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Haiming Cao1, Junjie Liang1, Yiming Liang1, Qiangfeng Yu1*†

and Gencong Li1*†

1The Second Department of General Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated
with Jinan University), Zhuhai, China, 2Department of Pathology, Zhuhai People’s Hospital (Zhuhai
Hospital Affiliated with Jinan University), Zhuhai, China
Cuproptosis is a novel form of cell death, correlated with the tricarboxylic acid

(TCA) cycle. However, the metabolic features and the benefit of immune

checkpoint inhibitor (ICI) therapy based on cuproptosis have not yet been

elucidated in Hepatocellular carcinoma (HCC). First, we identified and validated

three cuproptosis subtypes based on 10 cuproptosis-related genes (CRGs) in

HCC patients. We explored the correlation between three cuproptosis

subtypes and metabolism-related pathways. Besides, a comprehensive

immune analysis of three cuproptosis subtypes was performed. Then, we

calculated the cuproptosis-related gene prognostic index (CRGPI) score for

predicting prognosis and validated its predictive capability by Decision curve

analysis (DCA). We as well explored the benefit of ICI therapy of different CRGPI

subgroups in two anti-PD1/PD-L1 therapy cohorts (IMvigor210 cohort and

GSE176307). Finally, we performed the ridge regression algorithm to calculate

the IC50 value for drug sensitivity and Gene set enrichment analysis (GSEA)

analysis to explore the potential mechanism. We found that cluster A presented

a higher expression of FDX1 and was correlated with metabolism, glycolysis,

and TCA cycle pathways, compared with the other two clusters. HCC patients

with high CRGPI scores had a worse OS probability, and we further found that

the CRGPI-high group had high expression of PD1/PDL1, TMB, and better

response (PR/CR) to immunotherapy in the IMvigor210 cohort and GSE176307.

These findings highlight the importance of CRGPI serving as a potential

biomarker for both prognostic and immunotherapy for HCC patients.

Generally, our results provide novel insights about cuproptosis into immune

therapeutic strategies.

KEYWORDS

cuproptosis, hepatocellular carcinoma, Molecular subtype, immunotherapy, tumor
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Introduction

Liver cancer is one of the leading causes of cancer-related death

in the world, with an appraised incidence of more than 1 million

cases by 2025, and about 85% of liver cancer cases are

hepatocellular carcinoma (HCC) (1, 2). The initiation of HCC is

associated with chronic inflammatory change, which is induced by

viral infections, metabolic alterations, etc. (3, 4). Nonalcoholic fatty

liver disease (NAFLD) is a typical example of liver metabolism

dysfunction increasing susceptibility to HCC, as changes in the

metabolic microenvironment persistently exist (5–9). The

progression of HCC is driven by metabolic reprogramming, for

it shifts the metabolism toward promoting tumor growth and

proliferation. Notably, the tricarboxylic acid cycle (TCA) is the key

metabolic pathway and connects three major metabolic nutrients

(glucose, lipid, and protein) (10). Cancer cells prefer glycolysis to

oxidative phosphorylation to fulfill their excessive energetic

demand for hyper-proliferation, which is known as the Warburg

effect (11). In addition, many cancer cells prefer glutamine to

synthesize amino acids and nucleotides. Glutamine is also an

essential carbon source for the TCA (12). A previous study

found that disturbing the metabolism process of detoxification

enzymes (for example, cytochrome P450 2E1 (CYP2E1)) could

result in cellular DNA damage and hepatocyte death (13).

Cuproptosis, also called copper-induced cell death in a recent

study published in Science, facilitated the aggregation of protein

lipoylation associated with TCA’s mitochondrial enzymes.

However, we know little about the correlation between the

metabolism of copper and the progression of HCC.

Systematic therapy for HCC is challenging for minor

prolongation of overall survival (OS), including molecular

targeted drug therapy (for example, sorafenib, lenvatinib, and

regorafenib), and chemotherapy such as FOLFOX4

(combination of Oxaliplatin, 5-fluorouracil, and leucovorin)

(14). In recent years, progress has been made in immune

checkpoint inhibitor (ICI) for HCC, including cytotoxic T

lymphocyte-associated protein 4 (CTLA-4) inhibitors (for

example, Ipilimumab), programmed cell death protein 1 (PD-

1) inhibitors (for example, Nivolumab, pembrolizumab), and

programmed death ligand 1 (PD-L1) inhibitors (for example,

atezolizumab) (15–17). The combination of atezolizumab plus

bevacizumab (T+A) has gradually become the new front-line

treatment for HCC (18). Studies found that targeting and

reprogramming metabol i sm could enhance tumor

immunotherapy (19, 20). Previous studies demonstrated that

patients with high PD-1/PD-L1, high TMB, high MSI, or low

TIDE tend to be more sensitive to anti-PD-1/PD-L1 therapies

(21–24). However, due to the genetic, metabolic, and

inflammatory heterogeneity of HCC, the traditional molecular

classifications have limitations for the identification of the ICI

treatment benefit population. Thus, an effective indicator for

prognostic and immunotherapy responsiveness considering

metabolism is urgently needed.
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In this study, we aimed to explore the metabolic features and

construct a biomarker based on cuproptosis-related genes

(CRGs) for HCC patients, which could both predict the

prognosis and immunotherapy response. We explored genetic

alterations and the correlation between transcriptional

expression and the prognosis of 10 CRGs in HCC. HCC

patients were divided into three cuproptosis-related subtypes

based on 10 CRGs by consensus clustering. We identified the

metabolic features, OS, tumor microenvironment (TME), tumor

immune dysfunction and exclusion (TIDE), microsatellite

instability (MSI), and tumor mutational burden (TMB) among

three subtypes. Moreover, we established a novel prognostic

score called “cuproptosis -related gene prognostic index”

