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Landscape of prognosis and
immunotherapy responsiveness
under tumor glycosylation-
related lncRNA patterns in
breast cancer

Wenchang Lv1†, Yufang Tan1†, Xiaomei Zhou1, Qi Zhang1*,
Jun Zhang2* and Yiping Wu1*

1Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China, 2Department of Thyroid and Breast Surgery,
Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
Aberrant glycosylation, a post-translational modification of proteins, is

regarded to engage in tumorigenesis and malignant progression of breast

cancer (BC). The altered expression of glycosyltransferases causes abnormal

glycan biosynthesis changes, which can serve as diagnostic hallmarks in BC.

This study attempts to establish a predictive signature based on

glycosyltransferase-related lncRNAs (GT-lncRNAs) in BC prognosis and

response to immune checkpoint inhibitors (ICIs) treatment. We firstly

screened out characterized glycosyltransferase-related genes (GTGs)

through NMF and WGCNA analysis and identified GT-lncRNAs through co-

expression analysis. By using the coefficients of 8 GT-lncRNAs, a risk score was

calculated and its median value divided BC patients into high- and low-risk

groups. The analyses unraveled that patients in the high-risk group had shorter

survival and the risk score was an independent predictor of BC prognosis.

Besides, the predictive efficacy of our risk score was higher than other

published models. Moreover, ESTIMATE analysis, immunophenoscore (IPS),

and SubMAP analysis showed that the risk score could stratify patients with

distinct immune infiltration, and patients in the high-risk group might benefit

more from ICIs treatment. Finally, the vitro assay showed that MIR4435-2HG

might promote the proliferation and migration of BC cells, facilitate the

polarization of M1 into M2 macrophages, enhance the migration of

macrophages and increase the PD-1/PD-L1/CTLA4 expression. Collectively,

our well-constructed prognostic signature with GT-lncRNAs had the ability to

identify two subtypes with different survival state and responses to immune

therapy, which will provide reliable tools for predicting BC outcomes and

making rational follow-up strategies.
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Introduction

In 2020, 2.3 million new breast cancer (BC) cases and 680

thousand new deaths are identified in women, making BC

surpass lung cancer as the most commonly diagnosed female

cancer and the leading cause of cancer death (1). In recent years,

immunotherapy, especially the application of immune

checkpoint inhibitors (ICIs) has revolutionized the treatment

of BC patients (2). In many clinical trials, targeting programmed

cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1)

and cytotoxic T-lymphocyte antigen-4 (CTLA-4), has yielded

favorable clinical efficacy in BC patients (3). Nevertheless, some

patients may show less benefit from ICIs, especially those with

ER-positive subtype (4). Hence, it is crucial to search for an

effective method to predict BC patients’ long-term survival and

response to ICI treatment.

Glycosylation is a multistep process of post-translational

modification of proteins that removes and adds individual

carbohydrates to proteins and lipids by exploiting 200

glycosyltransferase enzymes (5). Protein glycosylation includes

N-linked glycosylat ion, O-l inked glycosylation, C-

mannosylation, phospho-glycosylation and glypiation (6).

Abnormal and disordered glycosylation is associated with

cancer and various disease, as it engages in uncontrolled cell

proliferation, migration and differentiation (7). Many studies

have unraveled that tumor cells show extensive protein

glycosylation in comparison with their non-malignant

counterparts (8, 9). Cancer-associated glycosylation changes,

mainly including O-glycan truncation, sialylation, fucosylation,

and N-glycan branching, are directly involved in angiogenesis,

immune modulation, epithelial-mesenchymal transition (EMT)

and metastasis (10). Fang et al. uncovered that the aberrant

initiation of O-glycosylation regulated by LAMTOR5 conduced

to BC distant metastasis (11). Notably, N-glycosylation of PD-L1

could keep its stability and progressively interact with PD-L1,

thus allowing BC cells to avoid immune surveillance (12, 13).
Abbreviations: BC, breast cancer; CCK-8, Cell Counting Kit-8; C-index,

concordance index; CTLA4, cytotoxic T-lymphocyte antigen4; DFI, disease-

free interval; DMEM, Dulbecco’smodified Eagle’smedium; EMT, epithelial-

mesenchymal transition; FDR, false discovery rate; GO, Gene ontology;

GSEA, gene set enrichment analysis; GTGs, glycosyltransferase-related

genes; GT-lncRNAs, glycosyltransferase-related lncRNAs; IC50, half-

inhibitory concentration; ICIs, immune checkpoint inhibitors; IHC,

immunohistochemistry; IPS, immunophenoscore; KEGG, Kyoto

Encyclopedia of Genes and Genomes; lncRNAs, long non-coding RNAs;

NMF, nonnegative matrix factorization; OD, optional density; OS, overall

survival; PBS, phosphate-buffered saline; PD-L1, programmed cell death

ligand-1; PD-1, programmed cell death-1; PFS, progression-free survival;

ROC, receiver operating characteristic; RMS, restricted mean survival;

siRNAs, small interference RNAs; TCIA, The Cancer Immunome Atlas;

TOM, topological overlap measure; TME, tumor microenvironment;

WGCNA, weighed gene co-expression network analysis.
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Thus, altered glycosylation is not only a contributor to

malignant transformation in cancer but also a regulator of

ICIs in the immune response.

Several prognostic models based on glycosylation-related

genes have been emerging for predicting cancer prognosis. For

example, Zhao et al. harnessed 4 glycosylation-related mRNAs

to calculate the risk score in ovarian cancer, and the risk score

was negatively correlated with tumor purity and tumor mutation

burden, which suggested that low-risk scores might predict a

better benefit from ICI treatment (14). Our previous study

screened 9 glycosyltransferase genes to develop a prognostic

signature in BC, and the high-risk-group patients showed

shorter survival probability and more immunosuppressive

profile (15). However, there are no reports on establishing

prognostic signature based on glycosylation-related long non-

coding RNAs (lncRNAs) for predicting BC prognosis and

response to ICI therapy. Some distinct characteristics of

lncRNAs from mRNAs, such as higher tissue specificity,

developmental stage specificity and cell subtype specificity

(16), determine the different effects of lncRNAs in cancer

development and tumor microenvironment (TME). LncRNAs

have been reported to engage in various regulatory processes,

including cell growth, proliferation, differentiation, apoptosis,

motility and invasion, signal transduction, DNA damage

regulation, immune response, and pluripotency (16).

