we present a synopsis of current

practices in vitiligo treatment and introduce the improvement in identifying

new molecular targets and applying molecular-targeted therapies, including

those under development in vitiligo treatment, providing valuable insight into

establishing further precision medicine for vitiligo patients.

KEYWORDS

vitiligo, targeted therapy, JAK inhibitors, biological, treatment, miRNA -
microRNA, Treg
1 Introduction

Vitiligo is a primary, circumscribed, or generalized depigmentation of the skin and

mucosa, related to genetic factors, self-destruction of melanocytes, cytokines,

autoimmunity, and oxidative stress (1). While the detailed molecular mechanisms still

require further investigation. In recent years, various studies have showed that the IFN-g-
CXCL9/10-CXCR3 axis appears to be important in vitiligo, via inhibiting melanogenesis,

inducing apoptosis of melanocytes, and further recruiting T cells to the skin. These are all

involved in the JAK/STAT pathway. In addition, cytokine, including HSP70i, IL-15, IL-

17/23, TNF as well as wnt signaling pathway, Tregs, miRNAs have also been proved to be

involved in the pathogenesis of vitiligo.

Vitiligo can be treated by different modalities of phototherapy, surgical procedures, and

topical therapies, such as glucocorticosteroids, immunosuppressive agents, calcineurin

inhibitors, and vitamin D. However, current treatments for vitiligo remain suboptimal,

which may not be equally effective in all vitiligo patients, and it would be inconvenient for
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patients to visit clinics for phototherapy. Targeted therapies, such

as biologics targeting cytokines and small-molecule inhibitors

targeting intracellular signaling molecules, are recently emerging

as promising therapeutics for autoimmune diseases. Their

applications also promote our understanding of the detailed

molecular mechanism of vitiligo and are essential for guiding a

more precise vitiligo treatment. In this article, details of the roles

that related cytokines and pathways play as well as the efficacy of

targeted therapy have been described.
2 Current treatment

Topical, systemic treatment, and phototherapy are useful for

stabilization and repigmentation of vitiligo. Treatment modalities

are chosen in the individual patient, based on disease severity,

disease activity (stable versus progressive disease), patient
Frontiers in Immunology 02
preference (including cost and accessibility), and response

evaluation. For rapidly progressive disease, low-dose oral

glucocorticoids and phototherapy are useful in stabilizing the

disease. Therapeutic options for stable, segmental vitiligo include

topical therapies (eg, topical corticosteroids, topical calcineurin

inhibitors), targeted phototherapy, and surgical therapy (tissue

grafts and cellular grafts) (Table 1) (14). In recent years, attempts

have been made to improve the repigmentation of vitiligo

phototherapy by combination therapies, including NB-UVB

with glucocorticoids (15), and topical calcineurin inhibitors (16).

While their positive results were not confirmed in all studies.

However, the method of treatment described, which were

nonspecific, general, off-label, non-targeted with modest

efficacy led to the problem of recurrence after stopping

treatment. Therefore, efforts should be made to achieve a more

comprehensive understanding of vitiligo pathogenesis to develop

novel effective therapies (Table 2).
TABLE 1 Current treatment modalities for vitiligo.

Classification Treatment Dosage Reference

Active Systemic glucocorticoids 10-20mg/d (2–4)

Phototherapy NBUVB

Systemic immunosuppressants Cyclosporine,
methotrexate,
and
mycophenolate
mofetil

Stable Nonsegmental
vitiligo

<10 percent of
the body
surface area

Localized Topical corticosteroids Mometasone
furoate

(5)

Topical calcineurin inhibitors Tacrolimus
(0.03% in
children and
0.1% in adults)
or
pimecrolimus
1%

(6)

Disseminated Phototherapy NBUVB –

Recalcitrant Targeted
phototherapy

308 nm monochromatic excimer lamps or lasers (7)

Psoralen plus
ultraviolet A
photochemotherapy

PUVA (8)

Transplantation
procedures

Autologous suction blister grafts; Minigrafts or punch grafts, including
1 mm punch grafts; Split-thickness grafts; Laser ablation plus cultured
epidermal suspensions; Autologous noncultured epidermal cell
preparations, including the Jodhpur technique; Hair follicle
transplantation; Autologous melanocyte cultures

(9)

10 to 40 percent of the body surface
area

Phototherapy NBUVB (10)

>40 percent of the body surface area Phototherapy NBUVB –

Depigmentation Monobenzone (11)

Segmental vitiligo Topical corticosteroids (12, 13)

Topical calcineurin inhibitors

Targeted phototherapy

Transplantation procedures
fro
NBUVB, Narrow Bound Ultra Violet B.
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TABLE 2 Molecular-targeted therapies for the treatment of vitiligo.

