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Background: The COVID-19 pandemic has created pressure on healthcare

systems worldwide. Tools that can stratify individuals according to prognosis

could allow for more efficient allocation of healthcare resources and thus

improved patient outcomes. It is currently unclear if blood gene expression

signatures derived from patients at the point of admission to hospital could

provide useful prognostic information.

Methods: Gene expression of whole blood obtained at the point of admission

from a cohort of 78 patients hospitalised with COVID-19 during the first wave

was measured by high resolution RNA sequencing. Gene signatures predictive

of admission to Intensive Care Unit were identified and tested using machine

learning and topological data analysis, TopMD.

Results: The best gene expression signature predictive of ICU admission was

defined using topological data analysis with an accuracy: 0.72 and ROC AUC:

0.76. The gene signature was primarily based on differentially activated

pathways controlling epidermal growth factor receptor (EGFR) presentation,
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Peroxisome proliferator-activated receptor alpha (PPAR-a) signalling and

Transforming growth factor beta (TGF-b) signalling.

Conclusions: Gene expression signatures from blood taken at the point of

admission to hospital predicted ICU admission of treatment naïve patients

with COVID-19.
KEYWORDS

COVID-19, Critical Care, biomarkers, prognosis, topology, transcriptome, RNA-seq -
RNA sequencing
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is a betacoronavirus responsible for coronavirus disease-

19 (COVID-19) resulting in a global pandemic with over 6.3

million deaths by June 2022. SARS-CoV-2 causes a spectrum of

symptoms in humans, from asymptomatic to severe disease,

where the latter requires continuous and intensive care and is

associated with extensive pulmonary immunopathology (1, 2).

The nature of severe coronavirus disease has caused a strain on

healthcare systems across the world (3). Biomarkers predictive of

outcome in patients with Ebola virus disease have been identified

(4), highlighting that prognostic biomarkers could be useful in

outbreak and clinical settings. There is an urgent need for tools

which can stratify patients according to prognosis to better

manage healthcare resources and improve patient outcomes,

particularly in resource poor or limited settings.

There have been many attempts to define prognostic

biomarkers in COVID-19 (5–10). However, these have focused

on predicting mortality, which is primarily associated with older

age groups. The ability to predict, at admission to hospital, the

trajectory of a patient towards intensive care unit (ICU)

admission will allow for more efficient triaging and improve

outcomes through early targeted interventions. The decision to

admit individuals to ICU is a result of applying standard clinical

and physiological metrics with clinical oversight and scoring

tools such as NEWS2 (11). Leveraging host response data from

an accessible sample (e.g., peripheral blood) to predict and

inform ICU admission is therefore an exciting continuation of

previous work to define the host response in patients with

COVID-19 (12).

Several studies in different disease contexts, including

COVID-19, have been conducted to predict in-hospital

mortality and ICU admission (11, 13–17). For sepsis, NEWS,

was assessed for the prediction of in-hospital death with an

AUROC of 0.65 (0.61 to 0.68) and ICU admission with an

AUROC of 0.64 (0.57 to 0.71), however, the authors highlight

that no scoring system has both high sensitivity and specificity
02
for predicting adverse outcomes in sepsis at admission (13). A

retrospective analysis of data available at the time of admission,

including heart rate, supplementary oxygen, abnormal sodium,

and amount of time spent in the emergency department, was

used to build a logistic regression model to predict early ICU

admission which produced a AUROC of 0.70 (0.67-0.72), and

was able to identify 10% of early ICU transfers (14). Some

attempts in predicting COVID-19 ICU admission have not

performed well (16). However, a model based on age, sex and

comorbidities did predict ICU mortality and ICU admission in

COVID-19 patients, generating a c-statistic of 0.876 (0.864-

0.886) (11). Others have found that CURB-65 scores perform

well in predicting in-hospital mortality with an AUC of 0.781,

and the qCSI score performed well in predicting ICU admission

with an AUC of 0.761 (15). Models with AUC values between

0.86 – 0.88 have been developed for predicting hospitalisation,

ICU care and mechanical ventilation (18). Age and BMI were

important predictors for hospitalisation, whereas for ICU

admission male sex, opacities in chest scans and age were

important variables (17). Routine laboratory values predictive

of ICU admission and mechanical ventilation included elevated

serum lactate dehydrogenase (LDH), C-reactive protein (CRP),

anion gap and glucose, in addition to decreased serum calcium,

sodium and albumin (17).

Using gene expression signatures to predict clinical outcome

or care trajectories, from a sample such as blood, have been

infrequently reported in the literature. Previously, an 11-gene

host response score was found to perform similarly to SAPS3

and APACHE II as a stand-alone test, from whole blood

collected within 30 days of admission when predicting 60-day

mortality (AUC: 0.68), in-hospital mortality (AUC: 0.75), shock

patients (AUC: 77) and primary MODS or ARDS (AUC: 0.98)

(19). In sepsis, 20 and 10 gene panels have been trialed with

AUCs between 0.723 to 0.956 being achieved depending on the

cohort and the number of genes included in the panel (20).