Therefore, it is promising to identify a signature of

glycosylation-related lncRNAs for a more accurate prediction

of BC long-term survival and response to ICI treatment.

In the present, we firstly screened out glycosyltransferase-

related genes (GTGs) mostly associated with BC prognosis

through the nonnegative matrix factorization (NMF) method

and weighed gene co-expression network analysis (WGCNA).

Glycosyltransferase-related lncRNAs (GT-lncRNAs) were

stepwise identified via co-expression analysis. Then, targeted

GT-lncRNAs were selected to calculate the risk score according

to univariate, LASSO and multivariate cox regression analyses.

The median risk score divided BC samples into high-risk and

low-risk groups, which displayed differential overall survival

(OS), progression-free survival (PFS), disease-free interval

(DFI), clinical features, immune infiltration, response to ICI

treatment and chemo-drugs sensitivity. In summary, our study

will provide novel insights into the precision treatment for BC

on the basis of glycosylation.
Materials and methods

Data collection

A total of 1089 BC cases with corresponding mRNA

expression data (FPKM format), lncRNA expression data and

clinical data, were downloaded from the TCGA data portal

(https://portal.gdc.cancer.gov/).
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Molecular subtypes based on GTGs

Firstly, a total of 169 GTGs were extracted from the TCGA

expression profile data. Then, 1089 BC samples were clustered

by performing the NMF analysis according to the “brunet”

standard and 50 iterations. The k value, the number of

clusters, was set as 2-10. The average contour width of the

common member matrix was determined by using the NMF

package in R, and the minimum member numbers of each

subtype were set to 10. Finally, the optimal number of clusters

was identified according to indexes, including cophenetic,

dispersion, and silhouette.
WGCNA analysis

The WGCNA algorithm was applied to excavate the co-

expressing coding genes and co-expression modules by

establishing the scale-free co-expression network (17). Firstly,

based on the expression profiles of 169 GTGs, the Pearson

correlation coefficient between two genes and adjacency

function was calculated by the R package WGCNA. The

parameter b, the soft threshold of the adjacency matrix, was

used to construct scale-free networks to emphasize the strong

correlations between GTGs. Then, the adjacency matrix was

transformed into a topology matrix, and the topological overlap

measure (TOM) was used to describe the degree of association

between genes. Next, the hierarchical clustering analysis was

used to calculate modules with the distance as 1-TOM. The

minimum size of the module was set as 30. Finally, the module

eigengenes were linked to subtypes in the present study,

including clinical characteristics (survival state, age, stage and

TNM stage), and cluster subtypes based on GTGs (C1 and C2).

The module with the highest correlation and gene significance

with C1 and C2 was selected for the next analysis, and these

genes were identified as hub GTGs. Moreover, the clusterProfiler

R package 3.42.0 was used to perform Gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) functional

enrichment analyses of these hub GTGs to annotate the

molecular functions of the selected module genes.
Construction and validation of the risk
score based on GT-lncRNAs

After the acquisition of 169 hub GTGs, GT-lncRNAs were

identified through co-expression analysis with GTGs from the

TCGA project. The GT-lncRNAs associated with BC prognosis

were selected via the univariate and multivariate Cox regression

analysis with R package “survival”. LASSO Cox regression was

analyzed with “glmnet” package to reduce the number of genes

and obtain the most predictive genes. The risk score was
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calculated depending on the coefficients of GT-lncRNAs and

according to the following formula:

Risk score =on
i=1 bi*Expið Þ

Where Expi is the expression of GT-lncRNAs and bi is
the coefficient.

The Kaplan-Meier method was used to compare the

differences in OS, DFS and PFI between different groups. The

accuracy of the risk model was evaluated by using Receiver

operating characteristic (ROC) analysis with R package

“survivalROC”. The nomogram was established to predict the

1-, 2-, and 3-year survival rates of BC patients by using the “rms”

R package. The predictive performance of the risk score was

compared with other signatures via the concordance index (C-

index) in the “rms” R package. A Sankey diagram was generated

to visualize the assignment of different variables by using the R

package “networkD3”.
Gene set enrichment analysis (GSEA) and
immunity analysis

GSEA software (http://software.Broadstitute.org/GSEA/)

was used to explore the potential differences in the biological

function and signaling pathways between the two risk groups

based on the KEGG and GO gene sets in the TCGA project. The

threshold for significantly enriched functional annotations was

set as p< 0.05 and false discovery rate (FDR)< 0.25. The

infiltrating scores of 22 immune cells and the activities of 13

immune-related pathways were quantified by using single-

sample gene set enrichment analysis (ssGSEA) with the “gsva”

R package. The abundance of immune cells and stromal cells for

each BC sample was evaluated by using the immune score,

tumor purity, ESTIMATE score, and stromal score with the

ESTIMATE algorithm. The box plots were drawn to visualize

the differences.
The cancer-immunity cycle analysis

The cancer-immunity cycle, a cyclical process in the immune

system to eradicate cancer, is a vital framework for tumor

immunotherapy study (18). The cycle mainly includes seven

steps (19) (1): release of cancer antigen (2), cancer antigen

presentation (3), initiation and activation (4), trafficking T

cells to the tumor (5), infiltration of T cells into the tumor (6),

T cell recognition of cancer cells, and (7) T cell killing of cancer

cells. The information of genes from each step was downloaded

from Tracking Tumor Immunephenotype (http://biocc.hrbmu.

edu.cn/TIP/index.jsp). Furthermore, the ssGSEA algorithm was

used to quantify the scores of the seven steps. The differences in
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the scores of the seven steps in immunophenotyping were

compared between high- and low-risk groups.
The immunotherapy response and
chemo-drug sensitivity analysis