Reference Classification Target
molecule

Agent Study stage Dosage Results

(Harris et al. 2012) (17) IFN-g
neutralizing
antibody

IFN-g XMG-6 Mouse model/
Case series

100-500 mg
intraperitoneal injection
twice weekly

Significantly inhibited the development of
depigmentation

Richmond, Harris,
Dresser, Su, Zhou, Deng,
Hunter, Luster, et al.
2014) (18)

CXCL10
neutralizing
antibody

CXCL10 CXCL10
neutralizing
antibodies

Mouse model 100mg intraperitoneal
injection 3 times weekly

Develop repigmentation after 4 weeks of
treatment

(Richmond et al. 2017)
(19)

CXCR3 depleting
antibody

CXCR3 CXCR3
depleting
antibodies

Mouse model 100mg intraperitoneal
injection 3 times weekly

Reverse vitiligo in mice

(Henning et al. 2018)
(20)

HSP70i encoding
DNA

HSP70i HSP70iQ435A
DNA
delivery

Mouse model 2.5mg weekly Develop remarkable repigmentation
throughout the 6-month follow-up period

(Richmond et al. 2018)
(21)

Anti-CD122
antibody

IL-15 ChMBC7 Mouse model 100 mg 3 times weekly Significant repigmentation in treated mice

(Bhardwaj et al. 2019)
(22)

Anti-IL-17
antibody

IL-17 Anti-IL-17A
receptor
antibody

Cell experiment – An increased melanin content, increased
expression of TYR, MITF along with its
downstream genes, and cell proliferation was
observed

(Elkady et al. 2017) (23) Anti- IL-23 IL-23 Ustekinumab Case series 90 mg subcutaneous
injection at 0 and 4 week,
and subsequent every 8
weeks

The vitiligo on the face and neck was
improved

(Simon and Burgos-
Vargas 2008) (24)

TNF inhibitor TNF Infliximab Case series 5mg/kg intravenously Extensive pigmentation

Etanercept Phase 2
(NCT00134368)

Etanercept 50 mg
subcutaneously once or
twice weekly

Not available

(Ruiz-Arguelles et al.
2013) (25)

Anti-CD20
monoclonal
antibody

CD20 Rituximab Case series Two 500-mg intravenous
infusions

Three of five patients showed overt clinical
improvement, one had slight improvement

CTLA4-Ig CTLA4 Abatacept Phase 1
(NCT02281058)

self-injections of 125mg
weekly

Not available

(Miao et al. 2018) (26) PD-L1 fusion
protein

PD-L1 PD-L1 fusion
protein

Mouse model – Reversed depigmentation development in
Pmel-1 vitiligo mice

JAK inhibitor JAK1/3 Tofacitinib Phase 2
(NCT04246372)

5mg oral tablets BID Not available

JAK1/2 Ruxolitinib Phase 2
(NCT02809976)

1.5% phosphate cream
BID

4 patients presented significant facial
improvement, 23% of patients decreased
VASI

JAK1/2 Baricitinib Phase 2
(NCT04822584)

4mg/d orally Not available

JAK1/3 Ifidancitinib Phase 2
(NCT03468855)

ATI-50002 topical
solution 0.46% BID

Mean change in F-VASI:
-0.067 (0.2411) VNS: 2.2 (0.66)

JAK3 Ritlecitinib Phase 2b
(NCT03715829)

200 mg QD for 4 weeks
followed by 50 mg QD
for another 20 weeks

Mean change in F-VASI: -21.2 (4.13)

TYK2/
JAK1

Brepocitinib Phase 2b
(NCT03715829)

Not available Not available

SYK/JAK Cerdulatinib Phase 2a
(NCT04103060)

