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B cells secrete antibodies and mediate the humoral immune response, making

them extremely important in protective immunity against SARS-CoV-2, which

caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we

summarize the positive function and pathological response of B cells in SARS-

CoV-2 infection and re-infection. Then, we structure the immunity responses

that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B

cells during vaccination including the effectiveness of antibodies and memory

B cells, viral evolution mechanisms, and future vaccine development. This

review might help medical workers and researchers to have a better

understanding of the interaction between B cells and SARS-CoV-2 and

broaden their vision for future investigations.
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1 Introduction

The new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), have caused over 550 million infections and more than 6 million deaths till July 18,

2022. The Chinese Center for Disease Control and Prevention identified the virus as a

novel coronavirus on January 7, 2020 and reported the results of pathogen identification

to the World Health Organization (WHO) on January 9, 2020. Then, more importantly,
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the genome sequence of this novel virus was registered in the

global influenza sharing database on January 12, 2020 (1). WHO

declared this outbreak a public health emergency of

international concern as an alarm to the countries around the

world on January 23, 2020 and named the infectious coronavirus

disease COVID-19 (2). Bats are the likely reservoir hosts for

SARS-CoV-2, while other species are intermediate hosts that

harbor the virus to allow the replication and thus the mutations

required to become highly transmissible and pathogenic to

humans (3, 4). At present, targeted and effective vaccines have

been under production and inoculation in many countries, and

facilitated the prevention and control of the pandemic.

SARS-CoV-2 belongs to the Coronaviridae family, in which

229E, HKU1, NL63, and OC43 have caused small endemic

infections, as well as the unanticipated worldwide outbreaks of

SAR-CoV and MERS-CoV (5, 6). The human coronaviruses that

are responsible for numerous chronic or acute respiratory

diseases ranging from the self-curable common cold to severe

pneumonia, contain an envelope and have single-stranded

positive RNA genomes (7, 8). The genome of SARS-CoV-2

encodes four structural proteins including membrane (M),

envelope (E), nucleocapsid (N), and spike (S). The S protein

allows the virus to infect cells and mutations on this protein help

the virus escape from existing neutralizing antibodies.

Additionally, nonstructural proteins (NSPs) are also necessary

and important for virus infection (9, 10). The spike protein

contains the receptor-binding domain (RBD) and along with the

nucleocapsid, acting as effective antigens that elicit B cell-

mediated antibody response (11). Studies on severe COVID-19

cases have reported a greater antibody response against the S and

N protein and larger memory B cell response towards S protein,

suggesting that the more severe COVID-19 infection might

provide superior protection from re-infection with SARS-CoV-

2 (12).

In this review, we discuss the function of B cells in SARS-

CoV-2 viral infection and reinfection. From the antibodies B

cells secrete to other subsets like memory B cells and regulatory

B cells, from the role of antivirus response to pathological

impairment, and from natural infection to vaccination.
2 Overview of the immune system
and the general role of B cells

In humans, there are two types of immune responses against

infections that include the innate immune system and the

adaptive immune system. B cells play a significant and

irreplaceable role in the adaptive immune response, which

contributes to the control, destruction, and clearance of
Frontiers in Immunology 02
invaders like viruses and bacteria. The role of B cells in virus

infection is dynamic and far-ranging, involving cytokine

production, antigen presentation, and antibody secretion.

B cells develop through the pro-B cells, pre-B cells, and

immature B cells into mature B cells in the fetal liver before

birth and afterwards in the bone marrow. Some mature B cell

subpopulations, such as B-1, B-2, and regulatory B cells, are

necessary components in antiviral B cell responses. B-1 cells

derived from fetal liver could be divided into B-1a and B-1b

subpopulations (13). B-2 cells originating from bone marrow

contain follicular B (FO B) cells and marginal zone B (MZ B)

cells. In general, MZ B cells and B-1 cells participate in T-

independent responses to produce short-term immunity, while

FO B cells are involved in T-dependent responses to produce

long-standing protection against reinfection with the same

pathogen (14). However, studies revealed that MZ B cells can

not only elicit early-generated antibody responses but also play a

role in germinal center (GC) formation with high similarity

compared to FO-derived GCs except for a delay in T-dependent

responses (15). Regulatory B cells function as immunosuppressive

cells to support immunological tolerance by producing pro-

inflammatory factors like interleukin-10 (IL-10) to inhibit the

multiplication of T cells and other pro-inflammatory cells (16).
3 B cells response in
COVID-19 infection

3.1 Humoral immunity

Humoral immune responses are the most effective and long-

lasting immunological mechanisms for the clearance and

prevention of reinfection and are critical for SARS-CoV-2

infected individuals. Limited humoral responses lead to

ineffective clearance of SARS-CoV-2 in patients with immune

deficiency, thus recidivation occurs (17).

