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COVID-19 patients exhibit
unique transcriptional
signatures indicative of
disease severity
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Alexandra Kadl2,4† and Peter E. Lipsky1*†

1AMPEL BioSolutions LLC, Charlottesville, VA, United States, 2Department of Medicine, Division of
Pulmonary and Critical Care Medicine, Charlottesville, VA, United States, 3Beirne B. Carter Center
for Immunology Research, University of Virginia, Charlottesville, VA, United States, 4Department of
Pharmacology, University of Virginia, Charlottesville, VA, United States
COVID-19 manifests a spectrum of respiratory symptoms, with the more

severe often requiring hospitalization. To identify markers for disease

progression, we analyzed longitudinal gene expression data from patients

with confirmed SARS-CoV-2 infection admitted to the intensive care unit

(ICU) for acute hypoxic respiratory failure (AHRF) as well as other ICU

patients with or without AHRF and correlated results of gene set enrichment

analysis with clinical features. The results were then compared with a second

dataset of COVID-19 patients separated by disease stage and severity.

Transcriptomic analysis revealed that enrichment of plasma cells (PCs) was

characteristic of all COVID-19 patients whereas enrichment of interferon (IFN)

and neutrophil gene signatures was specific to patients requiring

hospitalization. Furthermore, gene expression results were used to divide

AHRF COVID-19 patients into 2 groups with differences in immune profiles

and clinical features indicative of severe disease. Thus, transcriptomic analysis

reveals gene signatures unique to COVID-19 patients and provides

opportunities for identification of the most at-risk individuals.
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COVID-19, severity, classification, transcriptomics, bioinformatics
Introduction

Coronavirus Disease 2019 (COVID-19) is caused by the RNA virus severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), which mediates respiratory

infections and lung pathology of varying severity (1–3). Infected individuals may be

asymptomatic or present with a range of mild symptoms that can be treated at home
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to severe manifestations requiring hospitalization (4–8).

Among hospitalized patients, there remain differences in the

degree of respiratory distress and the need for mechanical

ventilation. This heterogeneity in COVID-19 patients

necessitates the ability to identify risk factors for severe

disease and the development of acute hypoxic respiratory

failure (AHRF). Currently accepted risk factors for worse

clinical prognosis of COVID-19 patients include age, male

gender, obesity, pre-existing diabetes, viral load, and pre-

existing respiratory conditions or immunodeficiencies (9–

11). However, these factors are not predictive of disease

severity in all cases and young individuals in good health

may still succumb to AHRF.

In addition to demographic statistics, the immune

response of COVID-19 patients has been linked to disease

severity and presents an opportunity for utilizing immune

profiles to predict patient outcomes. To date, several groups

have used a combination of flow cytometry, transcriptome

data, cytokine levels, and clinical data to categorize COVID-

19 patients and to associate particular immune profiles with

disease severity (12–30). Immune cells and inflammatory

molecules have been implicated in COVID-19 progression,

including type I interferon (IFN) (22, 25, 27, 29), innate

immune cells (12–14, 16, 18, 28), antibodies (31, 32),

autoantibodies (33, 34), and pro-inflammatory cytokines

(14, 17, 21, 23, 26, 35). However, these studies often

describe conflicting associations of immune profiles with

disease, emphasizing the need to better understand the

heterogeneity in responses to SARS-CoV-2 infection.

Furthermore, little work has focused on the classification of

severe COVID-19 patients and the immune profiles

associated with greater risk of death as a way to tailor

treatment plans to each individual.

We previously utilized publicly available gene expression

data to characterize the trajectory of the host immune

response to SARS-CoV-2 in the blood, postmortem lung

tissue, and bronchoalveolar lavage fluid (BALF) of COVID-

19 patients (36). We have now employed a similar

bioinformatic approach, combining gene expression and

clinical feature data, to classify severe COVID-19 patients

with AHRF upon admission to the intensive care unit (ICU)

and to differentiate mild from severe patients at different

timepoints after disease onset based on their immune profiles.

In addition, we used longitudinal gene expression analysis

from the same ICU patients to assess the stability of immune

signatures over time. As a result, we identified two groups of

AHRF COVID-19 patients with distinct enrichment of gene

signatures of innate and adaptive immune cells and

inflammatory pathways linked with differences in clinical

outcomes. This classification of severe COVID-19 patients

based on differences in immune profiles offers opportunities
Frontiers in Immunology 02
for identification of individuals with heightened disease

severity and enables a targeted therapeutic approach to

employ the most effective therapy for each individual

COVID-19 patient.
Materials and methods

Patient population

We included patients who consented to donate blood to

the University of Virginia (UVA) Intensive Care Unit (ICU)

Biorepository. We then selected patients with confirmed

COVID-19 respiratory failure, viral, non-COVID-19

respiratory failure, and patients with non-viral causes of

respiratory failure (presumed bacterial infections) in the

UVA ICU Biorepository to serve as a comparison cohort.