0.37% Cerudulatinib gel
BID

Not available

(Zou et al. 2021) (27) Wnt-specific
agonists

Wnt SKL2001 Cell experiment – The expression levels of the melanogenesis-
associated proteins, MITF, TYR, TRP1, and
TRP2, were significantly increased
Frontiers in Immunology
 03
HLA, human leukocyte antigen; TCR, T cell receptor; DAMPs, damage-associated molecular patterns; TRM, resident memory T cells; JAK, Janus kinase; STAT, signal transducer and
activation of transcription; CXCL, chemokine (C-X-C motif) ligand; CXCR, chemokine (C-X-C motif) receptor; TNF, tumor necrosis factor; F-VASI, Facial Vitiligo Area Scoring Index;
VNS, Vitiligo Noticeability Scale.
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3 Small molecules

3.1 Emerging therapeutics targeting
Janus-activated kinase (JAK) signaling

The Janus kinases family consists of JAK1, JAK2, JAK3, and

TYK2, which is engaged in the important JAK/STAT pathway,

exhibiting pleiotropic effects on transducing multiple extracellular

signals involved inregulatingproliferative signaling, differentiation,

migration, and apoptotic properties (28).

There are no licensed JAK/STAT inhibitors available against

dermatological problems, however, some of them (ruxolitinib and

tofacitinib) are used to treat other conditions such asmyelofibrosis

and RA. However, off-label usage of these medications in the

treatment of vitiligo has shown promising outcomes.

JAK-STAT inhibitors promote Sonic Hedgehog and Wnt

signaling in epidermal pigmentation, with the former inducing

the migration, proliferation, and differentiation of melanocyte

(29). Expanding our knowledge of these medications’ efficacy

and safety profiles, as well as their use in dermatological

conditions, is critical for establishing their risk-benefit ratio.

3.1.1 Tofacitinib
Tofacitinib is an FDA-cleared JAK1/3 inhibitor for treating

RA, PsA, and active ulcerative colitis.

Tofacitinib 5-10 mg QD/BID has demonstrated superior

efficacy against vitiligo, with improvement ratios of 5.4% in 5/10

patients with sun-exposed areas or areas treated only with

phototherapy (30), and a reduced rate in vitiligo area scoring

index (VASI) score of 4.68 at baseline to 3.95 at 5 months in

another trial (31). In addition, a decline in the number of CD8+

T cells and chemokines, such as CXCL9 and CXCL10 has been

observed after tofacitinib treatment, but no variations were

observed for the percentage of melanocyte-specific T cells (30).

Unfortunately, this oral medication is associated with a host of

systemic side effects, including infections,malignancies, and cytopenia.

Thus, topical JAK inhibitorsmaybemorepreferred. 11vitiligopatients

treatedwith 2% tofacitinib cream twice a day in conjunctionwithNB-

UVB therapy thrice-weekly demonstrated a mean improvement of

70% in facial VASI. There was also a significant difference between

facial and non-facial lesions (P=0.022) (32).
3.1.2 Ruxolitinib
Ruxolitinib, the first Jakinib to get FDA approval, is a JAK1/

2 inhibitor designed to deal with polycythemia vera and

intermediate- and high-risk primary myelofibrosis (33).

Studies have shown that except for JAK inhibition,

ruxolitinib also inhibited the differentiation and migration of

DCs in vitiligo, increasing CD8+ cytotoxic T cell responses (34).

In a double-blind phase 2 trial, 157 recruited vitiligo patients
Frontiers in Immunology 04
were randomized, in a 1:1:1:1:1 ratio, to receive topical

ruxolitinib cream 1.5% BID, 1.5% QD, 0.5% QD, 0.15% QD,

or a vehicle for 24 weeks, with the result showing considerably

decreased CXCL9 and CXCL10 expression in 1.5% BID and

1.5% QD groups, and more individuals in groups receiving

ruxolitinib cream 1.5% BID, 1.5% QD and 0.5% QD achieving

F-VASI50, during which 1.5% BID group produced the highest

responses in F-VASI50 (58%), F-VASI75 (52%), and F-VASI90

(33%). Besides, three positive responsive groups demonstrated

significant repigmentation of vitiligo lesions and acceptable

tolerability with a follow-up period of 52 weeks (35). Vitiligo

on the face appears to respond more vigorously to therapy than

non-facial lesions, reinforced by a 20-week, open-label trial in

which patients with significant facial involvement experienced a

76% improvement in facial VASI scores (36). Furthermore,

better repigmentation rates could be achieved both in oral and

topical ruxolitinib treatment combined with phototherapy (37).