The interaction of naïve B cells with the antigen and CD4+ T

cells in GCs induces B cells to go through the process of

proliferation, class-switch recombination (CSR) to affinity

maturation and, eventually, differentiation into LLPCs and

MBCs that produce antibodies (Abs) with high-affinity

(Figure 1). After the T-B interaction, some B cells generate

extrafollicular reactions in which its, rather than forming GCs,

rapidly proliferate and differentiate into SLPCs that secrete low-

affinity Abs and pre-GC MBCs that take part in the

differentiation into plasmablasts or the initiation of secondary

GC responses together with MBCs generated in GCs. T follicular

helper (Tfh) cells activate and regulate the activity of B cells in

the GC response (19) (Figure 1).
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3.2 Primary immune response in
SARS-COV-2 infection

3.2.1 Functional GC response and the
LLPCs generation

After GC response, the LLPCs migrate and locate in bone

marrow and could produce neutralizing Abs continuously to

protect individuals from re-infection. One study has found that

the SARS-CoV-2-specific LLPCs could exist 7 to 11months in

bone marrow and provide effective protection in mild COVID-

19 infections (20). Moreover, investigations show that mRNA

vaccines could induce persistent germinal center reactions,

resulting in the unremitting production of LLPCs and the

neutralizing Abs (21, 22). These might be the mechanism of

the long-lived immune memory in mild-infected cases. In

severely infected individuals, the elevated antibody titers and

MBCs response correlate with the robust extrafollicular response

rather than GC response (23–25). This might be attribute to the

failure in functional GC formation due to the significant

decrease in the Tfh cell quantity, resulting in the defective

LLPCs and MBCs generation from GC response and impaired

long-term protection (26).

3.2.2 Antibody generation and response
After activation, B cells differentiate into antibody-

producing cells and secrete Abs as a powerful weapon against

primary or secondary infection (27). In SARS-CoV-2 infection,

data show that neutralizing antibodies are generated from naïve

B cells and not from pre-existing memory B cells (28–31). The

affinity of Abs improves by SHM and clonal evolution in GCs to
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increase the binding efficiency to pathogens (32). Abs are

generated into different isotypes that have diversity in the

structure of the heavy chain constant region (CH), including

IgA, IgG, IgM, IgD and IgE. This transformation of isotype is

achieved through CSR (33) (Figure 1). Activation-induced

cytidine deaminase (AID) is critical in the genomic

recombination for SHM and CSR (34) and AID-deficiency is

associated with hyper-IgM syndrome in patients (35).

Antibodies of COVID-19 patients bind S proteins and

inhibit entry of viruses into host cells by sterically blocking the

interaction of the receptor-binding domain (RBD) with ACE2

(36–38). While RBD remains the dominating target for

neutralizing antibodies, studies reveal that other epitopes on

the S proteins, like the N-terminal domain (NTD), also interact

with virus-neutralizing antibodies (39, 40). However, one study

indicates that the N protein has little reactivity to neutralizing

antibodies and that antibodies binding non-S proteins provide

little protection against COVID-19 infection (31).

Generally, in virus infections, the generation of serum IgM is

dominant over other antigen-specific antibodies including IgA

and IgG (41). However, the serum antibody production of IgM,

IgA, and IgG against SARS-CoV-2 S and N proteins occur

almost simultaneously in COVID-19 patients (42, 43). Studies

further illustrate that IgA contributed more in neutralizing

viruses than IgG and dominated the humoral response specific

to SARS-CoV-2 in the early stage of COVID-19 infection in

mucosa (44).