(CRGPI) to predict OS and ICI responses. Particularly,

Decision curve analysis (DCA) proved that the CRGPI

classification performed a great clinical net benefit compared

with other molecular classification strategies. We further

validated the predictive ability of immunotherapy response

based on CRGPI in two anti-PD1/PD-L1 therapy cohorts

(IMvigor210 cohort and GSE176307). Interestingly, we

observed a potential correlation between cuproptosis subtypes

C and CRGPI-high subgroups. Our results implied that CRGs

could serve as a potential prognostic predictor for OS and

responses to immunotherapy, and may offer novel insights

into cancer treatment for HCC patients.
Materials and methods

Dataset collection and processing

We conducted a mutational analysis of 10 cuproptosis-

related genes (CRGs) by 372 HCC samples with cBioportal

Liver Hepatocellular Carcinoma TCGA, PanCancer Atlas

(https://www.cbioportal.org/). mRNA expression levels of 15

HCC cohorts were obtained by HCCDB (http://lifeome.net/

database/hccdb/home.html), including TCGA-LIHC, ICGC-

LIRI-JP, and 13 GEO datasets (GSE22058, GSE25097,

GSE36376, GSE14520, GSE10143, GSE9843, GSE19977,

GSE46444, GSE54236, GSE63898, GSE43619, GSE64041, and

GSE76427). Next, four cohorts (GSE14520, GSE76427, TCGA-

LIHC, and ICGC-LIRI-JP) with complete clinical information

were included for further analysis. To perform the consequent

consensus clustering, an HCC meta cohort (GSE14520,

GSE76427, and ICGC-LIRI-JP) was integrated, and removed

batch effects via the “Combat” algorithm. Then, we used the

TCGA-LIHC cohort as an external validation dataset.
Consensus clustering of CRGs

We used the R package of ConsensusClusterPlus to calculate

how frequently HCC samples were grouped by 10 CRGs (FDX1,
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LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,

CDKN2A). And we used the proportion of ambiguously

clustered pairs (PAC) to accurately estimate the optimal cluster

number (K) (25). Three clusters were identified, and further

survival analysis was conducted by the Kaplan-Meier curve with

the log-rank test. In addition, we also validated the results of three

clusters in the external TCGA-LIHC dataset. In addition, principal

component analysis (PCA) was performed by the “ggplot2”

R package.
Pathway enrichment analysis of
cuproptosis subtypes

The “GSVA”, “clusterProfiler”, and “Limma” packages were

applied for differential expressed genes and pathway enrichment

analysis. Besides, we used the gene sets of “c2.cp.kegg.v7.1.symbols”

via the MSigDB database downloaded on the GSEA website

(https://www.gsea-msigdb.org/gsea/downloads.jsp). Under the

criterion of |log2(fold change) | > 0.2 and adjust P value < 0.05,

we considered it as statistically significant pathways.
Comprehensive analysis of TME, immune
checkpoints, TMB, MSI, and TIDE of
three cuproptosis subtypes

To explore the TME of different cuproptosis subtypes in HCC

samples, we estimated the proportion of 22 immune cell

infiltration by the CIBERSORT algorithm. The gene expression

feature profile of the 22 immune cells was downloaded on the

website (https://cibersortx.stanford.edu/). We further calculated

the ImmuneScore, StromalScore, and EstimateScore for three

cuproptosis subtypes by using the ESTIMATE algorithm. In

addition, to better understand the potential benefit of ICI, we

evaluated the correlation between three cuproptosis subtypes and

multiple ICI efficacy-predictive biomarkers (including PD-1,

PD-L1, TMB, MSI, and TIDE).
Construction of the CRGPI

First, we found that 4 genes were associated with OS by

performing univariate Cox analysis. Then, we calculated the

CRGPI for every HCC patient as follows: CRGPI = S(Expi *
coefi). Coefi and Expi represented the coefficient and expression

of each gene, respectively. To evaluate whether the CRGPI score

was an independent prognostic factor, we compared it with other

available clinicopathological factors, such as age, gender, and stage.