The TIDE algorithm was used to evaluate the response to ICI

therapy. Immunophenoscore (IPS), constituted of four parts

(effector cells, immunosuppressive cells, MHC molecules, and

immunomodulators), determines the immunogenicity and reflects

the response of the patients to immunotherapy (20). The IPS of all

BC patients were obtained from The Cancer Immunome Atlas

(TCIA) (https://tcia.at/home). Using the gene expression of various

immune molecules could calculate the IPS, which ranged from 0 to

10. BC patients’ responses to anti-PD1 and anti-CTLA-4 treatment.

The responses to anti-PD-1 and anti-CTLA-4 treatment in BC

patients with high and low risk were assessed by utilizing the

SubMAP algorithm. The data of half-inhibitory concentration

(IC50) of commonly used chemotherapeutic drugs in BC patients

were obtained from the TCGA project by using the “pRRophetic”

and “ggplot2” R package.
Cell culture and si-MIR4435-2HG
transfection

MCF-7 and MDA-MB-231 were obtained from American

Type Culture Collection (Manassas, VA, USA), and cultured at

37°C in a 5% CO2 atmosphere with Dulbecco’smodified

Eagle ’smedium (DMEM; Gibco, Carlsbad, CA, USA)

supplemented with 10% fetal bovine serum (FBS; Gibco,

Carlsbad, CA, USA). The small interference RNAs (siRNAs)

targeting MIR4435-2HG and negative control were designed

and synthesized by Ribo Biotech (Guangzhou, China). By using

Lipofectamine 3000 Transfection Reagent (Invitrogen, CA,

USA), siRNAs were transfected into MDA-MB-231 and MCF-

7 cells. Then, using RT-PCR to estimate transfection efficiency

after 24 h. Total RNAs were extracted from cultured BC cells by

TRIzol (Takara, Japan), and cDNA was synthesized by the

Strand cDNA Synthesis Kit (Yeasen, Shanghai, China)

according to the manufacturer’s protocols. The qRT-PCR was

performed with QuantStudio1 (ABI Q1, USA) by using the

SYBR GreenTM Master Mix (Yeasen, Shanghai, China). All

primer sequences used for qRT-PCR were provided in Table S1.
Co-culture of BC cells and M0
macrophages by transwell assay

For the si-MIR4435-2HG mediated the effect of BC cells on

macrophage polarization. The BC cell lines (MDA-MB-231 and

MCF-7), transfected with si-control or si-MIR4435-2HG, were plated
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into the upper chamber. THP-1 cells were plated into the lower

chamber. The upper and lower chambers were filled with the same

DMEM medium. After 48 h co-culture, qRT-PCR was used to detect

the relative mRNA levels of ARG1 (M2 macrophage marker) and

iNOS (M1 macrophage marker), in the cells of the lower chamber.

For the effects on macrophage migration. THP-1 cells were

plated into the upper chamber. The BC cell lines (MDA-MB-231

and MCF-7), transfected with si-control or si-MIR4435-2HG,

were plated into the lower chamber. The upper and lower

chambers were filled with the same DMEM medium. After 48

h co-culture, the upper chamber was washed with phosphate-

buffered saline (PBS) twice, fixed with 4% paraformaldehyde for

30 min, stained with 0.1% crystal violet for 10 min and counted

by a microscope and ImageJ software.
Cell proliferation and migration assays

Cell Counting Kit-8 (CCK-8) assay (Yeasen, Shanghai, China)

was used to estimate cell proliferation. Cells were seeded in a 96-

well plate at 2 × 103/well density. Until the confluence reached

40%, the culture cells were transfected with si-MIR4435-2HG and

then, 10 mL CCK-8 reagent was directly added to each well at the

specified time (0, 24 h) and then incubated at 37°C for 1.5 h. The

optional density (OD) was obtained at 450 nm by a microplate

reader (BioTek Instruments, VT, USA).

Scratch/Wound healing assay was carried out to explore the

migration abilities of BC cells. MCF-7 and MDA-MB-231 cells

were plated on the 6-well plate after transfection. Until the cells

were grown to 90% confluence to form a cell monolayer, a 200 mL
micropipette tip was used to create a straight scratch on the single-

cell layer in each well. After washing away detached cells and

debris with PBS, the cells were cultured at 37°C for 24 h in a

serum-free DMEM medium. The horizontal distances of the

migrating cells were captured by microscopy and were

calculated by ImageJ software.

The migration performance of BC cells was also identified via

transwell assay by using a 24-well culture plate (8-mm pore size;

Corning, USA). MDA-MB-231 cells and MCF-7 cells were plated

into the upper chambers in 200 mL serum-free DMEM, and 500 mL
DMEM medium supplemented with 20% FBS was placed into the

bottom chambers as an attractant. After a culture at 37°C for 24 h,

the migrated cells on the chamber membranes were fixed with 4%

paraformaldehyde for 30min, stained with 0.1% crystal violet for 10

min, and counted by a microscope and ImageJ software.
Statistics analysis

All statistical analysis was performed by using R version

4.0.5 and GraphPad Prism (version 8.0). The independent t test

was utilized to compare the continuous variables between the

two groups, and the c2-test was used to compare the differences

in proportions. The univariate and multivariate Cox
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proportional hazards regression analyses were used to evaluate

the prognostic ability. The Kaplan-Meier analysis through the

log-rank test was used to compare the OS, DFS and PFI between

different groups. The Wilcoxon test was performed to compare

IC50 values between groups. The correlation between two

variables was evaluated by Pearson correlation analyses. All

statistical tests were two-sided, and the values of P< 0.05 were

considered to be significant.
Results

Identification of molecular subtypes by
NMF analysis

The NMF was firstly used to cluster all 1089 BC patients and

169 glycosyltransferase-related gene expression profiles (Table

S2) from the TCGA project based on 50 iterations and brunet
Frontiers in Immunology 05
criterion (21). K, the number of clusters, was set as 2-10. The R

package NMF was used to identify the average contour width of

the common member matrix. The minimum number of

members of each subtype was 10. Then, according to

cophenetic, dispersion, silhouette and sparseness, the best

value of k was determined as 2 (Figures 1A, B). Compared

with the C2 subgroup, BC patients in cluster1 had a shorter

survival time and poor prognosis (P< 0.05) (Figure 1C).
Identification of functional module by
WGCNA analysis

