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A novel medication decision
gene signature predicts
response to individualized
therapy and prognosis
outcomes in hepatocellular
carcinoma patients
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Molecular targeted therapy has shown potential in hepatocellular carcinoma

(HCC) patients, and immunotherapy applications are developing rapidly.

However, clinical guidance for making individualized therapy decisions for

HCC patients remains lacking. MDH (Medication Decision in HCC) gene

signatures comprising 70 genes were screened using transcriptomic data

from multikinase inhibitor (TKI)-resistant HCC cells and HCC patient-derived

xenograft model (PDX) models. Four MDH subtypes with distinct biological and

clinical characteristics were defined by unsupervised cluster analysis of HCC

data from The Cancer Genome Atlas (TCGA) database. To facilitate

individualized and reasonable clinical guidance for each HCC patient, we

constructed the MDH score. Comprehensive analysis suggested high MDH

scores were associated with TKI resistance, a high proportion of stromal cell

infiltration and poor survival outcomes. We recommend concomitant stromal

activity intervention and immunotherapy for this type of HCC. Moreover, low

MDH scores indicate TKI sensitivity, and a combination of targeted and

immunotherapy is recommended. The nomogram constructed by iteration

least absolute shrinkage and selection operator (LASSO) Cox regression

analysis successfully predicted 3- or 5-year survival outcomes and mortality

risks of HCC patients. In conclusion, TKI resistance model-based MDH gene

signatures provide novel insight into potential mechanisms of drug resistance

and heterogeneity in HCC. Integrative analysis plus a simplified decision model
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may aid personalized treatment and prognostic assessment among

HCC patients.
KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) is one of the most

common cancers worldwide and the third leading cause of

cancer-related deaths (1). HCC represents ~90% of all primary

liver cancers (2). Approximately half of HCC patients eventually

receive systemic therapy during their disease course, especially in

the advanced stages of the disease (3). The number of available

systemic treatment drugs for HCC is gradually increasing (4).

Sorafenib was the first multikinase inhibitor (TKI) for HCC to be

approved by the FDA and increased the median patient overall

survival time from 8 to 11 months (5). Several newer TKIs,

including first-line levatinib and second-line regorafenib and

cabozantinib, have gradually been incorporated into clinical

approaches (6). Additionally, immune checkpoint inhibitors

have been an option for HCC treatment since 2020, and the

combination of targeted therapies and immunotherapy is

emerging as the most promising clinical treatment option

for this disease (7). Notably, studies have revealed that

patients receiving individualized therapy have better clinical

outcomes (8). However, there are no appropriate clinical

recommendations for precise drug selection in HCC patients.

Furthermore, despite the clinical benefits of systemic therapy,

the improvement in patient prognosis is limited and has

occurred gradually. Therefore, further studies are necessary to

investigate the underlying mechanisms of drug resistance in

HCC and facilitate accurate medication decision-making for

HCC patients.

Most of the current clinical treatments for tumours address

specific genes or genomes, but researchers realize that these

specific genes or genomes comprise a limited number of targets.

In addition to the already widely applied analysis of carcinogenic

signalling pathways, previous studies have proposed tumour

mutation burden (TMB) to measure gene mutation frequency

(9), the mRNA-based stemness index (mRNAsi) to evaluate the

stemness of tumours (10), and the ferroptosis potential index

(FPI) to assess the vulnerability of tumour cells to ferroptosis

(11). Moreover, tumour immune cell markers for immune

infiltration analysis and the Estimation of Stromal and

Immune cells in malignant tumours using Expression data

(ESTIMATE) algorithm for calculating stromal and immune
02
cell proportions have recently been proposed (12, 13). Tumour

genetic alterations are complex, and these genomes comprise

only a small fraction of oncogenic transformation; thus, it is

necessary to identify new biomarkers or tumour-associated

genomic profiles. Whole transcriptome sequencing offers new

opportunities to dissect tumour heterogeneity and complexity,

providing a multifaceted view of tumour characteristics for

exploring and developing new therapeutic strategies,

potentially driving further identification and optimization of

individualized treatment options for cancer patients (14).