Control patients were patients admitted on mechanical

ventilation without respiratory failure (usually intubated for

airway protection). We followed the Strengthening the

Reporting of Observational Studies in Epidemiology

(STROBE) guidelines (37) and our study complied with all

principles outlined in the Declaration of Helsinki. All study

protocols were approved by the UVA Institutional Review

Board for Health Sciences Research (Protocol #21101).

Respiratory failure was defined as patients with acute

respiratory distress syndrome (ARDS) using Berlin criteria

(38) who were on mechanical ventilation in the ICU. COVID-

19 diagnoses were confirmed by RealTime SARS-CoV-2 assay

performed on the m2000 system (Abbott Molecular Inc.; Des

Plaines, IL).
Serum cytokine and chemokine analysis

Serum cytokine and chemokine levels were measured by

Merck Millipore MILLIPLEX Human Cytokine/Chemokine/

Growth Factor Panel A (HCYTA-60K) and Panel II

(HCYP2MAG) assays.
Sample collection

Blood was collected into PAXgene® Blood RNA

tubes upon admission to the ICU, and after 24 and 72

hours. RNA was prepared and sequenced by Genewiz

(Azenta Life Sciences). RNA was isolated using a Qiagen

total RNA isolation kit, followed by RNA-seq library

preparation using standard Illumina protocols with rRNA

and globin depletion. RNA was sequenced on an Illumina

HiSeq 4000.
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RNA-seq data analysis

Three independent whole blood datasets were analyzed. In

the first dataset of patients from the UVA ICU Biorepository,

RNA-seq data was obtained from 13 COVID-19 AHRF

patients, 8 viral AHRF, 5 non-viral AHRF, and 5 control

ICU patients. COVID-19 patients were subdivided into 2

groups (COVID Group 1 and COVID Group 2) based

on separation by PCA of the top 500 variable genes.

Additional publicly available RNA-seq datasets (GSE161731;

GSE172114), were obtained and analyzed as confirmation

studies. Additional dataset details can be found in

Supplementary Table 1.

For RNA-seq analysis, the quality of raw FASTQ reads was

analyzed using FASTQC (39) to identify the poor-quality

reads and the adaptor contamination. Adaptors and low-

quality sequencing reads were trimmed using Trimmomatic

(40) and reads before 14bp were discarded. The clean raw

sequencing reads were aligned to human reference genome

(Gencode hg38) using STAR(v2) (41). The SAM files were

converted into BAM files using sambamba (42). The aligned

BAM files were fed to read summarization program

featureCounts (43), to assign the sequencing reads to

genomic features. The differential gene expression between

COVID-19 and normal patients was carried out using the R/

Bioconductor package DESeq2. The raw counts were

normalized within the DESeq2 analysis pipeline using the

median of ratios method and genes with low expression

were filtered using HTSFilter (44). The p-values and

adjusted p-values (FDR) were calculated for each gene.

Genes with FDR < 0.05 were determined as significant

differentially expressed genes. PCA plots of log2 transformed

gene expression values were generated using the plotPCA

function from the DESeq2 package.
Gene set variation analysis (GSVA)

The R/Bioconductor package GSVA (45) (v1.25.0) was

used as a non-parametric, unsupervised method to estimate

the variation in enrichment of pre-defined gene sets in RNA-

seq dataset samples as previously described (36) (www.

bioconductor.org/packages/release/bioc/html/GSVA.html).

In brief, a matrix of log2 transformed gene expression values

for each sample and pre-defined gene sets were used as inputs

for the GSVA algorithm. Then enrichment scores (GSVA

scores) for each gene set were calculated using a

Kolmogorov Smirnoff (KS)-like random walk statistic.

GSVA scores for each patient and control were calculated

and normalized to scores between -1 (no enrichment) and +1

(enriched). Significance of gene set enrichment between

cohorts was calculated using a Welch’s t-test and p-value <

0.05 was considered significant.
Frontiers in Immunology 03
Input gene sets used for GSVA analysis were previously used

for the analysis of COVID-19 patient datasets (36) and can be

found in Supplementary Table 4.
Linear regression analysis

Multivariable linear regression analysis was performed with

MaAsLin 2 (46), a Bioconductor R package that helps to

determine the association between gene expression and

complex metadata features. MaAsLin 2 is a statistical method

that relies on general linear regression models which can test for

the association between various functional and cell specific

modules versus individual discrete and categorical clinical

variables. Computed GSVA scores and patient metadata were

used as input for the MaAsLin 2 function in R with

normalization method and transformation method applied

“NONE”, analysis method “LM”, and correction method

“BH”. The significant associations with clinical variables were

visualized using scatterplots and box plots.