Firstly, by calculating the Pearson correlation coefficient

between two genes, the expression data of genes was used to

establish the similarity matrix. Then, the similarity matrix was

converted into an adjacency matrix and stepwise transformed

into a topology matrix, which described the degree of association
B C

D E

F G H

A

FIGURE 1

The NMF and WGCNA analysis to identify functional module. (A) Consensus map of NMF clustering. (B) The cophenetic, rss, and dispersion
distributions. (C) The Kaplan-Meier curves about OS of C1 and C2 clusters. (D). Cluster analysis of the samples. (E) Gene dendrogram and
module colors. (F) Correlations of modules with clinical phenotypes. (G) Top 10 results for GO enrichment of genes in the grey module. (H) Top
10 results of KEGG enrichment of genes in the grey module.
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between genes by using the TOM. The power of b = 6 was set as

the soft-thresholding parameter to satisfy the scale-free topology

(R2 > 0.9) (Figure 1D). 1-TOMwas determined as the distance to

cluster the genes, and then according to the cutoff value = 0.25,

the hierarchical clustering tree was constructed (Figure 1E). The

eigengene of each module was calculated and the closer modules

were merged into new modules. Finally, a total of 7 gene

modules of GTGs were identified, with the minimum size of

the gene group = 15, height =0.5, and deepSplit =2 (Figure 1F).

The gray module was identified as a group of genes that could

not be clustered into other modules. Furthermore, we explored

the correlations between each module and survival outcome, age,

stage, TNM stages and cluster1, cluster2. The results found that

the most significant module of cluster1 and cluster2 was both

grey (Figure 1F). The grey module of cluster1 contained 100

genes, and grey module of cluster2 contained 108 genes.

Therefore, the combined grey modules of cluster1 and cluster2

contained a total of 208 genes.

Besides, the KEGG pathway enrichment and GO analysis

were performed to analyze the potential biological function and

enriched pathways of the above 208 genes. Notably, those genes

were mainly associated with biological processes about

glycosylation and the molecular function of glycosyltransferase

activity (Figure 1G). The top 9 KEGG pathways were shown in

Figure 1H, showing that those 208 genes were mainly enriched

in pathways about glycan biosynthesis.
Construction of the prognostic
risk model

Grouping of the training set and testing set. All 1089 BC

samples from the TCGA project were identified as the entire set.

545 BC patients were randomly selected to serve as the internal

testing set. 544 BC patients were identified as the training set.

The inclusion of patients was according to the following

conditions: 1) The patients were diagnosed as BC; 2) The case

had integral expression profiles and clinical information. The

exclusion of patients was according to the following conditions:

1) The patients without survival information or survival time

was less than 30 days; 2) The patients without clinical staging or

pathological grade information. Table S3 showed the clinical

characteristics of BC patients from the TCGA project in the

training, testing and entire set.

Identification of GT-lncRNAs and establishment of the risk

score. Through co-expression analysis, 200 GT-lncRNAs were

obtained from the TCGA project. The univariate Cox regression

analysis was firstly executed in the training set to select GT-

lncRNAs significantly associated with BC prognosis (P< 0.05),

and 13 lncRNAs were identified (Table S4). To further reduce

the number of lncRNAs and make the prognostic model more

accurate and predictive, the LASSO Cox regression analysis was

performed. The model tended to be stable and optimal when
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lambda = 0.06 (Figure S1A). Hence, 12 lncRNAs were confirmed

as targeted genes (Table S5). Stepwise, the multivariate Cox

regression analysis was conducted on these 12 lncRNAs, and 8

lncRNAs were finally utilized to construct the risk model

(Figures S1A, B; Table S6). The coefficients of these 8 lncRNAs

were used to calculate the risk score of both the training and

testing set. The formula was as followed:

Risk score  =  ExpMIR4435−2HG*  0:121211ð Þ 
+  ExpMAPT−AS1*  −0:22895ð Þ 
+  ExpTGFB2−AS1*  −0:17321ð Þ 
+  ExpAL357054:4*  −0:28143ð Þ 
+  ExpAL161719:1*  0:129371ð Þ 
+  ExpOTUD6B−AS1*  0:085594ð Þ 
+  ExpAC083799:1*  −0:03219ð Þ 
+  ExpLINC01016*  −0:06306ð Þ

By calculating the risk score of each BC sample according to

the expression of 8 GT-lncRNAs, BC patients in the training,

testing and entire set could be divided into the high-risk and the

low-risk group based on the median threshold of risk score. In

addition, the risk score distribution of the sample showed that

the proportion of deaths of samples with high-risk scores was

significantly higher than that with low-risk scores, which

proposed that the high-risk score predicted wore prognosis of

BC patients. And the heatmap visualized the expression of 8 GT-

lncRNAs between high- and low-risk groups (Figures 2A–C).

Both in the training and testing set, the Kaplan-Meier curves

unraveled that BC patients in the high-risk group had shorter

OS, DFS and PFI than those in the low-risk group

(Figures S2A, B). In the training set, the AUC value was 0.850,

0.824 and 0.773 at 1-, 2- and 3-year survival (Figure 2D). In the

testing set, the AUC value was 0.741, 0.695 and 0.715 at 1-, 2-

and 3-year survival (Figure 2E). In the entire set, the AUC value

was 0.781, 0.750 and 0.742 at 1-, 2- and 3-year survival

(Figure 2F). The PCA showed distinct distributions of two

subgroups (Figures 2G–I).
Validation of the prognostic value of the
risk score

In the univariate Cox regression analysis, age, clinical stage,

TNM stage and risk score were significantly associated with the

survival of BC patients in the training and testing cohort (P<

0.001) (Table S7). Nevertheless, in the multivariate Cox

regression analysis, only the age, clinical stage and risk score

were significantly related to the BC prognosis in the training and

testing cohort (P< 0.05) (Table S8). These results demonstrated

that the risk score could act as an independent predictor in BC
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prognosis. Then, both in the training and testing cohort all

independent factors, including age, clinical stage, TNM stage

and the risk score, were recruited to construct a nomogram for

predicting the 1-, 3- and 5-year OS of individual BC patients

(Figures S3A, B). The calibration plot for the prediction about 1-,

3- and 5-year OS showed ideally consistency with actual

observation in the training set, indicating the optimal

predictive effect of the nomogram and excellent prognostic

value of the risk score (Figures S3A, B). The ROC curve

exhibited that the AUC value of the risk score at 1-, 2-, and 3-

year OS reached 0.781, 0.751 and 0.742, respectively (Figure

S3C). Moreover, the AUC value of the risk score at 1-year OS

was just below age, while higher than clinical stage and TNM

stages (Figure S3D). The time-dependent C-index curve

unraveled that the risk score performed better than age,
Frontiers in Immunology 07
clinical stage and TNM stages in predicting BC prognosis