We also evaluated the model performance by the area under the

curve (AUC) values for 1-, 2-, and 5-year survivals. Additionally, we

divided HCC samples into the CRGPI-high and CRGPI-low groups

based on the median score to perform the Kaplan–Meier survival
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analysis. Similarly, we also validated the predictive power of CRGPI

in an HCC meta cohort and ICGC-LIRI-JP cohort.
Comprehensive analysis of prognosis
and immunotherapy response prediction
of CRGPI

We compared the CRGPI with four published molecular

classifications (Liang et al.; Baohui Zhang et al.; Du et al.; Zhen

Zhang et al.) by conducting Decision Curve Analysis (DCA), which

could assess the utility of different models for decision-making (26–

30). Additionally, two anti-PD1/PD-L1 inhibitor cohorts (IMVigor

210 and GSE176307) were used to demonstrate the predictive value

of immunotherapy response of CRGPI. IMVigor 210 includes

metastatic urothelial bladder cancer treated with atezolizumab

(PD-L1 inhibitor). It has relatively complete mRNA data, OS

information, and immunotherapy response information. The R

package of IMvigor210CoreBiologies was used to explore IMVigor

210. GSE176307 contains 90 bladder cancer patients treated with

pembrolizumab or atezolizuma.
Drug susceptibility and KEGG analysis

Based on the expression data of the HCC patients, we used

the R package oncoPredict for predicting drug response and

biomarkers. Through this update method, we could calculate

drug sensitivity to find drug-specific biomarkers, predict clinical

drug response, and explore the correlation between predictions

and clinical features (31) We used the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis to

evaluate the active pathways in HCC tissues compared to

adjacent normal tissues.
Statistical analysis

Wilcoxon and Kruskal-Wallis test were used for two groups

and three groups, respectively. The Kruskal-Wallis test evaluated

differences among the three groups. Kaplan–Meier survival plot

was assessed by the log-rank test. All analyses and graphics were

conducted in R (version 4.2.0, https://www.r-project.org/).

p<0.05 was considered significant.
Results

Genetic alterations and transcriptional
expression of CRGs in HCC

First, 53 (15.01%) of the 353 TCGA LIHC samples had

mutations in the 10 CRGs (FDX1, LIAS, LIPT1, DLD, DLAT,
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PDHA1, PDHB, MTF1, GLS, CDKN2A). Among them,

CDKN2A had the highest mutation frequency (2.55%) and the

highest deep deletion rate (5.67%), while LIAS (1.98%) and DLD

(1.7%) had a higher amplification, and FDX1 did not have any

mutations or CNV (Figure 1A). Since the ICGC database had

relatively complete clinical information and large patient

samples, it was applied to examine the mRNA expression of

10 CRGs in HCC. Except FDX1 was significantly downregulated,

the other nine genes were elevated in HCC tumor tissues

compared to adjacent samples (Figure 1B). Interestingly, with

CNV loss or mutation, CDKN2A was expressed at a higher

mRNA expression level in HCC samples, suggesting that CNV

might not be the only factor involved in regulating mRNA

expression. Subsequent spearman’s correlation analysis was

performed to explore the correlation of these 10 CRGs. Our

study showed similar results to previous studies that FDX1 may

negatively regulate the expression of MTF1, GLS, and CDKN2A

(32). In addition, the lipoic acid (LA) pathway-related genes and

PDH complex revealed an internally positive correlation

(Figure 1C). Since FDX1 was known as a key regulator of

copper ionophore–induced cell death, we further examined its

expression in HCCDB databases, which included 10 GSE

datasets and a TCGA-LIHC dataset. The results of multiple

databases further confirmed the lower expression of FDX1 in

HCC tissues (Figure 1D). Survival analysis showed that higher
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FDX1 expression correlated with better OS of HCC patients in

GSE14520, TCGA-LIHC, and ICGC-LIRI-JP (Figure 1E).
Identification of cuproptosis subtypes

To fully understand the cuproptosis expression subtypes of

CRGs, the HCC meta cohort (GSE14520, GSE76427, and ICGC-

LIRI-JP) was integrated to explore the correlation between

subtypes and OS internally, and TCGA-LIHC was used to

externally validate the results (Figure S1A).

First, we used the “Combat” algorithm to remove batch

effects in the HCC meta cohort (Figure 2A), and we excluded

patients without survival information. Then, a total of 527 HCC

patients were included in the further analyses. We used the

unsupervised consensus clustering algorithm to categorize the

classification of cuproptosis based on the expression of the 10

CRGs, and three subtypes were identified (Figure 2B). Cluster A

included 259 cases, cluster B included 146 cases, and cluster C

included 122 cases. Principal component analysis (PCA) further

confirmed the differences between the three subtypes in

transcription expression (Figure 2C). The Kaplan–Meier

curves revealed a shorter OS performance in patients with

cluster C compared to the other two subtypes (Log-rank test,

p=0.048; Figure 2D). Furthermore, we found that the main
A

B
D

E

C

FIGURE 1

Genetic alterations and transcriptional expression of CRGs in HCC. (A) Mutation frequencies of 10 CRGs in 353 TCGA-LIHC samples. (B) mRNA
expression of 10 CRGs between 177 adjacent and 212 HCC tissues from the ICGC-LIRI-JP cohort. (C) The correlation of 10 CRGs in TCGA-
LIHC. Red brick represents positive correlation, blue represents negative positive and the depth of the color represents the strength of the
correlation between them. (D) The expression of FDX1 in 12 HCCDB databases. (E) Kaplan−Meier plot for the expression of FDX1 and OS in
HCCDB6, HCCDB15, and HCCDB18. CRGs, cuproptosis-related genes; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma;
OS, overall survival. **p < 0.01; ****p < 0.0001.
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difference between the three clusters was the expression profiles