Additional linear regression analyses for individual patient

cohorts and between PC GSVA scores and log2 expression of Ig

heavy chain transcripts were performed in GraphPad Prism (v

9.1.0; www.graphpad.com). For each analysis, the r2 value

indicating the Goodness of Fit and the p-value testing the

significance of the slope are displayed.
Statistical analysis

Patient demographic data from COVID Group 1 and Group

2 were compared using an unpaired t-test with Welch’s

correction for continuous variables. Pearson’s chi-squared tests

were used to analyze count data between groups. Cytokine data

for COVID Group 1, COVID Group 2, and control ICU patients

was compared using Brown-Forsythe and Welch ANOVA tests

with Dunnett T3 test for multiple comparisons. Significant

differences in gene set enrichment between COVID-19

patients and non-COVID-19 patient cohorts were calculated

using Brown-Forsythe and Welch ANOVA tests with Dunnett

T3 test for multiple comparisons.

All statistical analyses were performed in GraphPad Prism (v

9.1.0; www.graphpad.com) and a two-tailed p-value of 0.05 was

used for statistical significance.
Data and materials availability

The RNA-seq data generated in the current study are

publicly available through the National Center for

Biotechnology Information (NCBI) under SRA project number

PRJNA777938. The confirmation study datasets are publicly

available under accessions GSE161731 and GSE172114.
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Results

Transcriptomic analysis differentiates
critically ill COVID-19 patients from
other patients with AHRF and control
patients in the ICU

To identify differences in immune pathology among severe

COVID-19 patients, we analyzed whole blood transcriptomes

from 13 individuals with COVID-19-induced AHRF, 6 with

other viral and 7 with non-viral-induced AHRF, and 5 controls,

who were patients admitted to the ICU on mechanical

ventilation but without evidence of AHRF (Supplementary

Table 1, Supplementary Table 2). Out of 18,130 total

transcripts, we found 344 differentially expressed genes
Frontiers in Immunology 04
(DEGs) between control and COVID-19 ICU patients, 248

DEGs between viral AHRF and COVID-19 patients, and 650

DEGs between non-viral AHRF and COVID-19 patients

(Supplementary Table 3 and Figure 1A). Notably, expression

of none of the genes previously associated with severe disease or

increased mortality and reported as therapeutic targets for

treatment of COVID-19 was significantly changed between

controls and COVID-19 patients in the ICU (Supplementary

Figure 1B) (47–49).

To examine differences in inflammatory pathways between

COVID-19 patients and control ICU patients, we carried out

Gene Set Variation Analysis (GSVA) (45) using a set of immune

cell and pathway gene signatures (Figure 1B). Gene expression

from COVID-19 patients was enriched for signatures of

granulocytes, including inflammatory neutrophils and low-
A

B

FIGURE 1

Gene signature analysis differentiates COVID-19 AHRF patients and control ICU patients. (A) Venn diagram of differentially expressed genes between
COVID-19 patients and other ICU cohorts. (B) Individual sample gene expression from COVID-19 and control ICU patients was analyzed by GSVA for
enrichment of immune cell and pathway gene signatures. Enrichment scores are shown as violin plots. *p < 0.05, **p < 0.01, ***p < 0.001.
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density granulocytes (LDGs) as well as plasma cells (PCs) and

CD40 activated B cells. In addition, as compared to controls,

COVID-19 patients exhibited decreased enrichment for

signatures of dendritic cells (DCs), activated T cells, and Tregs.
Enrichment of inflammatory cell types
and pathway gene signatures separates
COVID-19 ICU patients into two groups

Principal component analysis (PCA) using the log2
transformed gene expression values differentiating COVID-19

and control ICU patients indicated a division among COVID-19

patients into two groups (Figure 2A). Notably, the two COVID-
Frontiers in Immunology 05
19 groups differed in expression of specific COVID-19

associated genes (Supplementary Figure 1C). COVID Group 1

patients tended to show an increase in the innate immune

checkpoint molecule CD24, whereas COVID Group 2 patients

had increased expression of the anti-viral response genes OAS1,

OAS2, and OAS3.

We then utilized GSVA to examine inflammatory pathways

in the two gene expression-derived COVID-19 patient groups in

greater detail (Figure 2B). Enrichment of PCs and de-

enrichment of DCs was conserved between both COVID-19

groups compared to controls. However, the majority of

signatures were differentially enriched in the two groups,

revealing distinct immune profiles. Specific granulocyte

population signatures were enriched in the COVID-19 patient
A

B

FIGURE 2

Enrichment of inflammatory cell types and pathway gene signatures in gene expression-derived COVID-19 AHRF patient groups. (A) Principle
component analysis of the top 500 variable genes between control (black) and COVID-19 (green) ICU patients. COVID-19 patients were further
separated into COVID Group 1 (light green) and COVID Group 2 (dark green). (B) Individual sample gene expression from (A) was analyzed by GSVA for
enrichment of immune cell and pathway gene signatures. Enrichment scores are shown as violin plots. *p < 0.05, **p < 0.01, ***p < 0.001.
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groups with increased LDGs in COVID Group 1 and increased

inflammatory and suppressive neutrophils in COVID Group 2.