3.1.3 Baricitinib
Baricitinib is a selective JAK1/2 inhibitor that inhibits signal

transduction of numerous proinflammatory cytokines (38),

approved for the treatment of RA. To our knowledge, there

was only one case report describing repigmentation in vitiligo

patients with baricitinib 4 mg daily for the treatment of RA.

Besides, an ongoing phase 2 trial (NCT04822584) in which

patients received a combination therapy of baricitinib 4mg/d

and phototherapy is being performed.

3.1.4 Ifidancitinib (ATI-50002)
Ifidancitinib is another dual JAK1/3 inhibitor for alopecia

areata treatment, which is now undergoing phase II clinical trials

for its application in vitiligo treatment. Patients with facial NSV

(NCT03468855) receiving topical ATI-50002 BID for 24 weeks

presented with an improved F-VASI and the Vitiligo

Noticeability Scale (VNS) (39).
3.1.5 Ritlecitinib (PF-06651600) and
Brepocitinib (PF-06700841)

Ritlecitinib, an irreversible inhibitor of JAK3 and tyrosine

kinase applicable to the treatment of moderate-to-severe RA

(40) and Brepocitinib, a TYK2/JAK1 inhibitor, are currently

undergoing evaluation of their efficacy and safety profile

in act ive NSV in combinat ion with phototherapy

(NCT03715829) (41).

3.1.6 Cerdulatinib (PRT062070)
Cerdulatinib, an SYK/JAK dual kinase inhibitor (42), has

been assessed (NCT04103060) for its safety and tolerability for

vitiligo treatment in topical formation (0.37% cerudulatinib

gel BID).
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However, additional studies are needed to determine the

best-suited drug regimen and recommended dosage forms and

doses to attain the optimum curative effect and minimal toxicity.

As the occurrence of depigmentation after the withdrawal of

JAK inhibitors, the mechanisms underlying need further

exploration, and more work need to be done to corroborate

the effectiveness in combination with other therapies.
3.2 Wnt signaling and its agonists

It has been shown that Wnt/b-catenin signaling plays a

pivotal role in the proliferation, migration, and differentiation of

melanocytes in vitiligo patients (29), which could be inhibited by

oxidative stress (43). In addition, the Wnt/b-catenin pathway

participates in the activation of MITF and its downstream

enzymes (44). Intradermal injection of IWR-1 (inhibitor of

Wnt response 1), a chemical inhibitor of b-catenin activation,

and small interfering RNA (siRNA) against Wnt7a suppressed

the number of epidermal melanocytes (45). This evidence

suggested that stimulation of Wnt signaling may be an

adjuvant therapy for vitiligo treatment. Micro-injury (46) as

well as some phenanthridine-derived Wnt-specific agonists

binding with the Axin protein have been proved to promote

melanogenesis (47) and induce repigmentation.
3.3 Emerging therapeutics targeting
microRNAs (miRNAs)

MiRNAs, which are a highly conservative small class of non-

coding RNA molecules, participate in mRNA expression

regulation via degradation or repression of mRNA translation

(48). Previous studies have demonstrated that miRNAs were

associated with genetic polymorphisms (e.g., miR-196a-2

rs11614913), immune response (e.g., miR-133b, miR-224-3p,

miR-4712-3p, miR-3940-5p, miR-21−5p), oxidative stress (e.g.,

miR-135a, miR-9, miR-34a, miR-183, miR-184, miR-1, miR-25,

miR-211, miR-383, miR-577, miR-421) and melanocyte

functions (e.g., miR-434-5p, miR-330-5p, miR-137, miR-148,

miR-145, miR-155, miR-203, miR-125, miR-377, miR-2909,

miR-200c, hsa-miR-149-5p) (49–54), participating in

pathological mechanism of vitiligo. These findings suggest that

miRNAs may be involved in vitiligo pathogenesis via the

modulation of vital genes expression in melanocytes and serve

as novel therapeutic targets for vitiligo therapy.