Genomic analyses such as RNAseq are routinely used to inform

clinical decisions (21–24). Turnaround times from sampling to

actionable data are continually improving, making their potential
frontiersin.org
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use as point-of-care tools more feasible. In addition, the cost of

sequencing continues to decrease and many sequencing platforms

are becoming more accessible. In this study, using blood gene

expression profiles from 78 SARS-CoV-2 infected patients, machine

learning and an emerging topological data analysis approach (25,

26) was used to identify and validate gene signatures that were

predictive of ICU admission of patients with COVID-19 disease.

This predictive model, demonstrates potential as a valuable tool for

personalised treatment and assist in the clinical decision making for

hospitalised COVID-19 patients, and provide a point of

comparison for evaluating the effects of medical countermeasures.
Materials and methods

Patient cohort and study design

In this study, a cohort of 78 patients presenting hospitalised

with COVID-19 were analysed. Samples were collected as part of

the CoV-19POC study (ISRCTN trial registry: ISRCTN14966673)

as previously described (12). In brief, blood samples were collected

in PAXgene tubes within 24 hours of admission to hospital

between March and April 2020. All patients were sampled and

RNAseq data generated. Detailed patient characteristics and

demographics collected at time of admission from medical

records, are included in Table 1, generated by gtsummary (27).
Extraction of RNA from clinical samples
and Illumina sequencing

Total RNA was extracted from PAXgene BRT using the

PAXgene Blood RNA Kit (PreAnalytix), according to the

manufactures protocol at Containment Level 3 in a Tripass

Class I hood. Libraries were sequenced using 150 bp paired-end

reads on an Illumina® NovaSeq 6000.
Data processing and machine learning

Raw paired-end fastq files generated by the NovaSeq were

trimmed for the presence of adapter sequences using cutadapt

(v.1.2.1), with the -O 3 parameter (28). The fastq files were further

trimmed using sickle (v.1.200) with a minimum window quality

score of 20 and reads shorter than 15bp are removed from analysis

(18). Hisat2 v2.1.0 (29) was used to map the trimmed reads on the

reference Homo sapiens genome assembly (release-94) downloaded

from the Ensembl FTP site. The resultant alignment files were

processed by featureCounts v2.0.0 (30) with the default setting to

generate raw read counts per gene. Before further analysis, outlier

samples in the hierarchical clustering were removed and low-

expression genes (at least 1 read per million in smallest groups)

were filtered. The decision trees models to classify ICU admission in
Frontiers in Immunology 03
COVID-19 samples were built according to the random forest

classifier based on gene expression or traits of hospital assay by

using randomForest() function in R package “randomForest” (31)

with “ntree=500, proximity=TRUE, mtry=5”. Variable importance

in the random forest models were measured throughmean decrease

in accuracy and the Gini Index.
Topological data analysis (TDA)

To determine reliability and accuracy of the TDA method

presented here, the cohort was divided randomly in two not-

overlapping sets, one for training (48 samples) and another for

statistical testing (30 samples). Patient demographics and

characteristics are presented in Table 2 for the test and

training datasets. The average gene expression of ICU samples

within the training set was also calculated and its topology of the

global differential gene expression was measured by Topological

Pathway Mapping, TopMD, without filtering. Such topology was

then used as a reference with respect to the topology of global

differential gene expression of each sample. Highly modulated

pathways are large features of the TopMD Maps; gene pathways

of high importance. When performing the regression analysis,

via Logistic Regression with ElasticNet penalty (see formula

below), we stress that the TopMD ICU profile used as reference

was computed only on the training set.

To define a gene signature, TopMD profiles were computed

for both each patient blood sample and the ICU average gene

expression within the training set, relative to the average of all

training set samples. From the training ICU profile, a panel of m

genes taken from N TopMD-pathways of highest importance

was selected and subsequently a feature matrix was constructed

to perform the linear regression analysis, as follows.

From the training ICU profile, a reference panel is

constructed using the most important N TopMD-pathways

and, per each of them, the m most abundant genes. The

feature matrix was then constructed associating each sample to

a row and each reference gene to a column, that is, the entry (i, j)

referred to sample Pi and gene gj. Any matrix entry (i, j) was

defined to be 0 whenever the gene gj was not within the TopMD-

defined sample panel, that is, gj was not one of the m most

abundant genes within the Nmost important TopMD-pathways

for the Pi TopMD-profile. Otherwise, such entry was the relative

gene expression of gj for sample Pi.

For the statistical analysis, the Logistic Regression model,

with ElasticNet penalty, was used, defined by the following

formula:

min
w,c

1 − p
2

wTw + pjjwjj1+Co
n

i=1
log ( exp ( − yi(X

T
i w + c)) + 1)

Where X is the feature matrix, y the binary classification vector

and w is the weights vector. Parameters for this model are C,
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TABLE 1 Patient characteristics and demographics grouped by ICU admission status.