In addition, COVID Group 1 was uniquely enriched for

signatures of CD40 activated B cells, the alternative

complement pathway, the cell cycle, glycolysis, and the NFkB

complex and de-enriched for activated T cell signatures. In

COVID Group 2, natural killer (NK) cell, general interferon

(IFN), IFNA2, and IFNB1, but not IFNG signatures were

significantly increased, whereas no inflammatory signatures

were decreased compared to controls.
Conserved and unique immune
signatures identify ICU patients with
different causes of AHRF

We also compared gene signature enrichment from ICU

patients with COVID-19-induced AHRF to patients admitted to

the ICU with respiratory failure from other non-SARS-CoV-2

viral infections or non-viral causes (Figure 3A). The PC gene

signature was consistently enriched in both COVID Group 1 and

2 compared with the non-viral and viral AHRF cohorts.

Numerous differences in gene set enrichment patterns were

noted between the COVID-19 groups and those with other

causes of AHRF. Many of the differences in immune cell and

pathway enrichment between COVID Group 1 and 2 and non-

viral AHRF patients were consistent with the differences from

control ICU patients, whereas, in general, viral and COVID-19

AHRF were more similar. In COVID Group 1, CD40 activated B

cells and the cell cycle were increased over the non-viral AHRF

group. In COVID Group 2, suppressive neutrophils, NK cells, T

cells, IFN, IFNA2, and IFNB1 were increased, whereas

granulocytes and glycolysis were decreased. as compared to

non-viral AHRF. The most consistent difference between

COVID Group 1 or COVID Group 2 and viral AHRF patients

was the increased PC signature in the COVID patients.

To correlate GSVA gene signature enrichment with AHRF

patient cohort and clinical features, we performed multivariable

linear regression analysis using MaAsLin 2 and plotted

relationships with significant correlations (46) (Figure 3B;

Supplementary Table 2). As a result, we found the TNF,

IFNG, inflammatory neutrophil, and suppressive neutrophil

signatures had significant positive correlations with length of

stay. In addition, the LDG signature had a significant positive

correlation and the activated T cell signature a significant

negative correlation with length of intubation. However, when

linear regression analysis was carried out individually for each

cohort, we found that the gene signature to clinical feature

correlations were not significant for all patient cohorts

(Figure 3B). None of these gene signature to clinical feature

correlations were significant when considering the control ICU

patients or non-viral AHRF patients alone, indicating that these

relationships were specific for patients with virus-induced
Frontiers in Immunology 06
respiratory failure. Among viral and COVID AHRF cohorts,

the positive correlation between inflammatory neutrophils and

length of stay was significant for both COVID and viral AHRF

patients while the correlations between TNF, IFNG, or

suppressive neutrophils and length of stay were only

significant for COVID but not viral AHRF cohorts.

Furthermore, the negative correlation between activated T cells

and length of intubation was only significant for the viral AHRF

cohort, but not for the COVID groups. Therefore, subsets of ICU

patients exhibit differences in immune signatures indicative of a

worse clinical prognosis, but this is not unique for COVID-

19 patients.
Specific plasma cell populations
are characteristic of COVID-19-
induced AHRF

COVID-19 patients, whether Group 1 or Group 2, had a

significant increase in PCs over all other ICU patients. This result

was further probed by multivariable linear regression analysis, in

which the most significant correlation between GSVA enrichment

score and patient cohort was for the PC signature, which was

uniquely associated with COVID-19 patient groups (Figure 4A). To

investigate the immunoglobulin (Ig) heavy chain(s) expressed by

AHRF COVID-19 patient PCs, we carried out linear regression

using PC GSVA scores and Ig heavy chain gene expression

(Figures 4B, C). As a whole, COVID-19 patient PC GSVA scores

were significantly correlated with IGHG3 and IGHA1 Ig heavy

chain isotypes (Figure 4B). However, when the COVID groups were

analyzed separately, only COVID Group 1 showed a significant

correlation with expression of IgHA1 (r2 = 0.8, p=0.004). This was

not found with COVID group 2 (Figure 4C).
Clinical features and serum cytokines are
indicative of differential disease severity
in gene expression-derived COVID-19
patient groups

To determine whether gene expression-derived groups of

hospitalized COVID-19 patients also differed in the level of

disease severity, we compared clinical feature and cytokine data

of COVID Group 1 and Group 2 patients (Figure 5;

Supplementary Table 3). We found that baseline demographic

data as well as length of stay in ICU and length of intubation

were similar between COVID Group 1 and 2 (Figures 5A, B).