of the GLS and CDKN2A genes (Figure 2E). Cluster C was

characterized by significantly low expression of CDKN2A and

high expression of GLS, suggesting that CDKN2A may serve as a

tumor suppressor gene, while GLS may promote tumor

progression. TCGA-LIHC cohort, which has complete clinical

features and a large number of patients, was used to externally

validate the repeatability of three cuproptosis subtypes. As we

expected, three distinct clusters were classified and cluster C

again showed the worthiest survival performance (Log-rank

test, p=0.0063; Figures 2F, G).
GSVA analysis and metabolic features of
distinct cuproptosis subtypes

“Limma” and “GSVA” algorithms were performed to explore

the potential biological functions in distinct subtypes. As the result

showed, compared to subtype C, subtype A was significantly
Frontiers in Immunology 05
enriched in metabolism and biosynthesis pathways, including

tyrosine, alanine, glyoxylate, and dicarboxylate metabolism.

Among them, some metabolism pathways caught our attention,

s u c h a s KEGG_METABOL I SM_OF_XENOB IOT

ICS_BY_CYTOCHROME_P450 and KEGG_DRUG_META

BOLISM_CYTOCHROME_P450 (Figure 3A). As the previous

study found that copper-dependent death occurs by interfering

with the progress of the tricarboxylic acid (TCA) cycle (32), which

means the metabolism of cytochrome p450 may be affected too.

Subtype B was mostly involved in DNA replication, cell cycle, and

mismatch repair pathway This may be explained by the higher

expression of CDKN2A in subtype B, which is capable of inducing

cell cycle arrest in the G1 and G2 phases. This also may be the

reason why cluster B has the best survival advantage compared to

cluster A. While subtype C has a rich TME, such as

KEGG_CELL_ADHES ION_MOLECULES_CAMS ,

K E G G _ E C M _ R E C E P T O R _ I N T E R A C T I O N ,

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHO

NDROITIN_SULFATE, and KEGG_TGF_BETA_SIGN
A B

D E

F
G

C

FIGURE 2

Three distinct cuproptosis subtypes are divided by consensus clustering. (A) Constructing an HCC meta cohort by removing the batch effects
from GSE14520, GSE76427, and ICGC-LIRI-JP. (B) Three clusters (k = 3) were identified by the consensus matrix heatmap in the HCC meta
cohort. (C) PCA analysis displayed a significant difference between the three clusters. (D) Kaplan-Meier survival analysis of OS showed
differences among the three clusters (log-rank test, p = 0.048). (E) Unsupervised clustering of 10 CRGs in three clusters. Red and blue represent
a high and low expression of genes respectively. (F) The consensus matrix heatmap also defines three subtypes in the TCGA-LIHC cohort. (G)
Kaplan–Meier curves with three cuproptosis classes were validated in the TCGA-LIHC cohort (log-rank test, p = 0.0063). CRGs, cuproptosis-
related genes; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; OS, overall survival.
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ALING_PATHWAY. Comprehensive pathway enrichment

analysis indicated that three cuproptosis subtypes have vital and

distinct roles, respectively.

Since FDX1 participated in the metabolism and mitochondrial

TCA cycle, additionally, cells based on mitochondrial respiration

were more sensible of copper-induced cell death (33, 34). We

further illuminated the association between FDX1 and distinct

cuproptosis subtypes. Compared with the other two subtypes,

cluster A indeed presented a significantly higher expression of

FDX1 (Figure 3B). More importantly, most of the genes involved

in the TCA_CYCLE pathways were significantly upregulated in

cluster A, such as OGDHL (Oxoglutarate Dehydrogenase L), PC

(Pyruvate Carboxylase), PCK1 (Phosphoenolpyruvate

Carboxykinase 1) and PCK2 (Phosphoenolpyruvate

Carboxykinase 2). We observed a similar result in the

GLYCOLYSIS_GLUCONEOGENESIS pathways, including

ADH6 (Alcohol Dehydrogenase 6), ALDH2 (Aldehyde

Dehydrogenase 2 Family Member), G6PC (Glucose-6-

Phosphatase Catalytic Subunit), and PGM1 (Phosphoglucomutase

1) (Figure 3C). The results showed that cluster A characterized by

high expression of FDX1 was correlated with metabolism,

glycolysis, and TCA cycle pathways, consistent with the previous

research results (35, 36).
Frontiers in Immunology 06
Evaluation of immune characteristics
and checkpoints in three
cuproptosis subtypes

10 CRGs were demonstrated to correlate with 22 kinds of

immune cells using Spearman and CIBERSORT analysis in

TCGA-LIHC (Figure 4A). Subsequently, the immune cell

infiltration of three cuproptosis subtypes was also explored.