There are two strategies for the therapeutic application of

miRNAs: 1) anti-miRNAs, locked-nucleic acids (LNA), or

antagomiRs (55) can be used to counteract the over-activation

of miRNA. Short tandem target mimic (STTM)- miR-508-3p

has been validated to upregulate SOX6 expression, leading to

increased expression of key melanogenic genes CREB, MITF,

TYR, and TYRP1/2 with increased melanogenesis (56). Besides,
Frontiers in Immunology 05
STTM-miR-143-5p also upregulates the expression of MYO5A,

leading to an increase in the level of MITF, TYR, TYRP1,

melanin, and Rab27a (57). 2) miRNA replacement, involving

the reintroduction of a gene-suppressor miRNA mimic or AAV

(adeno-associated virus)-mediated miRNA gain-of-function to

modulate gene expression (55). A study demonstrated that the

migratory capacity of melanocytes was altered by the application

of miR-211 mimic through the p53-TRPM1/miR-211-MMP9

axis (58).
3.4 Emerging therapeutics targeting
regulatory T-cells (Tregs)

Tregs are a suppressive CD4+ T cell subset that possesses a

capacity to suppress self-reactive T cell activation and expansion

(59). A clear decrease in Treg cells was observed in vitiligo skin

within lesional, non-lesional, and perilesional sections (60),

indicating that increasing the number of Tregs with normal

function might be an important therapeutic intervention for

vitiligo treatment.

Infusing purified populations of Tregs is the most direct way

for the supply of Tregs. The current methods mainly include

polyclonally-expanded Tregs, antigen-specific Tregs, and

engineered Treg cells. In a mouse model of vitiligo, adoptive

transfer of polyclonal Tregs may be effective in the short-term

(61), which might however impart systemic immunosuppression

(62). Besides, a TCR transgenic mouse with spontaneous vitiligo,

receiving CAR Tregs treatment, developed a significant delay in

depigmentation (63).

However, a limitation of infusing purified populations of

Tregs might be the technical difficulty for therapeutic agent

delivery to specific cells. A topical application of Tregs or the

combination with CCR4 Treg homing receptor ligand CCL22

(64) by local needle-free jet injection of DNA (20) or CCL22-

encoding plasmid DNA (64) may help resolve that issue. Besides,

various strategies have been applied towards the modulation of

Tregs function by targeting Treg-intrinsic pathways and

functional modulators for Tregs. HO-1, a functional

modulator of Tregs, was decreased in vitiligo Tregs. Treatment

with Hemin, an agonist of HO-1, was found to enhance HO-1-

induced restoration of Tregs function by up-regulating IL-10

expression (65). In addition, therapeutic method for microbiota

modulation, such as neomycin treatment can significantly delay

depigmentation in vitiligo mice and promote the infiltration of

Tregs to the skin (66). Rapamycin, an inhibitor of PI3Kakt-

mTORC1 signaling (67), efficiently halts the depigmentation

process by increasing the abundance of Treg in h3TA2 mice,

which effect lasted till 6 weeks after treatment (61). At present, a

phase 2 clinical trial(NCT05342519) is underway for assessing

the efficacy of the application of 0.1% topical rapamycin (68)

(2022). In addition, nanoparticles containing rapamycin and

autoantigen HEL46-61(NPHEL46-61/Rapa) were synthesized,
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the administration of which halted the disease progression (69).

Also, the calcium-NFATc1-signaling pathway may be involved

in defective Tregs function, indicating a potential therapeutic

target for vitiligo treatment (70).
4 Cytokine-targeted therapies

Multiple monoclonal antibodies are available for vitiligo

treatment, targeting IFN-g, CXCL10, CXCR3, HSP70i, IL-15,

IL-17/23, and TNF. In addition to full-size immunoglobulin,

affibodies and nanobodies, composed of considerably smaller

proteins, are currently being developed, which have higher

bioavailability as well as affinity and specificity to the

targeted molecules.
4.1 IFN-g and the inhibitors

The IFN-g-CXCL9/10-CXCR3 axis may be crucial for

vitiligo pathogenesis, contributing to disease progression by

inhibiting melanogenesis, inducing apoptosis of melanocytes,

and further recruiting T cells to the skin (Figure 1) (71). A study

showed a higher expression of IFN-gmRNA in non-lesional and

perilesional skin, especially in active vitiligo (72), which is

associated with disease activity (73).

Anti-IFN-g can have been proved to be effective in

rheumatoid arthritis (RA), multiple sclerosis (MS), prevention

of corneal rejection, autoimmune skin diseases, and others. In a

recent study, vitiligo induction mice, treated with intraperitoneal

injection with IFN-g neutralizing antibody (XMG-6) at a dose of

100-500 mg twice a week, presented with significant

improvement of depigmentation (17), with the same trend

observed in vitiligo patients. Four patients who received

intradermal peri les ional inject ions presented with

repigmentation of the treated area and boundary retreat (74).