Although many models for tumour assessment or

classification have been proposed using transcriptome

sequencing or multiomics studies, most of these models are

based on a known mutated gene, tumour phenotype or gene

cluster (15), and few have been constructed starting from a

tumour drug resistance-associated gene cluster. Multidrug

resistance (MDR) refers to drug resistance to several

antitumour drugs with diverse structures and various

mechanisms after tumours develop resistance to certain

chemotherapeutic drugs (16), which is the main reason for the

failure of chemotherapy. Interestingly, our study also observed

this MDR phenomenon in HCC against TKIs. Given this

mechanism of MDR, we speculate that there may be a relevant

set of genes mediating MDR in HCC TKI therapy. Thus, our

study proposed the MDH (Medication Decision in HCC) gene

signatures and characterized the MDH subtype of HCC.

Moreover, we further performed MDH scoring to predict

individualized therapy and prognosis outcomes in HCC patients.
Materials and methods

Clinical samples

A retrospective analysis of HCC resection samples from the

West China Hospital of Sichuan University from May 2019 to

December 2020 was performed. HCC samples taken at the initial

surgery that met the following criteria were included: 1. a history

of sorafenib; 2. prognosis information after sorafenib therapy

was available; 3. a confirmed clinicopathological diagnosis of

HCC through pathology reports. Formalin-fixed and paraffin-
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embedded HCC tumour specimens were obtained from a tissue

bank maintained at the West China Hospital. According to the

Modified Response Evaluation Criteria in Solid Tumours

(mRECIST) (17), we obtained 20 HCC samples from patients

with progressive disease (PD) and 20 HCC samples from

patients with partial response (PR). PD patient samples were

considered sorafenib-resistant. The PR patient samples were

considered sorafenib-sensitive. This clinical sample study was

approved by the Ethics Committee on Biomedical Research,

West China Hospital of Sichuan University (2016, no. 120).

Informed consent was obtained from all patients or their

relatives. The details of HCC patients are listed in Table S1.
Cell culture

Huh7 and HepG2 cell lines were purchased from the

National Collection of Authenticated Cell Cultures (Shanghai,

China) and were cultured in complete medium containing

Dulbecco’s modified Eagle’s medium (DMEM) (HyClone, UT,

USA) supplemented with 10% foetal bovine serum (FBS) (Gibco,

NY, USA), 1000 U/ml penicillin and 100 mg/ml streptomycin

(HyClone, UT, USA) and were grown in a humidified air

atmosphere containing 5% CO2 at 37°C. All cell lines were

analysed by STR profiling for cell line authentication, and

routine mycoplasma detection was performed. Sorafenib-

resistant HCC cell lines generated from Huh7 and HepG2

parental cells were cultured as previously described (18).
Patient-derived xenograft model

A patient-derived xenograft model (PDX) was established as

previously reported (19). Briefly, freshly procured hepatocellular

carcinoma samples were cut into small tissue blocks (~50 mm3)

and kept in tissue culture media on ice until use (<5 hours). Six-

week-old nude mice were anaesthetized with an isoflurane/

oxygen mixture. Engrafted tissue blocks were carefully sealed

under the skin of the mice using a tissue adhesive (Vetbond).

Dosing was initiated when tumours reached approximately 0.2

cm3, and sorafenib (10 mg/kg) was administered thereafter every

day. Tumour that regressed significantly were considered

sorafenib-sensitive HCC. Tumours did not regress significantly

despite continuous dosing were considered sorafenib-induced

drug-resistant HCC. Human samples were obtained patient

consent and approval from the institutional review board,

conforming to the ethical guidelines of the 1975 Declaration of

Helsinki. Animals received humane care, and the Institutional

Animal Care and Use Committee (IACUC) approved all animal

experiments (2020351A). Subsequently, tumour samples were

collected by GeneChem Co., Ltd. (Shanghai, China) for

transcriptome sequencing and subsequent data analysis. Three

PDX samples per group were used for sequencing.
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Transcriptome sequencing of HCC cells