Notably, however, these cohorts varied widely in a number of

clinical features indicating that COVID Group 2 had more

severe disease (Figure 5B). On average, COVID Group 2 had

two fewer days of symptoms before admission to the ICU and

thus had accelerated disease onset. Upon admission, ferritin and

AST levels were over 2X and 1.5X higher, respectively, in Group
frontiersin.org
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2 patients whereas their lung function, as measured by mean PF

ratio, was lower. Furthermore, maximum ferritin and aspartate

aminotransferase (AST) levels were even more elevated in

COVID Group 2 than at admission, indicative of rapid disease
Frontiers in Immunology 07
progression in these patients. In contrast to clinical features, pro-

inflammatory cytokines were only modestly elevated in COVID

Group 1 and 2 over controls and in COVID Group 2 over Group

1 (Figure 5C). COVID Group 1 and 2 exhibited modest increases
A

B

FIGURE 3

Conserved and unique immune signatures identify ICU patients with different sources of AHRF and vary in correlations with clinical data.
(A) Individual sample gene expression from COVID Group 1, COVID Group 2, Viral, or Non-viral AHRF ICU patient cohorts was analyzed by
GSVA for enrichment of immune cell and pathway gene signatures. Enrichment scores are shown as violin plots. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001. (B) Multivariable linear regression analysis of immune cell gene signatures significantly correlated with clinical data from
Control, COVID Group 1, COVID Group 2, Viral, and Non-viral AHRF ICU patient cohorts. Combined cohort correlations and p-values are
displayed in the linear regression plots while individual cohort correlations and p-values are displayed in the tables below. Correlations with p <
0.05 were considered significant.
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in IL6, IL8, and TNF, although these differences did not reach

statistical significance. In addition, COVID Group 1 had slightly

elevated CD40L and VEGF and COVID Group 2 had

significantly elevated levels of the myeloid chemokines CCL2

and CXCL10 as well as IFNA2 and IFNG. In many cases, severe

COVID-19 patients are thought to have had greater viral

exposure and thus greater viral load in relation to mild cases

(50, 51). However, we found no significant differences in viral

loads between the COVID-19 patient groups despite their clear

differences in clinical features and gene expression

profiles (Figure 5D).
Frontiers in Immunology 08
Longitudinal sampling reveals
persistence of immune cell and pathway
gene signatures in AHRF ICU patients
over time

To examine the persistence of gene signature enrichment

over time in the ICU, several COVID-19 AHRF, Viral AHRF,

and Non-viral AHRF patients were also sampled at 24- and 72-

hours post-admission and individualized trajectories of gene

expression were assessed (Figure 6 and Supplementary

Figure 2). Gene signatures for all AHRF cohorts remained
A

B

C

FIGURE 4

Specific plasma cell populations are characteristic of COVID-19-induced AHRF. (A) Multivariable linear regression analysis boxplots depicting significant
correlation of the PC gene signature GSVA scores with ICU patient cohort. (B, C) Linear regression between PC GSVA scores and Ig heavy chain isotype
log2 gene expression values for COVID Group 1 and COVID Group 2 ICU patient cohorts. Combined cohort correlations and p-values are depicted in
(B) and individual cohort correlations and p-values are depicted in (C). Correlations with p < 0.05 were considered significant.
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largely stable over time, but among individuals with COVID-

19, Group 1 patients appeared to have greater variation than

Group 2 patients. In particular, the IFN and neutrophil

signatures that were uniquely enriched in COVID Group 2
Frontiers in Immunology 09
were decreased in Group 1 patients over time, whereas the

LDG signature was increased. Importantly, Group 2 patient

142, who succumbed, displayed very little change in gene

expression over the 72 hours.
A

B

C D

FIGURE 5

Serum cytokines, but not viral load, are indicative of differential disease severity in gene expression-derived COVID-19 patient groups. (A)
Demographic data and (B) clinical feature data from COVID Group and COVID Group 2 patient cohorts. (C) Serum cytokine measurements from
Control, COVID Group 1, and COVID Group 2 ICU patient cohorts. (D) SARS-CoV-2 viral load CT values of nasal swabs from COVID-19 ICU
patient cohorts. *p < 0.05, **p < 0.01.
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Non-hospitalized COVID-19 patient
gene expression profiles resemble
healthy controls, particularly at later
stages of disease

Our initial dataset of COVID-19 patients consisted entirely

of severe AHRF cases admitted to the ICU. Therefore, we

wanted to characterize the immune profiles of COVID-19

patients at different stages of diseases and severity (non-

hospitalized vs hospitalized) as compared to healthy controls.

To do this, we analyzed a second publicly available COVID-19

transcriptomic dataset (GSE161731, Supplementary Table 1),

which sampled 16 COVID-19 patients at early-stage (< 10

days), 30 at mid-stage (11-21 days), and 17 at late-stage (> 21

days) disease (52). In total, there were 82 common DEGs

between individuals with COVID-19 and healthy controls in

this study and our analysis of COVID-19 ICU patients

compared to controls in the ICU (Supplementary Figure 3).

GSVA analysis revealed that many gene signatures enriched in

AHRF COVID-19 patients were selectively enriched in the early

and mid-stage, but not late-stage disease cohorts (Figure 7A).