More research is warranted to be initiated for further definition

of the role that IFN-g plays in vitiligo and to examine whether

IFN-g neutralization would be more viable in reversing

skin depigmentation.
4.2 CXCL10 and the inhibitors

Recent studies report a Th1/IFN-g immune response in

both human and a mouse model of vitiligo that involves

elevated CXCL9, 10, and 11 productions, among which

CXCL10 participated in the targeted migration of T cells

(18), triggering an immune cell infiltration at the early stage

(72), and involved in the downregulation of keratinocyte

glycoprotein non-metastatic melanoma protein B (GPNMB)

(75). A study showed that mice receiving CXCL10 neutralizing

antibodies developed more repigmentation after 4 weeks’
Frontiers in Immunology 06
treatment, which continued for an additional 4 weeks

(18), thereby supporting CXCL10 suppression as a great

therapeutic strategy.
4.3 CXCR3 antibodies

CXCR3 has been proved to be expressed in skin lesions,

autoreactive T cells (18), and the vast majority of skin infiltrating

CD8+ resident memory T cells (TRM), which stimulate the

secretion of IFN-g and TNF-a (76).

In a study, vitiligo mice with >75% depigmentation on their

tails are treated with CXCR3 depleting antibodies for 7-8 weeks,

which significantly reversed the clinical disease in a perifollicular

pattern and a diminution of PMEL in the epidermis, with

slightly reduced host CD8+ T cell numbers (19) compared to

neutralizing antibody treatment (18). Although these results are

preliminary, they may provide justification for further studies

in targeting CXCR3 in vitiligo (19), which proposes the use of

a depleting Ab to create a greater clinical efficacy by

removing autoreactive cells rather than modulating their

migration phenotype.
4.4 Inducible HSP70 (HSP70i) DNA

Indeed, HSP70i is the core participant in vitiligo

predominantly through HSP70i-plasmacytoid dendritic cells

(pDCs)-IFN-a-CXCL9 and CXCL10-cytotoxic T lymphocyte

(CTL) axis. Pmel-1 mice vaccinated with HSP70i encoding

DNA exhibited significant depigmentation, rarely seen in

models knockout for HSP70i, indicating that elevated HSP70i

expression alone would be enough to induce depigmentation in

vitiligo prone animals (77). A study revealed that the expression

of HSP-70 mRNA in skin lesions of active vitiligo patients was

much higher (78), correlated with the disease activity.

Blocking HSP70i activity might have the potential to reverse

vitiligo development. A recent study showed that a Sinclair

swine, receiving HSP70iQ435A-encoding DNA treatment,

showed remarkable repigmentation with an initial influx of T

cells and increased CD4/CD8 ratios (20), which was also

detected in mice with HSP70iQ435A-encoding DNA treatment,

resulting in 76% restoration of skin pigmentation. Furthermore,

the treatment halted T cells accumulation and transition to T cell

phenotype in mice and human skin, engaging HSP70iQ435A
DNA delivery as a potent effective therapeutic intervention for

vitiligo (79).
4.5 IL-15 and the inhibitors

It has been established that IL-15 seems to participate in IL-

17 regulation and maintenance of TRM signals (80), with the
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latter responsible for long-termmaintenance and potential relapse

of vitiligo (81). The study has demonstrated a higher serum level of

IL-15 in vitiligo patients than in controls, highly associated with

epidermal H2O2 content and the disease activity (82, 83).

In vitiligo mice, an anti-CD122 antibody that targets IL-15

signaling was reported to effectively reverse depigmentation.
Frontiers in Immunology frontiersin.org07
Anti-CD122 therapy, either systemically or locally, decreases