Compared to the other two clusters, the most significant

immune infiltrating cells in cluster B were Macrophages M2,

Mast cells resting, Monocytes, NK cells activated, and T cells CD8

(Figure 4B). In addition, a high ImmuneScore was associated with

cluster C, whereas cluster A had the highest score in the

StromalScore. Although not significant, EstimateScore

comprehensively showed that cluster B had the lowest score

(Figure 4C). Furthermore, we investigated the relationships

between immune checkpoints and three cuproptosis subtypes. 7

immune checkpoints were differentially expressed in the different

subtypes, including PD-1, CTLA-4, CD276, HAVCR2, LAG3,

TIGIT, and, VTCN1. We found that cluster C usually had the

highest expression in a total of 10 immune checkpoints, which

indicates a potential better ICI therapy effect (Figure 4D). After

that, comprehensive analysis results showed significantly higher
A B

C

FIGURE 3

Comprehensive pathway enrichment analysis of three cuproptosis subtypes in the HCC patients. (A) GSVA analysis of three cuproptosis
subtypes. Red and blue represent activated and inhibited pathways, respectively. (B) The association between FDX1 and distinct cuproptosis
subtypes. (C) Boxplot revealing the expression of TCA_CYCLE pathways related genes (up) and GLYCOLYSIS_GLUCONEOGENESIS pathways
related genes (down) in three cuproptosis subtypes. GSVA, gene set variation analysis. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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MSI and lower TIDE scores in cluster B, and there was no

significant difference between clusters B and C in TMB scores

(Figure 4E), implying a possible benefit from ICI therapy.
Establishment and validation of the
CRGPI subgroups

First, univariate Cox regression analysis was performed

among the 10 CRGs to screen the independent prognostic

genes, and four genes (FDX1, CDKN2A, DLAT, and LIAS)

were significantly correlated with OS of patients in TCGA-LIHC

(Figure 5A). Then, a prognostic model was constructed based on

the formula: CRGPI = expression level of FDX1*(-0.1393) +

expression level of CDKN2A *(0.1746) + expression level of

DLAT *(0.3614) + expression level of LIAS *(-0.125). Univariate

Cox regression analysis showed that stage, grade, and CRGPI

score were significantly associated with the prognosis of TCGA-

LIHC, including clinicopathologic characteristics such as age
Frontiers in Immunology 07
and gender. Multivariate Cox regression analysis verified that

stage and CRGPI score was indeed powerful prognostic factors

(Figure 5B). The distribution plot of the CRGPI indicated that

survival times decreased with an increased CRGPI score

(Figure 5C). Taking the median CRGPI score as the cut-off

value, the Kaplan–Meier survival curves revealed that CRGPI-

high patients had a significantly worse OS than patients with a

low score (p=0.00033, log-rank test; Figure 5D). Moreover, the

1-, 3-, and 5-year survival time of CRGPI scores were calculated

by AUC values of 0.74, 0.67, and 0.63, respectively (Figure 5E).

Since cuproptosis, also called copper-induced cell death, was

attributable to Cu accumulation through FDX1-mediated

protein lipoylation and destabilization of Fe–S cluster proteins,

we explored the correlation between CRGPI subgroups and

FDX1. As expected, the result showed that HCC patients in

the CRGPI-high subgroup had a notably decreasing expression

of pro-cuproptosis genes FDX1(p=6.7e-09; Figure 5F).

Furthermore, the role of the CRGPI was validated externally

in ICGC-LIRI-JP with clinical factors, including age, gender,
A B

D

E

C

FIGURE 4

Comprehensive immune analysis of three cuproptosis subtypes in LIHC. (A) The correlation between 22 kinds of immune cells and 10 CRGs in
TCGA-LIHC. Red represents positive interaction, blue represents negative interaction and the number in the brick represents Spearman’s
correlation. (B) 22 infiltrating immune cell types abundance in three cuproptosis subtypes in TCGA-LIHC. (C) Stromal, immune, and estimate
scores in three cuproptosis subtypes. (D) Expression levels of 10 immune checkpoints (including PD-1 and PD-L1) in three cuproptosis subtypes.
(E) Relationships between three cuproptosis subtypes and MSI, TIDE score, and TMB. The Kruskal-Wallis test analyzed the statistical differences
among the three subtypes. The asterisk represents the p-value (ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001). CRGs, cuproptosis-related
genes; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; MSI, microsatellite instability; TIDE, Tumor Immune Dysfunction
and Exclusion; TMB, tumor mutational burden. ****p < 0.0001. ns, no significance.
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FIGURE 5