The heterogeneity observed in patients’ disease severity,

humoral immunity, B cell response and antibody titers is

associated with age, gender and race (45–47). Meanwhile, the
FIGURE 1

The role of B cells in COVID-19 infection and re-infection. Naïve B cells are activated via the help of folliculat T (Tfh) cells after the invasion of
SARS-CoV-2 virus. Following T-B interaction, B cells go through rapid proliferation and differentiation, producing pre-germinal center memory
B cells (pre-GC MBCs) and short-lived plasma cells (SLPCs) producing early antibodies with low affinity. Other B cells enter the germinal center
(GC) to increase antibody affinity by clonal expansion and somatic hypermutation (SHM), and change the structure through class-switching
recombination (CSR), resulting in long-lived plasma cells (LLPCs) and memory B cells (MBCs). If challenged with a second invasion or
vaccination, both pre-GC MBCs and MBCs generated after GC reactions differentiate into plasma cells or generate a second GC in a short
period of time to produce high-affinity antibodies. Those B cells and antibodies secreted enter the blood circulation and peripheral tissues like
mucosa to defend against viral infection and re-infection. Figure adapted from (18).
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severity of the disease is also highly associated with the load of

antigens and the corresponding neutralizing antibody (nAb)

titers, with the sickest patients having high load of virus,

inducing high nAb titers and the milder or asymptomatic

individuals having low or no nAb titers because of low antigen

load (48, 49). These results are also observed in SARS and MERS

infection (50). This suggests that a high nAb titer does not

necessarily mean better humoral protection against the virus.

Moreover, the quick decline of SARS-CoV-2 specific nAb titers

(within 2 months) among severe, mild and asymptomatic

patients further indicates that the protection from the humoral

response is not only time-limited, but it is also insufficient (51,

52). Furthermore, the inconsistency between antibody response

and disease outcome shows that some individuals resolve the

virus infection before antibody production, indicating that the

innate immunity and early T cell response may be the factors in

determining the duration and severity of primary SAR-CoV-2

infection (53).

Antibodies prevent pathogens from entering host cells and

they also agglutinate free viruses and kill virus-infected cells (49).

Although it remains to be shown in human COVID-19 cases,

these significant mechanisms have been studied in mice (52, 54).

These models have shown that antibodies with high Fc effector

activity provide the most protection against SARS-CoV-2

infection (52), and that vaccination using RBD-Fc based

activity was effective in fighting COVID-19 infection (54).

Additionally, human patients that have died of COVID-19

produced antibodies with decreased Fc effector activity, which

also resulted in deficient humoral induced immune responses

(55). Altogether, these results provide a new approach in

developing efficient and broad-spectrum vaccines involved in

protection against SAR-CoV-2 re-infection. However, even

minor changes to the Fc structure of antibodies, like IgG that

contains fucosylated Fc glycans, may negatively influence Fc-

related interaction. This could result in increased secretion of

inflammatory cytokines and disease severity which resembles

what has been observed in severely infected patients (56).

Although the treatment of COVID-19 with antibody Fc

appears to be a promising therapy, further studies are needed.

Apart from the function of antibody secretion, B cells also play

an important role in inflammatory cytokines. The expression of

several inflammatory cytokines such as TNF-a, Interleukin-2,
Interleukin-6, monocyte chemoattractant proteins (MCPs), and

IFN-g-inducible protein 10 (IP-10) as well as relevant chemokines

such as CXCL2 and CCL2 are elevated in COVID-19 patients,

accounting for the cytokine storm observed in these patients (57–

59). However, the mechanism of the cytokine storm formation

and amplification remains to be unknown, and more

investigations are needed to explore it in order to give proper

suggestion on clinical treatment and therapy.
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3.3 Secondary response in
SARS-CoV-2 infection

3.3.1 Memory B cell subsets
Memory B cells (MBCs) take an important part in deciding

the occurrence and severity of COVID-19 re-infection, thus

finding ways to elicit widely reactive MBCs is key in vaccine

development. MBCs develop through either GC-dependent or

GC-independent pathways (60) and are classified into different

subsets with distinct functions and markers (61, 62). One

atypical MBC is characterized by CD11c+ T-bet+, develops

independently from GCs, and plays a protective role in

COVID-19 infection (25, 63, 64). In general, MBCs that do

not undergo GC response lack class switching and affinity

maturation and are incapable of producing effective nAbs

against viral variants (60, 65, 66). Additionally, CD80-PD-L2

double negative population of MBCs do not go through GC

reaction and differentiate into antibody-secreting cells in a short

period of time. However, they are able to re-enter GCs for

activation and development into antibody secreting cells that

produce nAbs with high-affinity (66, 67). Therefore, methods to

promote the re-entrance of MBCs into GCs to generate

protective nAbs are important for creating potential therapies

against COVID-19.