Furthermore, early-stage patients most resembled the COVID

Group 2 cohort, whereas mid-stage disease patients resembled
Frontiers in Immunology 10
COVID Group 1. Early stage COVID-19 patients were enriched

for suppressive neutrophil, monocyte, PC, IFN, CD40 activated

B cell, cell cycle, and NFkB gene signatures. Mid-stage patients

were enriched for PC, CD40 activated B cell, alternative

complement pathway, and cell cycle gene signatures. Late-

stage patients were de-enriched for all of these signatures as

compared to the early and mid-stage disease cohorts and had no

significant differences from healthy controls. Notably, while

early and mid-stage cohorts included both mild, non-

hospitalized and severe, hospitalized patients, none of the

patients with late-stage disease required hospitalization.
Immune cell and pathway gene signature
enrichments are conserved between
hospitalized COVID-19 patients

In addition to differences in disease stage, patients with early

and mid-stage disease were further differentiated by disease

severity based on whether they were hospitalized. Comparing

35 non-hospitalized and 11 hospitalized COVID-19 patients

(Figure 7B) revealed that a few signatures were commonly

enriched in all COVID-19 patients regardless of disease
FIGURE 6

Longitudinal sampling reveals persistence of immune cell and pathway gene signatures over time. Trajectory plots of select immune cell and
pathway GSVA enrichment scores from individual COVID-19 ICU patients at baseline, 24 hours, and 72 hours post-admission.
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severity, including PCs, CD40 activated B cells, the alternative

complement pathway, and the cell cycle. Interestingly, linear

regression analysis of PC GSVA scores with IgH chain gene

expression revealed that both non-hospitalized and hospitalized

COVID-19 patients had significant correlations with IgG and

IgA chain genes, although the non-hospitalized patient

correlations were stronger than those of hospitalized patients

(Supplementary Figure 4). The NFkB complex signature was the

only one uniquely enriched in non-hospitalized COVID-19

patients as compared to healthy controls. In contrast, many

inflammatory signatures were specific to hospitalized COVID-

19 patients, including increased granulocyte, inflammatory

neutrophil, suppressive neutrophil, LDG, monocyte, IFN,

classic complement pathway, and anti-inflammation
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signatures. In addition, only hospitalized patients had

decreased DC and T cell gene signatures. To provide further

support for these results, we analyzed a third publicly available

dataset (GSE172114) of 23 non-critical and 46 critical COVID-

19 patients. Critical COVID-19 patients from this study shared

103 and 2573 DEGs with our previous analyses of COVID-19

ICU patients and COVID-19 patients with varying disease

severity respectively (Supplementary Figure 3). Notably, the

enriched gene signatures previously noted in hospitalized

compared to non-hospitalized COVID-19 patients were also

enriched in this group of critical compared with non-critical

COVID-19 patients (Supplementary Figure 5). Therefore, severe

cases of COVID-19, which require hospitalization, have

conserved immune profiles as measured by inflammatory gene
A

B

FIGURE 7

Enrichment of immune cell and pathway gene signatures in non-hospitalized and hospitalized COVID-19 patients at different stages of disease.
(A) Individual sample gene expression from non-hospitalized COVID-19 patients with early-, mid-, or late-stage disease and healthy controls
was analyzed by GSVA for enrichment of immune cell and pathway gene signatures. (B) Individual sample gene expression from non-
hospitalized and hospitalized COVID-19 patients and healthy controls was analyzed by GSVA for enrichment of immune cell and pathway gene
signatures. Enrichment scores are shown as violin plots. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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signatures, but upon further dissection reveal patient

heterogeneity indicative of risk for more severe disease.
Discussion

Bioinformatic analysis of gene expression data from

COVID-19 patients of varying disease stage and severity was

used to identify immune signatures common to COVID-19 as

well as immune signatures that differentiate patients with severe

disease requiring hospitalization. Shared enrichment of the PC

gene signature was the one constant feature of COVID-19

patients in comparison to healthy controls, regardless of the

length of time since symptom onset or whether their disease was

severe enough to require hospitalization, which is consistent

with previous work from our group and others (3, 19, 36, 53).

This rapid increase in the PC signature suggests that SARS-CoV-

2 infection initiates a robust generation of antibody secreting

cells (ASCs), potentially through an extrafollicular response,

which are capable of producing virus-specific neutralizing

antibodies (54, 55). These ASCs are presumably generated in

secondary immune organs and migrate to the bone marrow as a

normal feature of immunization. However, as fully mature PCs

are rare to find in the blood, this enrichment likely represents an

increase in short-lived plasmablasts (PBs), which are still capable

of producing neutralizing antibodies, but may not have

undergone somatic hypermutation to increase their specificity

for SARS-CoV-2 viral antigens (56). Thus, the increased PC

signature may be largely COVID, but not severity -specific and

could account for conflicting reports as to whether antibody

production in COVID-19 is helpful or harmful (53).