Characteristic N Overall,
N = 781

Not admitted to ICU,
N = 511

Admitted to ICU,
N = 271

p-value2

Dataset split 78 0.43

Test 48 (62%) 33 (65%) 15 (56%)

Training 30 (38%) 18 (35%) 12 (44%)

Symptom duration days 78 7 (5, 10) 7 (4, 10) 8 (6, 10) 0.43

LOS (hours) 75 198 (100, 332) 147 (59, 256) 296 (214, 546) <0.001

Age 78 61 (46, 74) 70 (49, 80) 56 (45, 61) 0.006

Sex 78 0.61

F 26 (33%) 18 (35%) 8 (30%)

M 52 (67%) 33 (65%) 19 (70%)

Smoking status 78 0.91

Ex-smoker 31 (40%) 21 (41%) 10 (37%)

Never 36 (46%) 22 (43%) 14 (52%)

Unknown 7 (9.0%) 5 (9.8%) 2 (7.4%)

Yes 4 (5.1%) 3 (5.9%) 1 (3.7%)

Ethnicity 78 0.037

White - British 47 (60%) 33 (65%) 14 (52%)

White – Any other white background 6 (7.7%) 6 (12%) 0 (0%)

Asian or Asian British - Indian 3 (3.8%) 2 (3.9%) 1 (3.7%)

Asian or Asian British – Any other Asian background 13 (17%) 5 (9.8%) 8 (30%)

Black or Black British - Caribbean 2 (2.6%) 2 (3.9%) 0 (0%)

Black or Black British - African 6 (7.7%) 2 (3.9%) 4 (15%)

Unknown 1 (1.3%) 1 (2.0%) 0 (0%)

Clinical Metrics

Hypertension 78 0.72

No 45 (58%) 29 (57%) 16 (59%)

Unknown 4 (5.1%) 2 (3.9%) 2 (7.4%)

Yes 29 (37%) 20 (39%) 9 (33%)

CV disease 78 0.17

No 59 (76%) 37 (73%) 22 (81%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 16 (21%) 13 (25%) 3 (11%)

Resp Disease other 78 0.47

No 54 (69%) 35 (69%) 19 (70%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 21 (27%) 15 (29%) 6 (22%)

Asthma 78 0.51

No 62 (79%) 41 (80%) 21 (78%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 13 (17%) 9 (18%) 4 (15%)

COPD 78 0.49

No 68 (87%) 45 (88%) 23 (85%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 7 (9.0%) 5 (9.8%) 2 (7.4%)

CKD 78 0.53

No 69 (88%) 46 (90%) 23 (85%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 6 (7.7%) 4 (7.8%) 2 (7.4%)

CLD 78 0.55

(Continued)
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TABLE 1 Continued

Characteristic N Overall,
N = 781

Not admitted to ICU,
N = 511

Admitted to ICU,
N = 271

p-value2

No 72 (92%) 48 (94%) 24 (89%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 3 (3.8%) 2 (3.9%) 1 (3.7%)

Diabetes 78 0.50

No 56 (72%) 38 (75%) 18 (67%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 19 (24%) 12 (24%) 7 (26%)

Active malignancy 78 0.11

No 69 (88%) 44 (86%) 25 (93%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 6 (7.7%) 6 (12%) 0 (0%)

Dementia 78 0.048

No 67 (86%) 42 (82%) 25 (93%)

Unknown 3 (3.8%) 1 (2.0%) 2 (7.4%)

Yes 8 (10%) 8 (16%) 0 (0%)

Immunosuppressed+ 78 0.16

No 70 (90%) 48 (94%) 22 (81%)

Unknown 4 (5.1%) 1 (2.0%) 3 (11%)

Yes 4 (5.1%) 2 (3.9%) 2 (7.4%)