3.3.2 B cell memory effector functions in
COVID-19 infection

During COVID-19 re-infection, MBCs circulating

throughout the whole body are activated and quickly

differentiate into Ab-secreting cells. However, if these

circulating Abs are deficient or activated by a variant of the

primary pathogen, the MBCs are induced to generate new GCs

for producing higher affinity Abs (68). The antigen-specific Abs

are lost in the large majority of SARS-CoV-infected patients.

This may be similar to what is seen in SARs patients, where

specific MBC responses are undetectable in 100% of the

recovered individuals 6 years after infection (69). Overall, the

protection offered by immune memory against reinfection of

coronaviruses only persists for a short period of time (70).

There are limited human studies on the memory immune

response in COVID-19 re-infection. The common method to

evaluate B cell memory is monitoring the amount and duration

of circulating antibodies in serum. One study indicates that the

antigen-specific IgG titers keep steady for 3-4 months after

infection, while IgA and IgG are maintained for an even

shorter time (71, 72). In contrast, many other studies have

shown durability in immune memory. In one cohort study, 25

patients grouped as mild, moderate, or severe were assessed for

RBD or N-specific MBCs and it was found that all groups had

increased MBCs from the beginning to 150 days after infection
frontiersin.org
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(73). Additionally, the RBD- or N-specific MBCs mainly contain

IgM and IgG with various immunophenotypes, and the quantity

of RBD-specific IgG MBCs also correlates with the number of

Tfh cells. In the early stage of re-infection, IgM secreting MBCs

represent the majority of MBCs, but they decrease after 20 days

as IgG secreting MBCs steadily increase and become the

dominant MBCs that are detectable between 120-240 days

post-symptom onset (PSO). As for long term studies, a cohort

evaluation of 188 cases found that circulating MBCs specific for

RBD, N and S proteins could exist for more than 6 months and

up to 8 months PSO. Additionally, a large proportion of RBD

memory B cells that increased over time from 1 month to 6

months PSO secreted IgG (24). Another longitudinal study

investigated the amount of MBCs in mild cases and found that

IgG+ MBCs persisted and increased through 3 months after

COVID-19 infection (74). RBD-specific MBCs that have

undergone SHM in GCs and produce high affinity nAbs have

frequencies that remain unchanged or even rise 6 months after

infection (75, 76). Moreover, a recent study showed an

encouraging discovery that functional IgG MBCs persist after

5-8 months in infected patients, while the level of serum SARS-

CoV-2 specific IgG is eventually lost (77). This might suggest

that the level of MBCs is more sensitive for detection of previous

infection and prediction of long-term protection. Overall, these

results show that the B cell-mediated humoral response, which

produces short-term or long-term MBCs and antibodies,

provides indispensable protection during reinfection. Clinical

findings also support the research above, with nearly 1200

individuals showing no symptoms during COVID-19

reinfection (78). However, due to the limited re-infected

populations and insufficient information, more researches are

required to further investigate the time span and protective

magnitude of B cell responses in reinfections.
3.4 B cell response in mucosal immunity

Respiratory viruses like SARS-CoV and SARS-CoV-2 enter

organisms mainly via the mucosal surfaces of the respiratory

tract. Antibody and B cell responses are critical in controlling

virus adherence and invasion effectively in the peripheral tissues.

Collecting blood samples to assess immune responses is the most

common method because it is the most direct and convenient

way, but blood samples do not represent the immune cells and

response in peripheral tissues, like mucosa (79). Thus, it is

important to understand the relationship between B cells and

antibody response not only in blood, but in tissues too.

3.4.1 Antibody response
Currently, less is known about mucosal immunity against

SARS-CoV-2 compared to systemic immunity. Both IgA and

IgG are produced in mucosal tissues. IgA dimers specific to
Frontiers in Immunology 05
SARS-CoV-2 are nearly 15 times more potent than IgA

monomers, which play a major role in neutralizing viruses and

preventing initial viral spread and amplification (80). One study

detected the level of antibody responses in both serum and saliva

and described that the IgG response was similar and lasted for

several months while the titers of IgA and IgM declined rapidly

(81). Further investigations revealed that there is a positive

correlation of IgG and IgM responses between blood and

mucosa, while the relation with IgA is less comparable (81,

82). In nasal samples collected from COVID-19 patients,

severely infected individuals had higher IgG responses while

those with mild or moderate symptoms showed higher IgA

responses (83). These findings on mucosal immunity may not be

universally applied in all cases, but they are evidences that B cells

and antibody responses are playing a critical role in immune

mechanisms against SARS-CoV-2 and may influence the

outcome of infection.