The pathogenic gene signatures associated with hospitalized

COVID-19 patients were conserved across multiple datasets,

suggesting that these enrichments represent a common immune

profile of severe COVID-19 (52). This profile was characterized

by increased enrichment of neutrophil subsets and IFN

accompanied by de-enrichment of T cells and was specific to

patients with early and mid-stage disease (< 21 days since

symptom onset). Notably, the greatest inflammatory signature

enrichment was observed in early-stage patients (< 10 days since

symptom onset). In contrast, the immune profiles of patients

who reached late-stage disease (> 21 days since symptom onset)

were no different than healthy controls and none of these

individuals were hospitalized indicating that they would fully

recover. Thus, this result stresses the importance of early

identification of infected individuals and provides critical

insight into the pathologic immune signatures that are risk

factors for the development of severe disease and need

for hospitalization.

Analysis of longitudinal gene expression data from patients

admitted to the ICU was utilized to decode the heterogeneity

among severe COVID-19 patients and to differentiate them from

others with AHRF based on their immune profiles. As a result,
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we identified and characterized 2 groups of COVID-19 patients

(COVID Group 1 and COVID Group 2), with conserved and

differential enrichment of immune cell and pathway gene

signatures. COVID Group 1 was characterized by a lack of

activated T cells, increased LDGs, increased CD40-activated B

cells, and a general increase in cell proliferation and metabolism

pathways. COVID Group 2 was characterized by increased

expression of neutrophil subsets, markedly increased IFN gene

signatures, and the absence of IgA1 expressing PCs. Aggregated

clinical feature data and cytokine profiles for each COVID-19

patient cohort revealed that COVID Group 2 appeared to have

more severe disease outcomes and indicated that patients with a

similar immune profile would warrant a more targeted and

aggressive therapeutic approach to mitigate risk of mortality.

Both COVID Group 1 and 2 shared enrichment of the PC

signature, which consistently differentiated COVID-19 patients

from control ICU patients as well as patients exhibiting

respiratory failure from other viral or non-viral sources.

However, it is possible that the IgH heavy chain isotype of

PCs is indicative of whether a robust and early PC expansion is

beneficial to COVID-19 patients and certain PC isotypes have

been linked with severe disease (19). In line with this, we found

evidence of differing PC specificities in COVID Group 1 and 2

patients as Group 2 patients, who exhibited more severe clinical

features, also appeared to fail to generate an IgA1 PC response.

This suggests that Group 2 patients may have a defect in T-B cell

collaboration and the ability to produce class-switched IgA1

PCs. The IgA response is important to clear virus from mucosal

surfaces, such as the lung and, therefore, a lack of IgA in COVID

Group 2 may compromise SARS-CoV-2 clearance in these

patients (57). Furthermore, production of autoantibodies of

varying specificities has been reported in COVID-19 patients

and could represent an non-specific PC response that

contributes to systemic inflammation in infected individuals

(33, 58). Therefore, a better characterization of the nature of

PC generation and function following SARS-CoV-2 infection

could be a critical factor in understanding the host immune

response and how it differs among individuals.

COVID Group1 patients appeared to have less severe disease

as compared to COVID Group 2. Whereas all presented with

AHRF, all Group 1 patients recovered, whereas 2 of Group 2

patients died during their hospitalization. Although our data set

is limited by the number of patients analyzed, it suggests that the

Group 2 gene signature could serve as prognostic marker and

warrant individualized intervention. Lymphopenia is an

established feature of COVID-19 and, in particular, a lack of T

cell responses has been associated with worse clinical outcome

(14, 28, 53, 59, 60). However, COVID Group 1 patients had

differential enrichment of B and T cell populations with

enrichment of CD40 activated B cells and de-enrichment of

activated and cytotoxic T cells. In addition, unlike non-viral and

viral AHRF patient cohorts, lack of activated T cells failed to

correlate with clinical data. This would indicate that a lack of T
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cell activation and function is detrimental to patient outcome,

but not essential for patient recovery and also that a robust

activated B cell response may be able to compensate in

some capacity.

COVID Group 1 patients also exhibited an increase in genes

associated with LDGs, neutrophil-like granulocytes with

enhanced capacity for production of Type I IFNs and

formation of neutrophil extracellular traps (NETs) that have

been identified in severe COVID-19 patients (61, 62). In

agreement with reports that NET formation contributes to

enhanced pathogenesis in COVID-19 patients, it is likely that

enrichment of LDGs contributes to the development of AHRF

(63, 64). However, the lack of LDG enrichment in COVID

Group 2 patients suggests that enrichment of LDGs does not

increase the risk of death. In fact, the absence of an extreme IFN

response and eventual recovery of all COVID Group 1 patients,

suggests that the increased LDG signature reflects an appropriate

antiviral innate immune response that will eventually subside as

the virus is cleared. This was supported by the elevated

expression of CD24 observed in COVID Group 1 patients, as

the CD24-SIGLEC10 signaling axis serves as an important

regulator of innate immune. Notably, CD24Fc was effective in

protection against viral pneumonia in a simian model and has

been proposed for the treatment of COVID-19 (49).