Prognostic analysis of different CRGPI score subgroups. (A) Kaplan–Meier curves of the four genes significantly in the univariate Cox analysis (log-
rank test, all p < 0.05). (B) Univariate and multivariate Cox analysis of clinical factors and the CRGPI score factor in TCGA-LIHC. (C) Ranked scatter
plots showing the distribution plot of the CRGPI score and patient survival events. (D) Kaplan–Meier analysis of the OS between the two subgroups
(log-rank test, P = 0.00033). (E) ROC analysis at 1-, 2-, and 5-year survival according to the CRGPI score in the TCGA-LIHC cohort. (F) Boxplot
showing the expression of FDX1 in different CRGPI subgroups in the TCGA-LIHC cohort. (G) Univariate and multivariate Cox analysis of clinical
factors and the cuproptosis score factor in the ICGC-LIRI-JP cohort. (H) Kaplan–Meier and ROC curves of the OS between the two subgroups in
the ICGC-LIRI-JP cohort (log-rank test, p = 0.0012). (I) Boxplot exhibiting the expression of FDX1 in different CRGPI subgroups in the ICGC-LIRI-JP
cohort. (J) Kaplan–Meier survival analysis of the cuproptosis score subgroups in the HCC meta cohort (log-rank test, p = 0.05). (K) DCA curve
assessing the clinical benefit of CRGPI with other four published molecular classifications at 1-, 2-, and 5-year PFS time. ROC, receiver operating
characteristic; CRGs, cuproptosis-related genes; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; OS, overall survival; DCA,
decision curve analysis; CRGPI, cuproptosis-related gene prognostic index; PFS, progression free survival.
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stage, virus, and fibrosis. The uni- and multi- COX analysis

showed that the CRGPI was still a powerful predictive marker

(HR= 7.074, p=0.0012; Figure 5G). The KM survival curve

(p=0.0012, log-rank test) and ROC curve (0.68 at 1 year, and

0.71 at 2 years) also confirmed the patients in the CRGPI-high

subgroup had a significantly worse OS compared with the low

score subgroup (Figure 5H). Consistent with the consequence of

TCGA-LIHC, the ICGC-LIRI-JP patients in the CRGPI-high

subgroup had a significantly lower expression of FDX1

(Figure 5I). In addition, we specifically examined the

predictive ability of the CRGPI in an HCC meta cohort, which

had 527 patients with complete OS information, we could find a

similar outcome with TCGA-LIHC and ICGC-LIRI-JP (p=0.05,

log-rank test; Figure 5J). Taken together, these results

demonstrated that HCC patients with high CRGPI scores had

worse survival performance. Lower expression of FDX1 in the

CRGPI-high subgroup may be the reason for worse OS because

of less copper-induced tumor cell death. Decision curve analysis

(DCA) proved that the CRGPI classification performed a great

clinical net benefit compared with the other four molecular

classifications strategies (Liang et al.; Baohui Zhang et al.; Du

et al.; Zhen Zhang et al.) at 1-, 2-, and 5-year PFS time in the

TCGA cohort (Figure 5K).
The benefit of ICI therapy in the CRGPI-
high subgroup

First, we explored the immune cells infiltrating two CRGPI

subgroups by performing the CIBERSORT algorithm. We

observed that there were no significant differences in most

immune cells, but the quantity of memory resting CD4+ T

cells and CD8+ T cells was higher in the CRGPI-low group

(Figure 6A). Then, we investigated the associations between

immune checkpoints and different CRGPI subgroups. In our

results, the CRGPI-high group had higher immune checkpoints

than the CRGPI-low subgroup (except for LAG3), implying that

patients with high CRGPI scores were more likely to benefit

from ICI therapy (Figure 6B).

At present, anti-PD1/PD-L1 therapy plays an important role

in ICI therapy. We further evaluated the prognostic ability of

CRGPI in the IMvigor210 cohort and GSE176307 which both

received ICI therapy. We found that patients in the CRGPI-high

group had a significantly higher TMB and better response trend

for ICI therapy in the Imvigor210 cohort. We as well observed

that for those patients undergoing ICI therapy, the CRGPI-high

subgroup had a better prognosis (Figures 6C, D). As expected,

results provided consistent evidence in the GSE176307 that

patients with a higher CRGPI score were more likely to benefit

from ICI therapy and associated with better OS (Figures 6E, F).

More interestingly, we observed a significant correlation

between three cuproptosis subtypes and CRGPI score

subgroups. The result showed that cluster C had the highest
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CRGPI score, indicating a high CRGPI score may be closely

related to cluster C, which was characterized by better ICI

therapy responses (Figure 6G).
Drug sensitivity analysis

To study the correlation between cuproptosis and

chemotherapy drugs in HCC, we assessed the IC50 values of 198

agents by performing a ridge regression algorithm in the GDSC2

database. First, we found that 116 drugs were significantly lower in

cluster C compared to the other two cuproptosis subtypes. Similarly,

the CRGPI-high subgroup had lower IC50 values of 117 drugs.

Venn plot displayed that 95 agents were intersected, which implied

that patients in the CRGPI-high subgroup or who belong to cluster

C may benefit more from most kinds of chemotherapies

(Figure 7A). In addition, we used GSEA to further explore the

activity of pathway signaling in differential expressed genes of

TCGA-LIHC and found that the activity of the p53 and NF-

kappa B signaling pathways were upregulated in the HCC patients

(Figure 7B). Finally, we found that IC50 values of inhibitors related

to the cell cycle signaling pathway, such as Alisertib_1051,

AZD7762_1022, Dinaciclib_1180, Cyclophosphamide_1512 were

significantly lower in the CRGPI-high group than in the CRGPI-

low group. As we expected cluster C also showed significant results.