3.4.2 Memory B cell response
Although existing antibodies in mucosal tissues can prevent

humans from pathogen infections like COVID-19, MBCs play

an important role during reinfection by responding locally to

increase production of antigen-specific antibodies in a short

period of time. MBCs are present in multiple human tissues,

such as lung, spleen, lymph nodes and gut (84–87). MBCs in the

lung enhance immune responses against viruses and provide

cross-reactive antibodies through clonal selection in germinal

centers (85–88). In the gut, MBCs enable continued clonal

selection in mucosal to generate B cells which secrete antigen-

specific antibodies with high affinity (75). MBCs in peripheral

tissues, like lung, require tertiary lymphoid structures induced

by inflammation to undergo reactivation and produce antibodies

to clear viruses rapidly (89, 90).

The development of a vaccine that induces mucosal B cell

responses to generate SARS-CoV-2 specific antibodies and

relevant memory B cells are of great significance to prevent

and protect against viruses. One investigation revealed that even

individuals fully vaccinated with mRNA vaccines could still be

infected by SARS-CoV-2 variants (91). The level of IgA and IgG

in saliva is much lower than in serum, accounting for the

ineffective protection in mucosal compartment induced by

intramuscular vaccines (92). However, animal studies have

shown that a single dose of the adenovirus-vectored SARS-

CoV-2 vaccine had better protective effects in upper and lower

respiratory tracts in mice and hamsters compared to other

vaccines (93, 94). Further investigation confirmed that this

adenovirus-vectored SARS-CoV-2 vaccine could provide

general mucosal immunity against SARS-CoV-2 and the

variants (95). A phase I/II clinical trial of a novel vaccine,

NASVAC, was designed to measure its effectiveness in

inducing mucosal immune response in COVID-19 patients via

intranasal approach, declaring the safety and tolerance of this
frontiersin.org
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vaccine to infected patients (96). Other studies also found that an

intranasal approach of vaccination and antibody therapies could

be effective to protect individuals against COVID-19 infection

(97, 98). Overall, the existence of memory B cells and secreted

Abs in mucosal tissues provide important goals in vaccine

development since the response of mucosal immunity

measures the protective level in uninfected individuals and the

disease outcome in infected patients (99).
4 B cell response in vaccination

The rapid spread and frightful mortality of SARS-CoV-2

sounded a global alarm and the research and development for an

effective vaccine to control the epidemic became an emergency.

Several different types of vaccines have been used worldwide.

At first, two inactivated vaccines including BBIBP-CorV and

CoronaVac and one RBD-based protein subunit vaccine,

ZF2001, were authorized for wide use (100–103). Three

clinical trials in phases I and II, which included the candidate

vaccine, CoronaVac, revealed effective production of

neutralizing antibodies with low rates of adverse reactions in

three healthy age groups of 3 to17-years old, 18 to 59-years old

and more than 60 years old (100–102). Other two studies

focusing on the safety and effectiveness of BBIBP-CorV

revealed similar outcomes, with most individuals having a

humoral response in 28 days post-vaccination with no severe

adverse events (103, 104). However, one study that was

randomized, double-blinded and placebo-controlled showed

that ZF2001, the RBD-based protein subunit vaccine, caused

more and worse side-effects compared to the other two vaccines,

but still was beneficial in protection against COVID-19 (105).

Later, mRNA-based BNT162b22 (Pfizer-BioNTech),

mRNA-1273 (Moderna) and viral vector-based Johnson &

Johnson Janssen vaccine were authorized by the Food and

Drug Administration (FDA) for emergency use. In the

individuals who were not infected before, mRNA-based

vaccines induced B cell responses and antibody generation

effectively, enabling acquired immunity against SARS-CoV-2

infection (53, 106, 107). Half of the vaccinated individuals

developed detectable nAbs with one dose and the majority

generated adequate antibodies and enhanced B cell memory

after a second dose (106, 107). In addition, the first dose of both

Pfizer-BioNTech and Moderna vaccines induced anti-S IgG

titers that declined after 6 weeks, thus further confirming the

necessity of a second dose (53). These two mRNA-based

vaccines also promote a protective B cell immune response in

individuals that recovered from COVID-19 infection (65, 107–

109). With these individuals, after the first dose, vaccination

successfully induced an enhanced memory B cell response with

neutralizing antibodies specific to SARS-CoV-2 (108). Also, the

number of existing memory B cells all increased after the

vaccination and the degree of enhancement correlated with the
Frontiers in Immunology 06
number of memory B cells pre-existing in the SARS-CoV-2