(Figure S3E).
External comparison of the risk model
with other models

To further verify the reliability and stability of the risk

model, the other external 4 prognostic models were selected

for comparison with our risk model, including Ping’s signature

(22), Luo’s signature (23), Zhang’s signature (24) and Zhao’s

signature (25). The method of calculating the risk score for all

those external risk models was consistent with ours, and all those

external risk models were applied for predicting BC prognosis.

Intriguingly, the AUC value of our risk model at 5 years was
B C
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A

FIGURE 2

Prognostic validation of the risk score in the training, testing and entire set. The scatter plot of every sample and the heatmap of the expression
profiles between two risk subgroups in the training set (A), testing set (B) and entire set (C). The AUC value of the risk score at 1-, 2- and 3-year
survival in the training set (D), testing set (E) and entire set (F). The PCA visualizing the distribution pattern of the high- and low-risk patients in
the training set (G), testing set (H) and entire set (I).
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higher than all other 4 external models (Figures S4A–D). The

Kaplan-Meier analysis confirmed that except for Zhang’s

signature, BC patients in the high-risk group displayed a

shorter survival time in the other 3 models (Figures S4E–H).

Notably, the C-index of our risk model was the highest (Figure

S4I), indicating that the predictive effect of our risk model was

more excellent than others. The corresponding HR and P value

were displayed by the restricted mean survival (RMS) curve

(Figure S4J).
Predictive ability of the risk score in
clinical outcomes and BC subtypes

It found that the risk score was higher in BC patients

receiving neoadjuvant treatment while not under radiation

therapy (Figures 3A, B). Moreover, BC patients with more

advanced clinical and TNM stages were typically endowed

with higher risk scores (Figures 3C–F). Meanwhile, patients

with age > 65 and death, apt to adverse survival outcomes,

also got higher risk scores (Figures 3G, H). However, the

occurrence of new tumor events after treatment showed no

significance in risk scoring (Figure 3I). Apparently, the risk score

was an underlying predictor in BC patient clinical outcomes.

Unraveling the potential correlation of the risk score with

patients under different clinical characteristics and treatments

might be an effective supplementary in predicting BC’s long-

term prognosis. In addition, given the high heterogeneity of BC,

we further explored whether BC patients with different

molecular subtypes got different risk scores. Except for BC

patients in the Her2 subtype, BC patients in basal-like type,

luminal-A type, luminal-B type and normal-like type with

higher risk scores generally had shorter OS in the Kaplan-

Meier analysis (Figure S5). Intriguingly, the panorama of BC

subtypes was dramatically different between high- and low-risk

groups (Figure 3J). Particularly, high-risk patients were mainly

distributed to the basal-like subtype (30%), while low-risk

patients were mainly distributed to the luminal-A subtype

(48%). The Sankey diagram showed the assignment based on

the risk score, PAM50 classification and survival status of BC

patients (Figure 3K). BC patients with different PAM50 subtypes

significantly got distinct risk scores (Figure 3L), demonstrating

the possible application of the risk score in distinguishing

BC subtypes.
Immunological landscape in two
risk subtypes

Tumor progression invariably involves the immune system. In

fact, the type, location, density and functional orientation of

different immune cell populations could profoundly affect the

prognosis of different cancers (26). The distribution of 22
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different immune cell types in high- and low-risk groups was

examined using the CIBERSORT algorithm (Figure 4A). It was

discovered that the immune cell infiltration was varied in the high-

and low-risk groups. In comparison to the high-risk group, the low-

risk group had significantly higher ratios of naive B cells, plasma

cells, CD8+ T cells, memory activated CD4+ T cells, follicular

helper T cells, gamma delta T cells, resting NK cells, activated NK

cells, and resting dendritic cells, whereas the high-risk group had a

higher infiltration ofM0,M2macrophages. Besides, the enrichment

scores of immune-related functions generated by ssGSEA were also

generally higher in BC patients with low-risk scores (Figure 4B).

The risk score correlated positively with M0 and M2 macrophages

and negatively with CD8+ T cells (P< 0.01), as shown in Figure 4C.

The heatmap also displayed the association between 8 GT-lncRNAs

and 22 immune cells (Figure 4D). Moreover, the variable immune

infiltration levels, which may result in differing disease progression

and immunotherapeutic efficacy, were further revealed by the

unique differences in 14 out of 18 chemokines (77.77%) and 6

out of 17 chemokine receptor genes (35.29%) among two risk

subtypes (Figures 4E, F). Immunological characterization appears to

have been a significant factor in the risk score. Our analysis of the

ESTIMATE algorithm confirmed that BC patients with high-risk

scores also had higher immune scores and ESTIMATE scores

(stromal score combined with immune score) (P< 0.05)

(Figure 5A). The stromal score and tumor purity, however, did

not show a discernible difference between the two risk groups. In

addition, we compare the expression levels of TME

immunosuppressive variables, such as IL-10, TGF-b, Treg marker

FOXP3, and cancer-associated adipocytes activated marker IL-6

(27), across the two risk groups. Aside from TGF-b expression,

high-risk patients had greater levels of IL-6, IL-10, and FOXP3

expression, indicating an intense immunosuppressive

microenvironment, which may facilitate immune escape and a

poor prognosis for BC patients in the high-risk group

(Figure 5B). Immunity-mediated anti-tumor responses represent

promising strategies for improving cancer patients’ long-term

survival (28). A seven-step process known as the cancer-

immunity cycle iterates and repeatedly expands to eradicate

cancer cells (19). The risk score revealed a positive correlation

with most steps in the cancer immunity cycle and most processes in

cancer malignant progression (Figure 5C).
Differential response profiles to ICI
treatment