Moreover, the results of BMS.345541_1249 indicated that patients

with high risk or cluster C may benefit more from the IkB/IKK
inhibitor (all P < 0.05, Figure 7C). Together, cuproptosis were

related to chemotherapy drug sensitivity in HCC.
Discussion

The results of this study revealed genetic alterations and

transcriptional expression levels of 10 CRGs in LIHC. We

identified three cuproptosis subtypes based on 10 CRGs and

found patients with subtype C had worse OS. High expression of

GLS, while low expression of CDKN2A of subtype C may

explain the poor prognosis. GLS (Glutaminase), which is also

known as the “kidney-type” glutaminase (GLS1), is a

metabolism enzyme that plays a critical role in glutaminolysis

that promotes cancer cell proliferation, including HCC.

Moreover, HCC is addicted to glutamine, which means GLS is

often overexpressed in hepatocellular cancer cells to fulfill

enhanced energy demand (37, 38). The inhibitors of GLS in

cancer Therapy worked by interfering with the metabolism of

alpha-ketoglutarate, an intermediate of the tricarboxylic acid

(TCA) cycle, some of which are undergoing clinical trials and

exhibiting promising effects (39, 40). Previous studies found that

the tumor suppressor gene CDKN2A (Cyclin Dependent Kinase

Inhibitor 2A) encodes p16INK4a and p14ARF (41). P16INK4a

inhibits cell-cycle progression from G1 to S phase by CDK4/6-

mediated phosphorylation of retinoblastoma protein (Rb) (42).
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P14ARF stabilizes the function of the tumor suppressor gene p53

by inhibiting its degradation. Loss of CDKN2A causes

inactivation of the Rb and p53 pathways, generating

uncontrolled cell proliferation (43). Moreover, according to

previous studies, the loss or mutating of CDKN2A causes

uncontrolled cancer cell proliferation, and TP53 mutations are

correlated with CDKN2A mutation and high TMB (44, 45). In

our study, we found that CDKN2A had a high mutation rate in

HCC, which was consistent with the previous study showed that

CDKN2A is frequently mutated or deleted in a wide variety

of tumors.
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Understanding the metabolic features and immune cell

infiltration characteristics in the TME among distinct cuproptosis

subtypes could help in identifying the different molecular and

immune patterns in HCC. We found that subtype B was

significantly characterized by cell cycle-related pathways and that

may be due to the high expression of CDKN2A. Subtype C had the

most complicated microenvironment, featured with riched ECM,

glycosaminoglycan, and focal adhesion. Notably, subtype A is

mostly characterized by kinds of metabolism and biosynthesis

pathways, including the metabolism of cytochrome p450 and

amino acids. Additionally, we also found that the expression of
A B
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C

FIGURE 6

Comprehensive analysis of the CRGPI score. (A) Evaluation of the 22 immune cell types in CRGPI subgroups. (B) Expression of 10 immune
checkpoints between the two subgroups. (C) The difference in TMB and immune response between two CRGPI subgroups in the IMvigor210
cohort. (D) Kaplan–Meier curve of different CRGPI subgroups for patients undergoing ICI therapy in the IMvigor210 cohort. (E) The difference in
TMB and immune response between two CRGPI subgroups in the GSE176307. (F) Kaplan–Meier curve of different CRGPI subgroups for patients
undergoing ICI therapy in the GSE176307. (G) The correlation between three cuproptosis subtypes and two CRGPI score subgroups. CRGPI,
cuproptosis-related gene prognostic index; TMB, tumor mutational burden. ns, no significance.
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FDX1, TCA_CYCLE pathways-re la ted genes , and

GLYCOLYSIS_GLUCONEOGENESIS pathways-related genes

were associated with subtype A. Those results indicated that

cluster A was correlated with metabolism, glycolysis, and TCA

cycle pathways. High expression of FDX1 in subtype A may be one

of the reasons (35, 36).

Then, we found that immune cell infiltration was

significantly related to cuproptosis subtypes, and explored the

relationship between three cuproptosis clusters and known

predictive biomarkers for immunotherapy, including multiple

immune checkpoints (PD-1, PD-L1, etc…), TIDE, MSI, and

TMB. Our results showed patients in subtype B with MSI-high

also had low TIDE, but cluster C had the highest TMB, and there

is no significant difference in TMB between clusters B and C. In

general, a consistent result suggests that subtypes B and C may

be the immunotherapy-response phenotypes.

Considering the heterogeneity of HCC, we calculated an

accurate CRGPI score for every patient to guide personalized

therapy and divided patients into two subgroups according to

the median score as a cutoff value (46, 47). The CRGPI signature

was constructed based on 4 genes (FDX1, CDKN2A, DLAT, and

LIAS). FDX1(Ferredoxin 1) functions as the key gene for the

progress of cuproptosis by reducing cupric ions to cuprous ions

releasing them into the mitochondrial matrix and works as an

upstream regulator in the process of protein lipoylation, thus

disturbing the progress of TCA (tricarboxylic acid) cycle and in

the TCA cycle (35, 48). DLAT (Dihydrolipoamide S-

Acetyltransferase) encodes part of the pyruvate dehydrogenase

(PDH) complex (PDC) component, which is associated with

pyruvate metabolism in the TCA cycle (49). LIAS (Lipoic Acid

Synthetase) is an enzyme-containing two [4Fe-4S] clusters and

has been linked to lipoic acid metabolism.
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Recently, studies have reported that some biomarkers could

predict the prognosis of HCC. Liang et al. reported a 10

ferroptosis-related gene signature for predicting OS in HCC.