infected individuals (65, 107). However, the second dose did not

further increase the B cell memory antibody response, suggesting

that only the first dose of the mRNA-based vaccines is helpful in

reaching the peak of humoral immunity in recovered SARS-

CoV-2 individuals (109). While the quantity of memory B cells

in recovered individuals was higher than those in uninfected

individuals at 3 months post-vaccination, the number of

memory B cells at 6 months and the decline rate afterward

remained similar (110). Furthermore, several studies showed

that mRNA-based vaccines induce cross-reactive nAbs against

SARS-CoV-2 variants in not only naïve but also recovered

individuals (65, 111).

One article revealed that most vaccines are safe even in

cancer patients, but a customized vaccination approach is

preferred (112). While the vaccines above have been proven

safe in clinical investigations, they are insufficient to provide

enough protection for this universal outbreak, therefore, creating

new vaccines with diverse protective mechanisms is necessary. A

study of one influenza virus vaccine, which can alternatively

induce stalk-reactive memory B cells in comparison with

conventional influenza virus vaccines, has completed the phase

I trial and has proven safe and efficient in generating a more

prolonged and broader B cell and antibody response (62).

Targeting the conserved and immunodominant antigen of

hemagglutinin, this vaccine has a novel approach to vaccine

production, but whether this finding can be applied to making

SARS-CoV-2 vaccines is unclear because of the less protective

cross-react ion between SARS-CoV-2 and seasonal

coronaviruses (31).
5 SARS-CoV-2 variants

Coronaviruses, like SARS-CoV-2, have a decreased mutation

rate compared to other smaller RNA viruses because of their 3′-
5′ exoribonuclease, which has an efficient proofreading function

in mismatch correction (113, 114). However, various mutations

with enhanced pathogenicity, transmissibility, or escaping

capability from neutralizing antibodies have been reported in

new waves of epidemics around the world.

An early study following the viral genome evolution of the

Wuhan-Hu-1 strain after one year found 75 non-synonymous

nucleotide mutations in 3,823 samples compared to the initial

viral copy (EPI_ISL_402125) from January 2021 (115). The viral

variant D614G, with a mutation in the nucleotide fragment

encoding the spike protein, was more infectious and rapidly

replaced the former Wuhan-Hu-1 during the early stage of the

COVID-19 epidemic (116). Ever since then, several changes in

the amino acid of the S protein have been identified and variants

with increased spread and escape from vaccination and natural

immunity are emerging (117). Studies also showed that the
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sensitivity of neutralizing antibodies to the spike proteins has

decreased against several virus variants (9, 118–121).

Consequently, vaccination for inducing effective antivirus

immunity including MBCs and nAbs have become significant in

protecting against infection or reinfection by SARS-CoV-2

variants. One dose of mRNA vaccine is sufficient to elicit

enhanced antibody responses with higher antibody titer

specific to Alpha (B.1.1.7) and Beta (B.1.351) variants in

previously infected patients (107). But there needs to be two

doses to induce enough nAbs against the S protein of Alpha, Beta

and Delta (B.1.617) variants (107, 108, 122). The mutation E484

was especially adept at escaping neutralization by antibodies in

vaccinated individuals (123, 124). Interestingly, the titer of

antibodies against Beta variants was not reduced in vaccinated

individuals who were previously infected by SARS-CoV-2 (65,

107). Antibodies specific to both wild-type and viral variants

from those vaccinated who were previously infected showed an

increase in neutralizing titer in comparison to naïve individuals

vaccinated (107, 125). No significant increase was found in the

quantity of MBCs against variants post vaccination in previously

infected individuals (65). These results suggest that vaccinated

individuals with previous COVID-19 infections have more

intensive humoral responses compared to those individuals

who remained uninfected. This might also be due to clonal

evolution increasing the breadth of B cell responses after

infection (65, 126). Also, that could be an explanation of some

breakthrough infection caused by delta variant with low

frequencies of the memory B cells resulted from the impaired

clonal evolution, neutralizing potency and neutralizing breadth

(127). Memory B cells undergo clonal evolution persistently after

at least one year of infection and secreting antibodies specific to

Alpha, Beta and Delta variants were important in preventing

reinfection and influencing disease outcomes in severely infected

patients (65, 110). Consistent with the research above, there were

10 in 15 MBC clones at 12 months generating antibodies capable

of neutralizing all tested variants while only 1 of 15 clones at 1.3

months (65), which further proves the critical role of MBCs in

protective immunity mechanisms in infection and reinfection.