The appliance of immune checkpoint inhibitors

(ICIs), particularly anti-PD1/PD-L1 and anti-CTLA4, has

revolutionized the treatment of cancer (29). CTLA4 expression

was elevated in patients in the high-risk group, while PD-1 and

PD-L1 expression appeared to be indistinguishable between the

two risk groups (Figures S6A–C). TIDE, a method to uncover

factors that underlie mechanisms of tumor immune escape,
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could operate as an effective biomarker in predicting

immunotherapy response in pat ients with diverse

malignancies, notably those treated with ICIs (30). A higher

tumor TIDE prediction score is associated with worse ICB

response as well as worse patient survival receiving anti-PD1

and anti-CTLA4 therapies (30). Our study found a substantial

negative correlation between the risk score and the TIDE score

(P< 0.001, | r | > 1), and BC patients in the high-risk group

significantly got a higher TIDE score (P< 0.001) (Figure 6A).

Especially, the low-risk group patients got higher both T-cell

dysfunction score and T-cell exclusion score (P< 0.01,

Figure 6B). Moreover, BC patients in the low-risk group had
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elevated expression profiles of TAMs and CAFs (P< 0.05, Figures

S6G, H), though the MDSC displayed no significant differential

expression patterns (P > 0.05, Figure S6F). These results revealed

that BC patients had high-risk scores might evasde immune

system through dual T cell dysfunction and exclusion strategies.

Tumor neoantigens are frequently the target of effective adaptive

immune responses against cancer cells, and in numerous

malignancies, a higher neoantigen burden has been associated

with better checkpoint blockade therapeutic outcomes (31, 32).

Intriguingly, a significantly higher number of clonal and

subclonal neoantigens was found in high-risk individuals (P<

0.01) (Figures 6C, D). Moreover, the degree of CD8+ T cell
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FIGURE 3

Clinical correlation of the risk score. The Raincloud plot showing the expression level of the risk score of the two risk group BC patients under
neoadjuvant treatment (A), and radiation therapy (B), and in clinical stages (C), T stages (D), N stages (E), M stages (F), age groups (G), death
groups (H), and new tumor event after treatment (I). (J) The landscape of high- and low-risk-group patients at different BC subtypes. (K) Sankey
diagram of distribution in subgroups with different risk scores, BC subtypes and survival states. (L) Box plots representing risk scores among all
BC molecular subtypes. *P < 0.05, **P < 0.01; ***P < 0.001; ns, no significance.
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infiltration is tightly correlated with anti-tumor effects (33). In

our study, the risk score was negatively correlated with the

infiltration level of CD8+ T cells (| r | > 0.3, P< 0.001)

(Figure 6E). Meanwhile, the Kaplan-Meier curves unraveled

that a lower infiltration of CD8+ T cells predicted a worse OS

(Figure S6D) and BC patients with high-risk scores and low

infiltration level of CD8+ T cells had the shortest survival time

(Figure S6E), demonstrating that the infiltration of CD8+ T cells

may serve as a protective factor in BC prognosis. In the TME,

activated T cells can release IFN-g, a crucial cytokine that

coordinates the innate and adaptive immune response against

tumors (34). A direct effect of IFN-g signaling on tumor and

stromal cells is to upregulate the ligands PD-L1 and PD-L2,

which bind with PD-1 on tumor-infiltrating T cells, thus

suppressing the cytotoxic response. By using the ssGSEA

method, we found that BC patients with high-risk scores had
Frontiers in Immunology 10
higher IFN-g scores than those with low-risk scores (Figure 6F).

Additionally, in certain tumor types, genes associated with

immune cytolytic activity (CYT) could serve as a predictor of

the clinical response to checkpoint blockade (35). Our results

discovered a higher CYT score in high-risk patients (Figure 6F).

Notably, the immunogenicity of tumor cells is a critical factor in

determining the efficacy of ICIs, with tumors with increased

immunogenicity being more responsive to ICIs (36). The

relatively elevated levels of IPS-PD-11/CTLA4-blocker score in

the high-risk patients indicated that individuals with high-risk

scores might have higher tumor immunogenicity (Figure 7A).

However, the Submap analysis uncovered that patients in the

low-risk group responded more positively to anti-PD-1

treatment, whereas there was no response difference in anti-

CTLA4 therapy (Figure 7B). In light of these findings, the risk

score was a promising tool for stratifying BC patients with
B
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A

FIGURE 4

The immune landscape between two risk subgroups. (A) Differential immune infiltrates of 22 immune cell types. (B) 13 related immune
pathways. (C) The correlation of risk score and immune cells. (D) The heatmap showing the correlation of 8 GT-lncRNAs with immune cells.
The distinct expressions of chemokine receptors (E) and chemokines (F) between two risk groups. *P < 0.05, **P < 0.01; ***P < 0.001; ns, no
significance.
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varying immunotherapy responses, and BC patients with high-

risk scores might benefit more from the ICI treatment.
Chemotherapy response prediction, TMB
and mutational landscape

We also analyzed the sensitivity to certain chemo-drugs

between two risk groups. The IC50 value of doxorubicin,

epothilone B, cisplatin and gemcitabine was generally lower in

the low-risk group, suggesting a better sensitivity to these drugs

in low-risk patients (Figures 7C–F).

TMB, a reflection of total neoantigen load, has been

identified as an effective biomarker for predicting ICI response

(37). Consistently, BC patients in the high-risk group might
Frontiers in Immunology 11
benefit more from ICI therapy, unraveled by elevated TMB than

those in the low-risk group (P< 0.001, Figure 8A). Moreover, a

higher TMB combined with a higher risk score predicted a worse

OS (Figures 8B, C). Then, we further analyzed the gene

mutational distributions between two risk subgroups. TP53

had the highest genetic alteration (44%) in high-risk patients,

whereas the highest genetic alteration gene in low-risk patients

was PIK3A (44%) (Figures 8D, E), which may contribute to the

distinct immunotherapy response patterns. Additionally, we

identified mutational signatures in the COSMIC database by

extracting data from genotype-specific somatic mutations of

GT-lncRNAs. The results suggested that SBS3 was an

independent feature in both high- and low-risk groups

(Figures 8F, G), suggesting a possible association of the

mutation profiles with defects in DNA-DSB repair by HR. In
B

C

A

FIGURE 5

The differential immune activation between two risk subgroups. Violin plots of the ESTIMATE score, stromal score, immune score and tumor
purity between two risk groups (A). Violin plots showing the expression of immunosuppressive factors in the TME (IL6, IL10, FOXP3 and TGF-b)
between two risk groups (B). (C) Correlation of the risk score with cancer-immunity cycle and some biological progress in BC progression. *P <
0.05; ***P < 0.001; ns, no significance.
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addition, the high-risk group was characterized by SBS44 while

the low-risk group was characterized by SBS1 (Figures 8F, G).