Baohui Zhang et al. established a hypoxia-related signature

based on three genes (PDSS1, CDCA8, and SLC7A11) for

predicting diagnosis, prognosis, and immune microenvironment

of HCC. Du et al. built a seven-mRNA biomarker based on

microvascular invasion (MVI) to predict the recurrence of HCC.

Recently, Zhen Zhang et al. identified cuproptosis-related risk

score to predict prognosis and characterized the TME of HCC.

Decision curve analysis (DCA) is a useful tool to assess the utility

of different models for clinical decision-making (26). The analysis

proved that the CRGPI classification performed a great clinical net

benefit compared with the other four molecular classifications

strategies at 1-, 2-, and 5-year PFS time in the TCGA-LIHC

cohort. Here, our results implied that CRGPI was a powerful

prognostic biomarker and demonstrated that HCC patients with

high CRGPI scores had worse survival performance. Lower

expression of FDX1 in the CRGPI-high subgroup may be the

reason because of less copper-induced tumor cell death, consistent

with our previous FDX1 survival results.

Next, we found that cluster C had the highest CRGPI score

and the CRGPI-high subgroup had a similar TME as cluster C.

For most immune cell infiltration, there were no significant

differences except for the quantity of memory resting CD4+ T

cells and CD8+ T cells. In addition, we found that the CRGPI-

high group had higher immune checkpoints expression than the

CRGPI-low subgroup, implying that patients with high CRGPI

scores were more likely to benefit from ICI therapy. We further

validated that the CRGPI-high group had high expression of

PD1/PDL1, TMB, and better response (PR/CR) to

immunotherapy in two anti-PD1/PD-L1 therapy cohorts
A B

C

FIGURE 7

The correlation among three cuproptosis subtypes, two CRGPI subgroups, and drug sensitivity. (A) Venn plot displaying the intersect drugs by
subtype C and CRGPI-high subgroup. (B) GSEA pathway enrichment of p53 and NF-kappa B signaling pathway in LIHC. (C) A comparison between
the IC50 values of inhibitors related to the cell cycle and NF-kB signaling pathway in three cuproptosis subtypes (up), and two CRGPI subgroups
(down). LIHC, liver hepatocellular carcinoma; gene set enrichment analysis (GSEA); CRGPI, cuproptosis-related gene prognostic index.
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(IMvigor210 cohort and GSE176307). Taken together, those

data indicated that, for HCC patients who have undergone ICI

therapy, the CRGPI-high subgroup was more likely to benefit

from ICI therapy and had a better prognosis.

Interestingly, our results suggested that HCC patients with

high CRGPI scores may have a worse OS probability. However,

they may also be sensitive to ICI therapy and would have a better

survival outcome if choosing anti-PD1/PD-L1 treatment,

compared with the CRGPI-low subgroup. These findings

highlight the importance of CRGPI serving as a potential

biomarker for both prognostic and immunotherapy for HCC

patients. The decreasing expression of the pro-cuproptosis gene

FDX1 in the CRGPI-high subgroup may explain the plausible

mechanism for the correlation between high CRGPI scores and

their responsiveness to ICI therapies. FDX1, a key gene involved

in cuproptosis, could influence metabolism function and

regulate the mitochondrial enzymes of the TCA (48, 50).

According to previous studies, Naive T cells generate energy

by oxidative phosphorylation (OXPHOS) and switch their

metabolic pattern to glycolysis once activated. Besides,

sufficient supply of glucose and glutamine are vital metabolite

nutrition required for T cell differentiation and function.

However, cancer cells would compete for glucose and

glutamine intake from T cells to enhance their growth and

proliferation (51–53). ICI therapy is based on the properties of T

cells targeting therapeutic checkpoints, such as PD1. We

hypothesized that the CRGPI-high subgroup with a low

expression of FDX1 may indicate less metabolism intake from

T cells and such effects might help enhance the effect

of immunotherapy.

In summary, this study systematically analyzed CRGs in

LIHC, and our comprehensive analysis demonstrated that (i).

The landscape of molecular characteristics of the three

cuproptosis subtypes. (ii). The CRGPI score may serve as a

promising prognostic biomarker and help in distinguishing

potential immunotherapy effective patients. But further clinical

research is needed to confirm our study. Generally, our results

provide novel insights about cuproptosis into immune

therapeutic strategies.
Conclusion

In conclusion, our comprehensive analysis may help us

understand the molecular characteristics based on CRGs in

HCC. Besides, the CRGPI score may serve as a potential
Frontiers in Immunology 12
prognostic biomarker and guide personalized molecular

targeted therapy and ICI therapy.
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