Abx during admission 78 72 (92%) 46 (90%) 26 (96%) 0.66

Blood chemistry

Haemoglobin 77 132 (124, 148) 132 (122, 140) 144 (128, 151) 0.20

White blood cells 77 7.8 (5.7, 11.5) 6.2 (4.9, 10.7) 9.4 (6.8, 11.5) 0.026

Platelets 77 236 (184, 291) 227 (182, 280) 255 (186, 294) 0.45

Neutrophils 77 6.0 (4.0, 9.6) 4.8 (3.6, 8.1) 8.2 (5.2, 9.7) 0.012

Lymphocytes 77 1.00 (0.80, 1.20) 1.00 (0.80, 1.18) 1.00 (0.75, 1.30) 0.72

Sodium 77 135 (133, 138) 136 (133, 138) 135 (132, 136) 0.091

Potassium 71 4.00 (3.65, 4.40) 3.90 (3.65, 4.35) 4.00 (3.75, 4.43) 0.44

Urea 77 6.3 (4.7, 9.9) 6.4 (4.3, 10.1) 6.3 (4.8, 8.9) 0.95

Creatine 77 86 (67, 110) 84 (67, 109) 88 (66, 108) 0.79

Albumin 73 34 (30, 35) 34 (31, 36) 31 (28, 34) 0.009

Bilirubin 73 11 (8, 13) 10 (8, 12) 11 (10, 14) 0.063

Alanine Aminotransferase 70 34 (24, 70) 28 (21, 56) 37 (32, 77) 0.050

Alkaline Phosphatase 73 89 (61, 115) 80 (56, 110) 96 (62, 124) 0.12

Total Protein 72 70 (66, 73) 70 (67, 73) 71 (66, 74) 0.85

LDH 52 766 (561, 1,133) 650 (506, 776) 1,130 (850, 1,382) <0.001

Ferritin 61 678 (354, 1,693) 521 (203, 750) 1,427 (908, 2,073) <0.001

D-dimer 45 469 (320, 942) 456 (298, 1,426) 535 (385, 812) 0.53

Trop 60 12 (5, 46) 11 (4, 28) 12 (8, 63) 0.25

CRP 77 120 (52, 164) 80 (22, 131) 168 (128, 254) <0.001

Cytokines/Chemokines

IL-6 (pg/mL) 78 52 (32, 106) 43 (30, 85) 82 (43, 132) 0.030

TNFa (pg/mL) 78 20 (17, 25) 20 (16, 25) 22 (19, 25) 0.27

IL-8 (pg/mL) 78 35 (26, 59) 34 (25, 53) 49 (34, 64) 0.10

IL-1b9 (pg/mL) 78 0.39 (0.26, 0.56) 0.35 (0.24, 0.48) 0.47 (0.31, 0.66) 0.056

GM-CSF (pg/mL) 78 1.30 (0.80, 1.86) 1.20 (0.77, 2.28) 1.49 (1.01, 1.79) 0.43

IFNg (pg/mL) 78 12 (4, 27) 9 (2, 27) 16 (8, 35) 0.072

(Continued)
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a regularisation parameter (improving numerical stability), and

r which controls the strength of l1 and l2 regularisation,

respectively the first and second member in the formula. The

best performing panel of genes was selected, among all the

combination of N and m with value ranging from 1 to 100,

given that m≤N. The best performing model, with respect to

predictive error, was obtained using N=10 TopMD-pathways

and m=5 genes. The regression model allows naturally to define

the belongingness probability to the positive class, the ICU class

in this case. For statistical testing purposes, each patient blood

sample in the test set is predicted to be ICU when such

probability is higher than 0.5.
Statistical analysis

Statistical testing was performed including a Shapiro-Wilk

test to assess for data normality followed with either an unpaired

parametric T-test (Shapiro-Wilk test p-value > 0.05) or an

unpaired non-parametric Wilcoxon test (Shapiro-Wilk test p-

value< 0.05) for continuous data, or a Chi-square test for

categorical data.
Frontiers in Immunology 06
Results

To identify transcripts that were predictive of ICU admission

for those with COVID-19 disease, the transcriptome of blood

samples from infected patients was analysed.
Patient characteristics

These samples were collected through the CoV-POC trial in

early 2020. Out of the 78 samples included in this study, 48 were

included in the training dataset and 30 in the test dataset. The

median age of the study population was 61 (IQR: 46-74) 52 were

male (67%) and 26 were female (33%). The most common

comorbidities were hypertension (37%), chronic respiratory

disease (27%) and diabetes mellitus (24%) (Table 1). 27 were

admitted to ICU of which 15 died within 30 days of admission.

In this dataset there was no difference in sex between those

admitted to ICU and those not admitted to ICU, p = 0.61. Age

was different between those admitted to ICU and those not

admitted to ICU, p 0.006, median age of 56 and 70 years

respectively. Table 1 shows that data points from blood
TABLE 1 Continued

Characteristic N Overall,
N = 781

Not admitted to ICU,
N = 511

Admitted to ICU,
N = 271

p-value2

IL-10 (pg/mL) 78 16 (10, 28) 15 (8, 27) 17 (13, 29) 0.22

IL-33 (pg/mL) 78 0.35 (0.17, 0.61) 0.28 (0.15, 0.39) 0.46 (0.35, 0.91) 0.009

Physiological Metrics

Heart Rate 78 98 (85, 109) 92 (82, 107) 102 (94, 110) 0.064

Systolic Blood Pressure 78 132 (122, 143) 135 (122, 145) 128 (124, 134) 0.14

Respiration rate 78 26 (20, 32) 24 (20, 28) 28 (23, 34) 0.054

Oxygen Saturation 78 95 (92, 96) 96 (93, 97) 95 (90, 96) 0.047

Temperature (°C) 76 37.20 (36.60, 38.20) 37.20 (36.65, 38.10) 37.20 (36.60, 38.40) 0.61

O2 78 37 (47%) 17 (33%) 20 (74%) <0.001

NEWS2 76 6 (4, 7) 5 (2, 6) 6 (5, 8) 0.012

CXR 78 77 (99%) 50 (98%) 27 (100%) >0.99

Consolidation or infiltrates 77 66 (86%) 39 (78%) 27 (100%) 0.007

CT 78 8 (10%) 5 (9.8%) 3 (11%) >0.99

ICU specific metrics

Duration O2 78 19 (5, 112) 9 (1, 17) 161 (110, 397) <0.001

NIV duration 78 0 (0, 13) 0 (0, 0) 25 (6, 49) <0.001

IV duration 78 0 (0, 0) 0 (0, 0) 114 (0, 277) <0.001

Optiflow duration 78 7 (9.0%) 0 (0%) 7 (26%) <0.001

ECMO 75 1 (1.3%) 0 (0%) 1 (4.2%) 0.32

Died within 30 days of admission 77 15 (19%) 12 (24%) 3 (12%) 0.21
fron
1n (%); Median (IQR) 2 arson’s Chi-squared test; Wilcoxon rank sum test; Fisher’s exact test.
+Immunosuppressed definition derived from UKHSA Influenza treatment guidance.
ICU, Intensive Care Unit; CV, Cardiovascular; COPD, Chronic obstructive pulmonary disease; CKD, Chronic kidney disease; CLD, Chronic liver disease; LDH, Lactate dehydrogenase; IL,
Interleukin; TNF, Tumour necrosis factor; GMCSF, Granulocyte-macrophage colony-stimulating factor; IFN, Interferon; NEWS2, National early warning score 2; O2, administration of
supplementary oxygen; CXR, Chest x-ray; CT, Computational tomography; NIV, Non-invasive ventilation; IV, Invasive ventilation; ECMO, Extracorporeal membrane oxygenation.
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TABLE 2 Patient characteristics and demographics grouped by test or train status.