In contrast to COVID Group 1, the immune response of

COVID Group 2 patients appeared to be associated with

increased risk of mortality. The primary immune signatures

enriched in COVID Group 2 resembled a dysregulated antiviral

innate immune response. In particular, Group 2 exhibited

enrichment of neutrophil populations expressing pro-

inflammatory and suppressive genes that were previously

identified in blood from severe COVID-19 patients (13, 18).

Furthermore, levels of cytokines and chemokines with roles in

myeloid cell activation and recruitment were significantly

elevated and could contribute to aberrant expansion of these

pathogenic neutrophils and disease progression. COVID Group

2 patients also had significant enrichment of Type I IFN gene

signatures and increased serum levels of IFN proteins compared

to COVID Group 1. To date, there have been conflicting reports

claiming that severe COVID-19 cases exhibit increased (29) or

impaired (27) Type I IFN responses. However, our results would

suggest that severe COVID-19 patients exhibit a range of IFN

responses, but that extreme early IFN production ultimately

increases risk of death.

In addition to IFNs, a number of pro-inflammatory

cytokines, including members of the IL-1 family, IL-6, IL-8,

and TNF have been implicated in COVID-19 pathogenesis and

linked to severe disease (14, 24, 35). We also observed that severe

COVID-19 patients in the ICU had a trend toward increases in

IL-6, IL-8, and TNF over control ICU patients and this increase

was even greater in COVID Group 2 over Group 1. However,

there was considerable heterogeneity and none of these

comparisons reached statistical significance. This result
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corroborates a number of reports that have questioned the

notion that “cytokine storm” is a prominent contributor to

COVID-19 pathogenesis (17, 21). Viral load has also had

conflicting associations with disease severity (50, 51).

However, we found no difference in viral load between our

COVID-19 patient cohorts suggesting that greater mortality risk

is not necessarily associated with greater viral exposure. One

caveat to this is that our viral load measurements were taken

from nasal swabs and it is possible that increased viral presence

in the lower airway may lead to worse disease outcomes. The

lack of a clear association between more severe clinical

manifestations and accentuated gene expression profiles and

viral load suggests that genetic control of host defense may play a

prominent role in disease outcome, as has been suggested (47,

48, 65).

Longitudinal gene expression analysis over 72 hours after

admission to the ICU revealed that the immune profiles of

COVID and non-COVID AHRF patients remained largely

unchanged over time. However, among the COVID-19-

induced AHRF patients, profiles of COVID Group 1 patients

appeared to exhibit greater changes than COVID Group 2.

Strikingly, gene signatures of COVID-associated neutrophil

subsets and IFN were decreased, whereas the LDG gene

signature was increased in COVID Group 1 patients, further

supporting the conclusion that the innate immune response in

Group 1 patients contributes to viral clearance whereas the

response in Group 2 patients contributes to enhanced

inflammation and fatal disease.

We have applied a combination of bioinformatics

approaches to characterize COVID-19 patients based on

disease stage and severity using gene expression data, but must

acknowledge the limitations of the data. Our initial dataset of

ICU patients contained up to 13 patients per cohort and

COVID-19 patients were also sub-divided into groups, which

reduced the statistical power of our analyses. To mitigate this, we

designed the study to solely include patients in the ICU,

including non-AHRF controls, and thus reduce patient

heterogeneity. In addition, a larger publicly available dataset

including both hospitalized and non-hospitalized COVID-19

patients with healthy controls was utilized for validation.

However, additional studies comparing ICU patients with

more patients per cohort and more uniform inclusion criteria

are warranted.

Overall, we have identified immune profiles of severe

COVID-19 patients associated with full recovery from disease

or increased risk of mortality. We propose that these differences

in COVID Group 1 and Group 2 patients could be employed to

better allocate healthcare resources and design targeted

treatment plans to better care for individuals who are at the

greatest risk of worse outcomes. Whereas optimal medical care

and appropriate ventilator management may be sufficient in

patients with immune profiles similar to COVID Group 1,

patients with immune profiles similar to COVID Group 2
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could benefit from more aggressive therapeutic intervention

targeting the dysregulated innate immune response. In

particular, drugs targeting Type I IFNs, cytokines, such as IL6

or TNF, or myeloid chemokines such as IP-10 or MCP1 could be

effective treatments for these individuals. Our work highlights

the heterogeneity among severe cases of COVID-19 and the

need for better characterization of hospitalized individuals to

determine effective strategies to mitigate pathogenic immune

processes that are dysregulated in the most at-risk patients.

Furthermore, infected individuals with the potential to progress

to severe disease should be identified as early as possible to allow

for better resource allocation and early individualized therapies.
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