TRM-induced IFN-g production and results in long-term

repigmentation. These findings consider CD122-targeted drugs

as a valid therapy method, which results in effective and long-

lasting responses in vitiligo and other tissue-specific

autoimmune disorders involving TRM (21).
B

A

FIGURE 1

1) The immune pathogenesis of vitiligo: (A) CD8+ T cell expression of IFN-g in vitiligo lesions activated the JAK/STAT pathway after binding to
IFN-g receptor, thus facilitating the release of CXCL9/10. The binding of CXCL9/10 to CXCR3 increased CXCR3+ T cells recruitment; (B)
Maintenance of vitiligo lesions was influenced by the function of IL-15-dependent TRM cells, which produce IFN-g and TNF-a. 2)Targeted
therapeutic interventions in vitiligo mainly include therapies targeting IFN-g-CXCL9/10-CXCR3 axis (IFN-g neutralizing antibody, CXCL10
neutralizing antibody, and CXCR3 depleting antibody, as well as JAK inhibitors), anti-CD122 antibody (IL-15 receptor subunit) to decrease IFN-g
production and deplete autoreactive CD8+ TRM cells, TNF inhibitor to inhibit autoantibody production, and PD-L1 fusion protein to reduce the
numbers of melanocyte-reactive T cells.
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4.6 PD-1/PD-L1 pathway

Involvement of the PD-1/PD-L1 pathway has been shown in

many autoimmune diseases, including RA, MS, and vitiligo. PD-

L1 expression was found limited in normal skin, and only

expressed on dermal T cells, and increased in primary

melanocytes and fibroblasts after exposure to IFN-g. No such

effect was seen in vitiligo patients, indicating the absence of self-

protection ability for melanocytes against T-cell attack during

vitiligo pathogenesis. In agreement with this, treatment with PD-

L1 fusion protein reduced the numbers of melanocyte-reactive T

cells, inhibited the activation of Vb12-expressing T cells, and

increased Tregs numbers, reversing depigmentation in a Pmel-1

T-cell receptor transgenic vitiligo mouse model (26). However,

PD-L1 treatment may still call for extended phototherapy

treatment, especially NB-UVB therapy, which likely

upregulates PD-L1 expression in an NF-kB-dependent manner

(84), indicating a combination use of local PD-1/PD-L1

agonistic treatment and NB-UVB therapy as a promising option.
4.7 Other cytokine-targeted therapies
under investigation

4.7.1 IL-17/23 and the inhibitors
Studies on the effect of IL-17/23 in vitiligo resulted in

contradictory findings. On one hand, Th17 cells and IL-17 in

vitiligo patients may inhibit function-related factors, repress

melanogenesis, and dramatically induct other Th17 type

cytokines as well as IL-1b production from dermal fibroblasts

and keratinocytes (85). Elevated Th17 cells and IL-17/23 levels

in skin lesions and serum of vitiligo patients, were positively

correlated with disease activity (86, 87), and decreased after

narrowband ultraviolet B (NBUVB) treatment (88). Primary

melanocyte culture showed an increased expression of MITF

and its downstream genes, increased melanin pigment, and

cell proliferation after blockade with anti-IL-17RA (22).

Bes ides , inc idences o f rep igmenta t ion have been

documented in ustekinumab treatment of vitiligo (23).

However, secukinumab treatment in patients with active

non‐segmental vitiligo (NSV) contributed to disease

progression in 7/8 patients with no general reduction in

CXCL9/10, sCD25/27, Th1 cells, or cytotoxic cells, resulting

in early termination of study (89). There are also reports of

ustekinumab-induced new-onset vitiligo and alopecia areata.

The above studies showed IL-17/23 signal may not play a direct

role in vitiligo pathogenesis, which needs further investigation

to confirm this conjecture.

4.7.2 TNF and the inhibitors
As an anti-inflammatory mediator, TNF-a is considered to

play a role in vitiligo, which may promote apoptosis in
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melanocytes, induce B-cell activation, increase autoantibody

production, and inhibit melanogenesis (90). Recent data has

shown a significantly higher expression of TNF-a in vitiligo

skin. TNF inhibitors are beneficial in the treatment of plaque-

type psoriasis, psoriatic arthritis (PsA), RA, and inflammatory

bowel disease (IBD), arousing growing interest in their use

in vitiligo.

Infliximab is a chimeric anti-TNF-a monoclonal antibody

specifically binding to both soluble and membrane-bound TNF

(91, 92). Intravenous infliximab is widely licensed in the

treatment of RA, psoriasis, ankylosing spondylitis (AS), IBD,

uveitis, and Behcet’s disease. A 24-year-old patient with

ankylosing spondylitis and refractory vitiligo improved

significantly following six months of infliximab therapy at a

dose of 5mg/kg intravenously in weeks 0, 2, and 6, and then

every eight weeks for ten months (24). Besides, Etanercept is a

monoclonal antibody targeted against TNF-a (93), which has

been approved for the treatment of RA, juvenile RA, AS,

psoriasis, and PsA. Treatment with etanercept 50 mg

subcutaneously once or twice weekly for at least 2 months has

shown a great curative effect on established vitiligo (94).