Characteristic N Overall, N = 781 Test, N = 481 Training, N = 301 p-value2

Symptom duration days 78 7 (5, 10) 8 (6, 10) 6 (2, 10) 0.076

Length of stay (hours) 75 198 (100, 332) 206 (104, 331) 186 (80, 376) 0.98

Age (years) 78 61 (46, 74) 56 (41, 72) 66 (58, 76) 0.028

Sex 78 0.62

F 26 (33%) 15 (31%) 11 (37%)

M 52 (67%) 33 (69%) 19 (63%)

Smoking status 78 0.90

Ex-smoker 31 (40%) 19 (40%) 12 (40%)

Never 36 (46%) 21 (44%) 15 (50%)

Unknown 7 (9.0%) 5 (10%) 2 (6.7%)

Yes 4 (5.1%) 3 (6.2%) 1 (3.3%)

Ethnicity 78 0.034

White - British 47 (60%) 27 (56%) 20 (67%)

White – Any other white background 6 (7.7%) 5 (10%) 1 (3.3%)

Asian or Asian British - Indian 3 (3.8%) 1 (2.1%) 2 (6.7%)

Asian or Asian British – Any other Asian background 13 (17%) 11 (23%) 2 (6.7%)

Black or Black British - Caribbean 2 (2.6%) 2 (4.2%) 0 (0%)

Black or Black British - African 6 (7.7%) 1 (2.1%) 5 (17%)

Unknown 1 (1.3%) 1 (2.1%) 0 (0%)

Clinical Metrics

Hypertension 78 0.008

No 45 (58%) 34 (71%) 11 (37%)

Unknown 4 (5.1%) 2 (4.2%) 2 (6.7%)

Yes 29 (37%) 12 (25%) 17 (57%)

CV disease 78 0.55

No 59 (76%) 38 (79%) 21 (70%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 16 (21%) 9 (19%) 7 (23%)

Resp Disease other 78 0.39

No 54 (69%) 32 (67%) 22 (73%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 21 (27%) 15 (31%) 6 (20%)

Asthma 78 0.71

No 62 (79%) 39 (81%) 23 (77%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 13 (17%) 8 (17%) 5 (17%)

COPD 78 0.22

No 68 (87%) 41 (85%) 27 (90%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 7 (9.0%) 6 (12%) 1 (3.3%)

CKD 78 0.018

No 69 (88%) 46 (96%) 23 (77%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 6 (7.7%) 1 (2.1%) 5 (17%)

CLD 78 0.80

No 72 (92%) 45 (94%) 27 (90%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 3 (3.8%) 2 (4.2%) 1 (3.3%)

(Continued)
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TABLE 2 Continued

Characteristic N Overall, N = 781 Test, N = 481 Training, N = 301 p-value2

Diabetes 78 0.048

No 56 (72%) 39 (81%) 17 (57%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 19 (24%) 8 (17%) 11 (37%)

Active malignancy 78 0.48

No 69 (88%) 44 (92%) 25 (83%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 6 (7.7%) 3 (6.2%) 3 (10%)

Dementia 78 0.45

No 67 (86%) 43 (90%) 24 (80%)

Unknown 3 (3.8%) 1 (2.1%) 2 (6.7%)

Yes 8 (10%) 4 (8.3%) 4 (13%)

Immunosuppressed+ 78 0.004

No 70 (90%) 47 (98%) 23 (77%)

Unknown 4 (5.1%) 1 (2.1%) 3 (10%)

Yes 4 (5.1%) 0 (0%) 4 (13%)