The fifth SARS-CoV-2 variant, Omicron, was reported on Nov

25, 2021 and characterized by the high resistance against the

antibodies induced by infection and vaccination (128, 129). In

symptomatic infection caused by the omicron variant, two doses

of BNT162b2 or ChAdOx1 nCoV-19 became mostly ineffective

6 months after vaccination (130, 131). Three doses of BNT162b2

might be more protective, however, antibody neutralization

evasion still exist in omicron infected disease (129). The

neutralizing Abs induced by mRNA vaccination in COVID-19

patients with primary antibody deficiency (PAD) were found to

have limited protective function against Omicron variant (132).

Studies also indicated that this newly generated variant,

especially its spike protein, could evade most therapeutic

antibodies (129). Therefore, improvement in vaccination

appliance and clinical treatment is of great emergency.
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6 Pathological B cell response

The humoral response is important in defending against

viral infections such as COVID-19, but the damage to the host

by its own B cells also needs to be considered to have a better

understanding of the immune system and the mechanism in

COVID-19.
6.1 Double-negative B cells

Double-negative (DN) B cells are peripheral B cells which

have gone through maturation but lack of IgD and CD27

expression (133). Former studies have shown the association

between DN B cells and rheumatoid arthritis, systemic lupus

erythematosus (SLE), HIV, and other immunopathological

diseases, in which DN B cells expand, release cytokines and

produce autoimmune antibodies that enhance disease

progression (134–136). Recently, one study showed that DN B

cell subsets are associated with the severity of COVID-19

infection (137), but it is unclear the specific role of each subset

and the mechanism of DN B cells in the SAR-CoV-2 outcome.
6.2 Early antibodies with antibody-
dependent enhancement of
disease (ADE)

While antibodies secreted by B cells are great weapons to

fight SARS-CoV-2 and other pathogens, they could be harmful

in some cases. Previous studies have shown that SARS patients

who respond to viral infection early and produce detectable

antibodies within two weeks have higher mortality than patients

that are later responders (138). This same outcome has been

observed in COVID-19 infected patients too (139). An

explanation for this is that a skewed macrophage response

increases a pro-inflammatory M1 phenotype, which enhances

inflammation and impairs tissues in patients who generate early

antibodies, especially IgGs against spike protein (140). This is

known as an antibody-dependent enhancement of disease

(ADE), which also occurs in SARS-CoV and MERS-CoV

infections (141, 142). ADE develops when early produced

antibodies promote viral entry into macrophages and other

innate and adaptive cells via binding to both the spike protein

of viruses and the Fc receptor on cell surfaces to form a

functional complex (142). The timing of an antibody response

is significant in antibody-based therapies, in which the outcome

for patients is influenced by the timing of treatment application.

However, there are no methods to differentiate viral infections

from ADE and the risk of ADE is unpredictable, therefore the

possibility of ADE-antibodies occurring in vaccinated

individuals is of concern (143). Interestingly, there is no
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evidence of ADE during infection of COVID-19 vaccinated

individuals by escape variants.
6.3 Autoimmune antibodies

Autoimmune antibodies have been reported in SARS-CoV-2

infected individuals. However, there is no conclusion whether

these antibodies are common, short-lived types from anti-viral

responses or pathogenic autoantibodies that cause autoimmune

diseases like rheumatic heart disease (144). A particular B cell-

mediated autoimmunity that lowers serum levels of IFNs by

producing neutralizing IgG against type I IFNs was found in at

least 10% of patients with life-threatening COVID-19

pneumonia (145). Additionally, a group of severe COVID-19

patients also suffered from worse symptoms due to an inborn

error of type I IFNs (146). These two factors of lower IFN levels

in patients cause devastating disease because of insufficient

natural and acquired immunity, which indicates that the

preexistence of autoimmune antibodies increase the severity of

COVID-19 infection. Consistent with the hypotheses, these

autoantibodies neutralizing type I IFN were also founded in

nearly 20% COVID-19 deaths (147, 148). Samples from more

than 34,000 uninfected individuals were analyzed and showed

that the level of these autoimmune antibodies increased with age,

which account for the risk of severe COVID-19 infection cases

associated with age (147). Furthermore, a previous investigation

on a yellow fever live attenuated vaccine revealed that more than

10% of vaccinated cases had a high titer of autoantibodies against

type I IFNs, which explained the adverse effects in more than

half of the life-threatening vaccine-associated disease (149). The

connection between autoantibodies and vaccine side effects is a

cause of concern in SARS-CoV-2 vaccination, thus further

research is necessary to uncover the l inkage and

mechanisms involved.