However, it has been shown that anti‐TNF‐a agents,

especially adalimumab and infliximab (95), may exacerbate

established vitiligo and induce new-onset vitiligo during

treatment of other autoimmune diseases, including AS (96),

Crohn’s disease (97), ulcerative colitis (98), psoriasis (99), and

RA (100). The mechanism responsible for the TNF-a inhibitors-

induced vitiligo is not fully understood. On the one hand, TNF-

a inhibitors may increase the nucleosome-mediated

autoantibody formation, interfere with the cytotoxic T-cell

suppression of autoreactive B cells, and decrease Treg

synthesis and activation. Additionally, infliximab increases

pDC-produced IFN-g, participating in further T cells

recruiting. Although very rare, new-onset or exacerbations of

vitiligo can occur in the anti‐TNF‐a treatment of other

autoimmune diseases, the risk of which must not be ignored.

4.7.3 Rituximab
Rituximab has specific affinity for the B-lymphocyte

transmembrane protein, CD20, which is expressed on B cells

(101), participating in the activation of the CD8+ T cells and the

ensuing autoreactive reaction (102). Rituximab is licensed for the

treatment of lymphomas, leukemias, transplant rejection crisis,

and a series of autoimmune diseases (103, 104). An intravenous

infusion of Rituximab was administered to five active

disseminated vitiligo patients, the three of whom exhibited a

considerable improvement in both the disease’s symptoms and

histology (25).

4.7.4 Abatacept
Abatacept, a fusion protein consisting of IgG1 coupled to the

extracellular domain of CTLA-4 via the immunoglobulin’s Fc
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region, was licensed for treating moderate to severe RA. Ten

eligible patients with active vitiligo have been included to receive

self-injections of 125mg abatacept weekly from week 0 to week

24. Secondary endpoints will be evaluated during a 32-week

follow-up visit (105).
5 Future therapeutic prospects

As a future direction, new therapeutic approaches should be

developed to reduce vitiligo progression. Among the new

approaches being developed, the strategy of targeting the IFN-

g-CXCL9/10-CXCR3 axis has been clinically tested. OPZELURA

has been indicated for the topical treatment of nonsegmental

vitiligo in adult and pediatric patients 12 years of age and older.

MiRNA-based therapeutics are also in development. However,

the absence of organ or tissue selectivity may also lead to off-

target side effects, which must be considered and excluded in the

process of miRNA-based therapeutics development. Besides, a

suitable vector system, as well as the assurance of chemical

and biological stability should also be taken into account.

Adoptive Treg cell therapy has also been the research

hotspot in recent years. However, it has always been a difficult

point for reassurance for safety and the development of the

delivery system.

Treating vitiligo remains a challenge. As is presented in this

paper, a greater variety of precision treatments is currently being

studied. With a better understanding and further validation of

these therapeutic targets, patients can be stratified to achieve

individualized treatment.
6 Conclusion

Current models of treatment for vitiligo are often

nonspecific and general. Various therapy options are available

for active vitiligo patients, including systemic glucocorticoids,

phototherapy, and systemic immunosuppressants. While stable

vitiligo patients may benefit from topical corticosteroids, topical
Frontiers in Immunology 09
calcineurin inhibitors, phototherapy, as well as transplantation

procedures. Recently, a better understanding of the

pathophysiological processes of vitiligo led to the advent of

novel targeted therapies. To date, JAK inhibitors are the only

category that has been proved to have a good tolerability profile

and functional outcomes in vitiligo treatment, even though the

risk of activation of latent infection and systemic side effects still

existed, like other immunosuppressive agents. Research is in

progress to investigate the important cytokines involved in the

pathogenesis of vitiligo, including IFN-g, CXCL10, CXCR3,
HSP70i, IL-15, IL-17/23, and TNF, the blockade of which has

undergone preliminary attempts in animal models and some

patients. In addition, studies on miRNA-based therapeutics as

well as adoptive Treg cell therapy are still primary, and more

studies are necessary.
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