Abx during admission 78 72 (92%) 44 (92%) 28 (93%) >0.99

Blood Chemistry

Haemoglobin 77 132 (124, 148) 132 (124, 152) 132 (127, 144) 0.39

White blood cells 77 7.8 (5.7, 11.5) 7.1 (5.6, 11.2) 9.0 (6.0, 11.7) 0.32

Platelets 77 236 (184, 291) 228 (181, 289) 260 (191, 291) 0.45

Neutrophils 77 6.0 (4.0, 9.6) 4.9 (3.8, 8.5) 7.4 (4.4, 9.7) 0.14

Lymphocytes 77 1.00 (0.80, 1.20) 1.00 (0.80, 1.20) 1.00 (0.70, 1.20) 0.56

Sodium 77 135 (133, 138) 136 (134, 138) 134 (133, 136) 0.011

Potassium 71 4.00 (3.65, 4.40) 3.95 (3.75, 4.40) 4.00 (3.65, 4.35) 0.94

Urea 77 6.3 (4.7, 9.9) 5.8 (4.3, 9.5) 7.2 (5.8, 9.9) 0.20

Creatine 77 86 (67, 110) 84 (66, 102) 87 (76, 125) 0.47

Albumin 73 34 (30, 35) 34 (31, 36) 31 (28, 34) 0.012

Bilirubin 73 11 (8, 13) 11 (8, 14) 10 (8, 13) 0.71

Alanine Aminotransferase 70 34 (24, 70) 34 (26, 65) 36 (22, 75) 0.57

Alkaline Phosphatase 73 89 (61, 115) 93 (61, 117) 84 (62, 106) 0.54

Total Protein 72 70 (66, 73) 70 (67, 75) 69 (66, 72) 0.41

LDH 52 766 (561, 1,133) 698 (540, 932) 1,022 (661, 1,380) 0.061

Ferritin 61 678 (354, 1,693) 638 (421, 1,291) 970 (339, 1,978) 0.51

D-dimer 45 469 (320, 942) 448 (350, 886) 535 (300, 884) 0.89

Trop 60 12 (5, 46) 10 (5, 50) 13 (9, 34) 0.33

CRP 77 120 (52, 164) 92 (44, 155) 135 (108, 185) 0.046

Cytokines/Chemokines

IL-6 (pg/ml) 78 52 (32, 106) 41 (25, 85) 82 (44, 174) 0.002

TNFa (pg/ml) 78 20 (17, 25) 20 (15, 24) 21 (18, 28) 0.090

IL-8(pg/ml) 78 35 (26, 59) 34 (21, 52) 49 (32, 72) 0.006

IL-1b9 (pg/ml) 78 0.39 (0.26, 0.56) 0.36 (0.24, 0.49) 0.46 (0.29, 0.61) 0.20

GM-CSF (pg/ml) 78 1.30 (0.80, 1.86) 1.21 (0.76, 1.65) 1.47 (0.82, 2.58) 0.20

IFNg (pg/ml) 78 12 (4, 27) 13 (2, 27) 11 (6, 28) 0.73

IL-10 (pg/ml) 78 16 (10, 28) 14 (8, 24) 20 (14, 31) 0.052

IL-33(pg/ml) 78 0.35 (0.17, 0.61) 0.34 (0.17, 0.51) 0.36 (0.17, 0.69) 0.50

Physiological Metrics

Heart Rate 78 98 (85, 109) 102 (88, 110) 90 (85, 100) 0.034

(Continued)
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chemistry, cytokine/chemokine assessment and physiological

metrics are significantly different between the patients

admitted to ICU and not admitted to ICU. Including white

blood cell count, neutrophil count, albumin, LDH, ferritin, CRP,

IL-6, IL-33, Oxygen saturation, administration of oxygen,

NEWS and consolidation of infiltrates. Patient characteristics

and demographics are also shown for the test and training

split (Table 2).
Machine learning

Combinations of the top 30 important genes were identified

by Random Forest analysis predictive of ICU admission in the

test dataset (Figure 1), achieving good accuracy (0.73) and a

ROC of 0.68. The higher the value of importance of the variable

(mean decrease gini score), the higher the importance of the

genes in the model. In this analysis, the gene that was most

associated with the decision to admit to ICU was family with

sequence similarity 219 member A (FAM219A) gene.
Topological data analysis

TopMD Pathway Biomarker Analysis defined a model with

79 genes identified from TopMD clusters predictive of ICU

admission in the test dataset with accuracy: 0.72 and ROC AUC:
Frontiers in Immunology 09
0.76 (Figure 2). The genes of this predictive signature were

features of the top 10 pathways with top 10 genes for a total of 79

genes overall; differentially activated gene pathways between

patients admitted to ICU or not admitted to ICU in the

training dataset.
The top 3 identified pathways predictive
of ICU admission are involved in EGFR,
PPAR-a and TGFb signalling pathways

TopMD analysis identified pathways associated with ICU

admission by defining and ranking pathways by their topological

volume, the sum of normalised differential expression. The gene

with the largest fold change was termed the peak-gene of the

identified pathway. The top pathway had peak gene SNX2,

associated with epidermal growth factor receptor (EGFR)

signalling, followed by ACAA1, associated with Peroxisome

proliferator-activated receptor alpha (PPAR-a) signalling and

finally, FAM89B associated with Transforming growth factor

beta (TGF-b) signalling (Figure 3). Additional peak genes and

pathways are presented in Supplementary Figure 1. These

consist of peak genes PHETA1, KEAP1, BAIAP2, TRAPPC6A,

AGXT, HES1 and CDK5R1. Highlighting pathways such as

phosphatidylinositol signall ing, and glyoxylate and

dicarboxylate metabolism (Supplementary Figure 1).
TABLE 2 Continued

Characteristic N Overall, N = 781 Test, N = 481 Training, N = 301 p-value2

Systolic Blood Pressure 78 132 (122, 143) 130 (120, 138) 134 (126, 145) 0.20

Respiration Rate 78 26 (20, 32) 24 (20, 32) 26 (22, 33) 0.17

Oxygen Saturation 78 95 (92, 96) 96 (93, 97) 94 (91, 96) 0.051

Temperature (°C) 76 37.20 (36.60, 38.20) 37.20 (36.60, 38.23) 37.20 (36.68, 38.12) 0.88