These findings showed that the mutation pattern of low-risk

patients might correlate with spontaneous or enzymatic

deamination of 5-methylcytosine.
MIR4435-2HG affected BC cell
proliferation and migration, macrophage
polarization and PD-1/PD-L1/CTLA4
expression

Given that BC patients with high expression of MIR4435-

2HG had a shorter survival time, we further explore the function

of MIR4435-2HG in BC progression. Firstly, the RT-PCR

analysis showed that the expression of MIR4435-2HG was

significantly decreased in MCF-7 and MDA-MB-231 cells after

transfection with siRNAs (Figure 9A). Then, the CCK-8 assay

confirmed that compared with si-NC, the proliferation of MCF-

7 and MDA-MB-231 cells under 24h were significantly

suppressed via restraint of MIR4435-2HG (Figure 9B).

Meanwhile, the scratch/wound-healing and transwell assays

presented significant inhibition of migration abilities of MCF-7
Frontiers in Immunology 12
and MDA-MB-231 cells by MIR4435-2HG knockdown

(Figures 9C–F). Then, human BC cell lines (MDA-MB-231,

and MCF-7) after transfection with MIR4435-2HG were co-

cultured with THP-1 cells for 48h (Figures 10A, D). The results

found that in THP-1 derived macrophages, the siRNA-mediated

MIR4435-2HG knockdown in BC cells down-regulated the

relative mRNA levels of macrophage M2 marker (ARG1) and

up-regulated the levels of macrophage M1 marker (iNOS)

(Figures 10B, C). The transwell assay discovered that the

migrated ability of macrophages was significantly inhibited by

the knockdown of MIR4435-2HG in BC cells (Figures 10E, F).

These results proposed that MIR4435-2HG might promote the

migration of macrophages and facilitate the polarization of M1

into M2 macrophages, thus favoring BC progression. Moreover,

the suppression of MIR4435-2HG also inhibited the mRNA

levels of PD-1, PD-L1 and CTLA-4 in BC cells (Figures 10G, H).
Discussion

BC is of high complexity featured with the diverse

presentation, morphological, biological, and clinical

phenotypes. Effective prognostic and predictive classification
B
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FIGURE 6

The distinct response to ICI treatment. The estimated TIDE score (A), T-cell dysfunction score and T-cell exclusion score (B), neoantigen
burden (C, D), CD8+ T cells (E), CYT score and IFN-g score (F) between two risk subgroups. ***P < 0.001.
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systems will be conducive to revealing the biological and clinical

heterogeneity of BC (38). Glycoproteins are ideal serum

biomarkers for their active secretion or leakage into the

circulation from tissues or blood cells. Abnormal glycosylation

in tumors derives from changes in glycosyltransferase gene

expression (39). Moreover, the activities of glycosyltransferases

differ markedly between normal and tumor cells and the

expression of GTGs can be utilized to classify BC subtypes

(40). This study used 8 GT-lncRNAs to identify two-risk

subtypes, which exhibited different survival states, immune

infiltration and immunotherapy response. BC cases were

divided into high-risk and low-risk groups based on the

median risk score, calculated by 8 GT-lncRNAs, including

MIR4435-2HG, MAPT-AS1, TGFB2-AS1, AL357054.4,

AL161719.1, OTUD6B-AS1, AC083799.1, and LINC01016.
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The risk score was significantly associated with OS, DFS and

PFI of BC patients, whereby low-risk-group patients showed a

better prognosis regardless of clinical characterization.

Moreover, the risk score could serve as an independent

predictor of BC prognosis, and the predictive ability and

performance of the risk score gradually stabilized and

surpassed age, clinical stage and TNM stages over time

increased. Generally speaking, the risk score can evaluate high-

risk BC patients and identify individual survival probability.

MIR4435-2HG is an oncogene that participates in EMT,

tumor cell proliferation, apoptosis, migration, and invasion (41).

Downregulation of MR4435-2HG was reported to inhibit BC

progression via the Wnt/b-catenin signaling pathway (42). Our

in vitro validation showed that the MIR4435-2HG knockdown

significantly inhibited the proliferation and migration of BC
B
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FIGURE 7

The distinct sensitivity to ICI therapy and chemo-drug therapy. (A) Four subtypes of IPS values (IPS score, IPS-PD1 blocker score, IPS-CTLA4
blocker and IPS-PD1-CTLA4 blocker). (B) The possible response to anti-PD1 and anti-CTLA4 immunotherapy in the two risk groups. Drug
sensitivity of doxorubicin (C), epothilone B (D), cisplatin (E) and gemcitabine (F) in two risk groups.
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cells, which is consistent with previous reports. OTUD6B-AS1 is

a newly identified lncRNA, whose overexpression could suppress

tumor growth in kidney cancer, thyroid cancer, and colorectal

cancer, but boost tumor growth in hepatocellular carcinoma

(43). Ma et al. reported OTUD6B-AS1 as an immune-related

lncRNA and served as a risk factor in BC patient prognosis (44).