Numerous case reports showed that de novo autoimmune

disease would develop following COVID-19 infection, such as

rheumatoid arthritis, psoriatic arthritis, and predict a worse

disease outcome and prognosis (150–153). The most common

antibodies are screened in SARS-CoV-2 patients, in which

antinuclear antibodies, antineutrophil cytoplasmic antibodies,

and ASCA immunoglobulin A antibodies showed great

prevalence (153). Another functional antibody, antiphospholipid

autoantibodies (aPLs), which cause abnormal coagulation along

with microvascular and macrovascular thrombosis, is found in

severe COVID-19 infected patients as well as Antiphospholipid

syndrome (154, 155). Antiphospholipid syndrome is an

autoimmune thromboinflammatory disease associated with

aPLs, which stimulate endothelial cells and platelets activation

and neutrophil extracellular traps (NETs) release from

neutrophils (156–158). More than half of hospitalized SARS-

CoV-2 infected patients had the presence of aPLs in serum
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samples. Moreover, the higher levels of aPLs have a positive

association with neutrophil activation, NETs release, platelet

quantity, and COVID-19 disease severity (144). All of these

antibodies might be generated by a subpopulation of

extrafollicular B cells, known as DN B cells which we have

discussed before (25). These studies suggest that COVID-19

infection could trigger the autoantibody production, resulting in

the de novo autoimmune disease and life-threatening infection.
6.4 Immune evasion

Viruses have developed multiple ways to escape the immune

system, including SARS-CoV-2, which is likely to escape early

neutralizing antibodies via antibody-driven evolution and other

mechanisms that have not been discovered yet. One mutation,

D614G, enhanced furin-mediated spike cleavage to increase

syncytium formation and viral titer, which caused the virus to

become more infectious with higher viral loads compared to the

former viruses (159–161). Other recent variants, for example,

B.1.351, B.1.1.7 and P1, became resistant to neutralizing

antibodies by changing infected host cell reactions to escape

immune clearance, which allowed for re-infection of recovered

individuals and new waves of COVID-19 (121, 162). However,

specific mutations that may have the greatest antigenicity and

pathogenicity remain unclear. Therefore, understanding viral

evolution mechanisms and preferences is extremely significant

in vaccine design.

Antigen presentation is the initiation process for adaptive

immune response (163). The downregulation of major

histocompatibility complex (MHC) I and II molecules and

pathways in antigen presenting cells, such dendritic cells and B

cells, suggested that the antigen presentation was inhibited by

SARS-CoV-2, leading to the inhibition of T cell-mediated

immune response (164, 165). T cells not only participate in T

cell immune response against SARS-CoV-2 (166), but also

various B cell-associated immune responses, such the T-B

interaction and cytokine production (167). Therefore, the

impaired T cell activity would result in the less protective

humoral and cellular response against SARS-CoV-2 as well as

viral evasion from adaptive immunity.
7 Discussion and outlook

Multiple studies have been focusing on questions about the

humoral response and the function of antibody-generating B cell

and memory B cell responses. Several key problems still need

answers such as: 1) the duration of antibodies and memory B

cells in serum and mucosa, 2) the difference between the titers of

neutralizing antibody and population of memory B cells in
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vaccination and infection, and 3) the factors influencing the

outcome of disease in infected patients. Whether and how

vaccination could induce an effective B cell response in

mucosa requires further investigation. Current research has

revealed that vaccination provides effective protection for

naïve and previously infected individuals. However, with the

ongoing viral evolution, vaccines also need to be continually

updated and new approaches to defend against viral invasion are

also urgently required for vaccine development, such as inducing

effective mucosal immunity of dimeric IgA and memory B cells

specific to SARS-CoV-2. Additionally, cross-reactive antibodies

induced by infection or vaccination, which protects against not

only COVID-19 but also other coronaviruses infections are

important areas of study.
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