O2 78 37 (47%) 18 (38%) 19 (63%) 0.026

NEWS2 76 6 (4, 7) 6 (3, 7) 6 (5, 6) 0.62

CXR 78 77 (99%) 48 (100%) 29 (97%) 0.38

Consolidation or infiltrates 77 66 (86%) 40 (83%) 26 (90%) 0.52

CT 78 8 (10%) 6 (12%) 2 (6.7%) 0.70

ICU Specific Metrics

Duration O2* 78 19 (5, 112) 16 (4, 88) 24 (14, 179) 0.091

ICU admission 78 27 (35%) 15 (31%) 12 (40%) 0.43

NIV duration* 78 0 (0, 13) 0 (0, 16) 0 (0, 9) 0.93

IV duration* 78 0 (0, 0) 0 (0, 0) 0 (0, 151) 0.030

Optiflow duration* 78 7 (9.0%) 3 (6.2%) 4 (13%) 0.42

ECMO* 75 1 (1.3%) 1 (2.1%) 0 (0%) >0.99

Died within 30 days of admission* 77 15 (19%) 6 (12%) 9 (31%) 0.047
fron
1Median (IQR); n (%) 2Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.
* Metric excluded from machine learning analysis.
+Immunosuppressed definition derived from UKHSA Influenza treatment guidance.
ICU, Intensive Care Unit; CV, Cardiovascular; COPD, Chronic obstructive pulmonary disease; CKD, Chronic kidney disease; CLD, Chronic liver disease; LDH, Lactate dehydrogenase; IL,
Interleukin; TNF, Tumour necrosis factor; GMCSF, Granulocyte-macrophage colony-stimulating factor; IFN, Interferon; NEWS2, National early warning score 2; O2, administration of
supplementary oxygen; CXR, Chest x-ray; CT, Computational tomography; NIV, Non-invasive ventilation; IV, Invasive ventilation; ECMO, Extracorporeal membrane oxygenation.
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Discussion

The emergence of the novel infectious agent SARS-CoV-2

has had a huge impact on healthcare systems worldwide and

highlighted the importance of pandemic preparedness and

management of limited healthcare resources. Here we

demonstrate using retrospective analysis of gene expression

data from patients hospitalised with COVID-19, at the point

of admission, that there are markers that can predict the

patient’s clinical outcome.

Like many other studies have previously identified, there

were significant differences between clinical observations and

physiological metrics for those who were and were not admitted

to the ICU. In this study population, this included white blood

cell count, neutrophil count, albumin, LDH, ferritin, CRP, IL-6,

IL-33, oxygen saturation, NEWS, and consolidation of infiltrates

(Table 1). This is in line with previous studies (17, 32). To

further understand the host response in this study population

and to determine whether mRNA signatures were able to predict

ICU admission, a combination of topological analysis and

machine learning was employed to identify genes and related

pathways that predict disease.

To test the predictive nature of the model, data was split

randomly into training and test datasets. There were differences

in variables between the training and test cohorts (Table 2).

Differences in measured variables are expected with high

dimensional profiling of randomly split cohorts. The results of

this study represent biological mechanisms which are consistent

across the training and test cohorts, however, they are likely to be

not the only mechanisms at play in driving COVID-19 disease
Frontiers in Immunology 10
severity, including those related to variables not balanced

between the training and test cohorts.

COVID-19 gene expression prognosis studies are limited

(33, 34). Scoring algorithm of molecular subphenotypes (SAMS)

have been used to identify 50-gene risk profiles for COVID-19

which discriminate between mild and severe disease (33). Such
A B

C

FIGURE 3

Differential expression of top genes in the top 3 pathways
between patients admitted to ICU and not admitted to ICU of
the training set. Connections represent known gene interactions
according to STRING-db. (A) SNX2 - controlling epidermal
growth factor receptor (EGFR) presentation, (B) ACAA1-peak
pathway, representing peroxisome proliferator-activated
receptor alpha (PPAR-a) signalling, (C) FAM89B-peak pathway,
mediating transforming growth factor beta (TGF-b) signalling.
Pathways and genes identified by topological data analysis,
TopMD.
FIGURE 1

The importance of genes in a classification of ICU admission
with Random Forest. The higher the value of importance of the
variable (mean decrease gini score), the higher the importance
of the gene(s) in the model.
FIGURE 2

ROC analysis of the overall performance of the TopMD-defined
gene signature predictive of ICU admission. ROC curve with split
62/38, using top 10 pathways with top 10 genes for a total of 79
genes overall.
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profiles were able to predict ICU admission, the need for

mechanical ventilation and mortality with an AUC of 0.77,

0.75 and 0.74 respectively. Immunophenotyping in addition to

transcriptomic analysis on data derived from COVID-19

patients has led to the discovery of molecules that were

associated with more severe disease, however, no AUC values

were presented (34). In our analysis we ranked the top 30 most

important genes with random forest, achieving an accuracy of

0.73 and ROC of 0.68, where FAM219A was identified as the

most important variable for predicting ICU admission.