Likewise, OTUD6B-AS1 was classified as a ferroptosis-related

risk lncRNA in BC survival (45). MAPT-AS1 is at the anti-sense

strand of the MAPT promoter region to regulate MAPT, and the

overexpression of MAPT-AS1 was verified to predict better BC

patient survival (46). TGFB2-AS1 is associated with

tumorigenesis, and promotes migration and invasion of

HepG2 cells (47), but inhibits migration and invasion of lung

adenocarcinoma cells (48). Regrettably, the biological functions

and prognostic presentation of TGFB2-AS1 in BC are still

unclear. AC083799.1 is only reported as an autophagy-related

lncRNA and a protective factor for endometrial cancer patient

prognosis (49). LINC01016 is uncovered as a direct

transcriptional target of ERa and displayed positive clinical

outcomes for BC patient prognosis (50). There are yet no

reports about AL161719.1 and AL357054.4. Collectively, 4 of
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our 8 lncRNAs were associated with BC survival state and our

study firstly identified the prognostic value of other 4 GT-

lncRNAs, namely AL161719.1, TGFB2-AS1, AL357054.4 and

AC083799.1 in BC patient survival.

The construction of predictive models based on GTGs has

been reported for cancer prognosis. For instance, a glyco-

signature combined 19 glycosyltransferases could stratify

pancreatic ductal adenocarcinoma patients with different clinic

prognostic outcomes (51). Pan et al. performed a glycoproteomic

study, finding that the intact glycopeptide signature could serve

as a survival predictor for patients with high-grade serous

ovarian carcinoma (52). In general, these reports highlight the

underlying efficiency of glycosylation-based signature in

predicting cancer prognosis. In our previous study, we

successfully established a 9-gene signature under glycosylation

characteristics for predicting BC prognosis, and BC patients with

different outcomes obviously got different risk scores (15). Based

on this, we further constructed an 8-GT-lncRNA signature.

Compared with prognostic signatures of ours and others in

BC, the present signature under GT-lncRNA patterns displayed

a better performance and predictive ability as the AUC value of
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FIGURE 8

TMB and mutational profiles. (A) The estimated TMB score between two risk groups. The Kaplan-Meier curves showing the OS of BC patients
under different TMB scores (B) and under different combinations of the risk score with TMB scores (C). The mutational landscape of high- (D)
and low-risk (E) patients. (F, G) The mutation signatures in two risk groups.
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3-year OS was the highest. Hence, the combination of

glycosylation and lncRNA expression profiles might provide

novel insights into predicting the prognosis of patients with

various tumors.

TME is closely associated with tumorigenesis and yields

signals relevant to tumor prognosis and the prediction of

immunotherapy response (53). Immune checkpoint

inhibitors (ICIs) are monoclonal antibodies (mAbs) that

stimulate the immune system by suppressing the delivery of

co-inhibitory signals (54). The primary targets for ICIs mainly

include PD-1, PD-L1 and CTLA4. PD-1 is a receptor mainly

expressed on the surface of activated T cells. The cross-linkage

of PD-1 to its ligand PD-L1 induces non-reactivity of T cells,

which is the key mechanism of tumor immune tolerance for

tumor cells PD-L1 overexpression (54). CTLA4 is a negative

immune regulator, which restricts T cell activation via various
Frontiers in Immunology 15
suppressive functions such as competition with CD28,

regulation of Treg cells, and the control of adhesion and

motility (55). High intra-tumoral PD-1+ and CD8+ cell

density were reported to be associated with the improved

recurrence-free survival of rectal cancer patients, and high

intra-tumoral CD8+ cell density predicted a better OS of

rectal cancer patients (56). Likewise, Fang et al. reported that

a higher frequency of TCF-1+PD-1+CD8+ T cells was

significantly related to the beneficial response to PD-1

blockade (57). Therefore, the infiltration of CD8+ T cells and

expression of ICI-related genes was a good indicator in

assessing response to ICI treatment. The present study

observed that low-risk-groups patients were enriched with

most immune cell infiltrations, got higher scores for each

step in the cancer-immunity cycle, and especially had higher

infiltration of CD8+ T cells. Moreover, PD-1/PD-L1 and
B
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FIGURE 9

MIR4435-2HG affected BC cell proliferation and migration. (A) The RNA expression level of MIR4435-2HG in MCF-7 and MDA-MB-231 cells
after silencing. (B) The CCK-8 assay showing the proliferation ability of MCF-7 and MDA-MB-231 cells after MIR4435-2HG knockdown. The
scratch/wound healing and transwell assay showing the migration of MCF-7 cells (C, E) and MDA-MB-231 cells (D, F) after silencing MIR4435-
2HG. *P < 0.05; **P < 0.01; ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.989928
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2022.989928
CTLA4 were significantly highly expressed in the low-risk

group both in the bioinformatics and clinical samples. The

Submap analysis showed that patients in the low-risk group

responded more positively to anti-PD-1 treatment, whereas

there showed no responsive difference in anti-CTLA4 therapy.

Our data demonstrated that the risk score may act as a

predictive marker for response to ICI therapy in BC.

Nevertheless, this study still has some limitations. Firstly, this

study is a retrospective study based on bioinformatics analysis from

the online database, lacking prospective external validations.

Secondly, we just only validated the biological function of

MIR4435-2HG in BC proliferation and migration. The underlying

mechanism of those GT-lncRNAs in BC tumorigenesis, progression,

and prognosis still need further exploration. Lastly, it is more
Frontiers in Immunology 16
meaningful and reliable to validate the predictive ability of the risk

score in a large and multicenter cohort.
Conclusion

In conclusion, the present study identified and verified a

robust 8-lncRNA signature that was an independent prognostic

factor for BC patient prognosis and exhibited superior predictive

performance to previous models. Notably, our signature

identified different immune infiltration, immunotherapy

responsiveness, and chemo-drug sensitivity between two risk

subtypes. This will be a promising supplementary predictive

means for promoting BC treatment.
B C

D E F

G H

A

FIGURE 10

MIR4435-2HG affected macrophage polarization and PD-1/PD-L1/CTLA4 expression. The diagram for the co-culture between BC cells and
THP-1-derived M0 macrophages (A, D). The mRNA levels of ARG1 and iNOS in MCF-7 (B) and MDA-MB-231 cells (C). (E, F) The transwell assay
showing the migrated ability of macrophages after co-cultured with si-MIR4435-2HG BC cells. (G, H) The mRNA level of PD-1/PD-L1/CTLA4 in
BC cells after MIR4435-2HG knockdown. *P < 0.05; **P < 0.01; ***P < 0.001.
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