FAM219A has been identified as a potential interactor with

the SARS-CoV-2 M protein (35), however, the transcripts

function is unknown.

TopMD analysis is an emerging topological data analysis

(TDA) technology. When using high dimensional and noisy

biological data sets, such as gene expression data, TDA

approaches are particularly advantageous and have been

successful in disease sub-phenotyping studies (25, 36–40).

These approaches facilitate measurement of genes relative to

their networks in disease context as opposed to the conventional

differential abundance analysis, traditionally utilised in

biomarker discovery. The TopMD algorithm was applied to

gene expression data from COVID-19 patients at point of

admission, with varying care trajectories. Our analysis shows

that gene expression signatures in blood predict ICU admission.

Gene expression signatures predictive of ICU admission were

defined by machine learning and TopMD with accuracy: 0.73

and ROC: 0.68 and accuracy: 0.72 and ROC: 0.76 respectively.

Topological analysis with TopMD improved the predictive

model in comparison to the machine learning approach,

demonstrating the advantages of considering the shape of data

relative to underlying biological mechanisms above standard

bioinformatic approaches which rely on statistical analysis of

abundances of isolated molecules in vastly reduced, noisy,

‘omics datasets.

The TDA analysis of gene expression relative to pathways by

TopMD acts as a global pathway analysis tool, defining patterns

of differentially expressed genes with evidenced interactions. The

top pathways differentially modulated between patients

admitted to ICU and not admitted to ICU were 1st, SNX2-

peak pathway, controlling epidermal growth factor receptor

(EGFR) presentation, 2nd, ACAA1-peak pathway, representing

peroxisome proliferator-activated receptor alpha (PPAR-a)
signalling and 3rd, FAM89B-peak pathway, mediating

transforming growth factor beta (TGF-b) signalling.

(Figure 2). SNX2 was the top peak gene identified through

TopMD analysis and is associated with EGFR signalling

pathways. Dysfunctional EGFR signalling has been identified

as a contributing factor to pulmonary fibrotic-like illness during

SARS-CoV infections in animal models following the SARS-

CoV pandemic in 2002, where authors speculated that inhibiting

EGFR pathways would prevent fibrotic disease (41, 42). This is
Frontiers in Immunology 11
further supported by similar findings in SARS-CoV-2 infected

patients, whereby EGFR was again found to be a regulator of

pulmonary fibrosis (43). Inhibiting this pathway with

nimotuzumab, a monoclonal antibody against EGFR, was

found to decrease inflammatory markers and fibrosis

associated with COVID-19 (44, 45). ACAA1; the peak gene of

the second top pathway; is representative of PPAR-a signalling.

PPAR-a signalling is a key mediator of inflammation, and like

EGFR a potential marker for acute lung injury. Modulation of

PPAR-a signalling by SARS-CoV-2 may alter lipid metabolism

in the lung epithelial cells, contributing to lipotoxicity,

inflammation and untoward respiratory effects (46).

Therapeutics such as fenofibrate that target PPAR-a have been

recommended to enter clinical trials (47). Where others have

proposed that oleoylethanolamide (OEA), a high-affinity agonist

to PPAR-a and ultramicronised palmitoylethanolamide (PEA),

may have therapeutic effects by suppressing inflammatory

responses (48, 49). Where PEA is also able to inhibit SARS-

CoV-2 entry and replication (50). Interestingly, others have

identified PPAR-a as a potential mediator neuroinflammation

in COVID-19 (51). The third Top pathway had peak gene

FAM89B, representing TGFb signalling pathway, which is also

associated with pulmonary fibrosis (52). TGFb is a known

regulator of immune reactions and its signalling is associated

with fibrosis (53, 54). In the context of COVID-19, TGFb gene

signatures are observed in plasmablasts fol lowing

seroconversion and is associated with a chronic immune

reaction and severe disease (52). Within the ten pathways,

peak gene KEAP1 was identified as a biomarker for ICU

admission. KEAP1 is most well-known for its interaction with

Nrf2 facilitating its ubiquitination, where exploiting this

interaction to manage cytokine storms has been discussed in

the context of COVID-19 (55, 56).

A key limitation of this study is that only one time point was

considered in this analysis, although this was at the point of

admission to hospital, which demonstrates its potential value as

a POC tool, it does not consider the dynamic element of disease-

course, future studies would benefit from gene expression

measured at multiple time points. RNA sequencing can take a

long time, however, with the third-generation sequencing

platforms, rapid biomarker discovery and implementation at

POC may be possible in the future. RNA sequencing at the

bedside for personalised and precision medicine may not be an

accessible solution for healthcare systems at this point in time,

however, our data and analysis shows the potential use of

sequencing data for prognosis. As sequencing costs continue

to fall and accessibility to sequencing increases, this concept

could progress to the bedside. In the case of retrospective

analysis, useful pathways can also be identified informing

future research and thus our understanding of disease.

Prognostic gene expression signatures identified here, upon

further validation in independent cohorts, could be used to
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inform management of healthcare resources and improve

outcomes of patients with COVID-19. Gene expression

signatures measured in global RNAseq transcriptomics

data could be applied across health and disease for

precision medicine.
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