Total RNA fromHCC cells was processed and extracted using

a TRIzol reagent kit (Takara, Dalian, China) and collected by

Novogene Co., Ltd. (Tianjin, China) for transcriptome sequencing

and subsequent data analysis. Three samples of the parental and

sorafenib-resistant HCC cells were used for sequencing.
Cell counting kit-8

The cell counting kit-8 (CCK-8) was performed as

previously described (20).
Clonogenic cell survival assay

The indicated cells were treated with sorafenib (Selleck,

S7397, TX, USA) and lenvatinib (Selleck, S1164) for 24 h, and

3000 cells were plated into 6-well plates. Two weeks later, the

colonies were fixed with 4% paraformaldehyde, followed by

30 min of incubation with 0.1% crystal violet. The 6-well

plates were washed and then visualized.
Immunohistochemistry

Immunohistochemistry (IHC) was performed as previously

described (18). The primary antibodies used in this study are

listed in Table S2.
Data sources and preprocessing

The raw data of fragment per kilobase (FPKM) values and

liver hepatocellular carcinoma (LIHC) clinical information in

The Cancer Genome Atlas (TCGA) and International Cancer

Genome Consortium (ICGC) datasets were downloaded from

the UCSC XENA database. The series matrix files of the

Affymetrix and Illumina-generated microarray for GSE109211

and GSE73571 were directly downloaded from the Gene

Expression Omnibus (GEO) database. The immunotherapy

cohort of patients with metastatic urothelial carcinoma treated

with the anti-PD-L1 antibody atezolizumab (IMvigor210) was

obtained according to official guidelines. All the information

about the public datasets is summarized in Table S3.
Functional and pathway
enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis results were obtained from The Database for
frontiersin.org
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Annotation, Visualization and Integrated Discovery (DAVID)

v6.8 (21). Gene set enrichment analysis (GSEA) was performed

on the expression data of a specified set of transcripts according

to previously published expression methods (22). To further

estimate pathway and biological process activity variations in

samples from expression datasets, we performed Gene Set

Variation Analysis (GSVA) enrichment analysis using the

“GSVA” R package, a nonparametric and unsupervised method

(23). The gene set “c5.all.v6.2. symbols” was downloaded from

the MSigDB database on the GSEA website, and another

published pathway gene set is summarized in Table S4 (24).
Assessment of the tumour immune
microenvironment

As described above, we used the GSVA method to perform

gene-set enrichment analysis to quantify the relative abundance

of each infiltrating cell in a single sample. The immune cell

markers used in this study were extracted from two previously

published authoritative studies (12, 25), as shown in Table S5,

S6, referred to as immune cell signatures 1 and 2, respectively.

Additionally, ESTIMATE was used to infer the fraction of

stromal and immune cells in the samples (13).
Unsupervised clustering for MDH
gene signatures

Based on the expression of the MDH gene signatures,

unsupervised clustering analysis was performed using the

TCGA-LIHC dataset to identify distinct MDH gene expression

patterns and to classify HCC patients for further analysis. The

number of clusters and their stability were determined by a

consensus clustering algorithm. We performed the above steps

using the “ConsensuClusterPlus” R package and performed 1000

repetitions to guarantee the stability of the classification.
Dimension reduction and generation of
the MDH score

To quantify the MDH expression patterns of individual

tumours, we constructed a scoring system based on the

principal component analysis (PCA) score method to evaluate

the MDA score of individual HCC patients. Gene patterns were

annotated using the clusterProfiler R package. A consensus

clustering algorithm was applied to define gene clusters, and

PCA was performed (26). Principal components 1 and 2 were

both used as gene feature scores. After obtaining the prognostic

value of each gene signature score, we applied a method similar

to gene expression grade index (GGI) to define the MDH score

for each patient:
Frontiers in Immunology 04
MDHscore = S(PC1i + PC2iÞ
where i is the expression of MDH phenotype-related genes.
Calculation of the ferroptosis potential
index (FPI) and mRNA-based stemness
index (mRNAsi)

The index representing ferroptosis susceptibility was

established from the expression data of ferroptosis core

machine genes, including positive components and negative

components, as shown in Table S7. The enrichment score (ES)

of the gene set was calculated using the ‘GSVA’ R package, and

the FPI was calculated as follows (11):

FPI = ESðpositiveÞ� ES(negative)

To assess the stemness of cancer cells, a one-class logistic

regression algorithm, mRNAsi, was used to calculate the

stemness index for each HCC sample using the workflow

available on a previously established database (10).
Predicting response to immunotherapy

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was used to predict HCC responsiveness to

immunotherapy (27). The TIDE algorithm captures two

different mechanisms of the tumour immune escape score,

including immunosuppressive factor rejection of tumour-

infiltrating cytotoxic T lymphocytes (CTLs) score (exclusion)

and CTLs dysfunction score (dysfunction). Additionally, the

TIDE algorithm obtains three cell types that limit T-cell

infiltration into tumours, myeloid-derived suppressor cells

(MDSCs), cancer-associated fibroblasts (CAFs), and the M2

subtype of tumour-associated macrophages (TAM-M2s).
Establishment of the MDH Risk score

Univariate Cox regression analysis was used to observe the

correlation between the expression level of the MDH gene set in

the TCGA and patient prognosis. Genes with p< 0.01 in

univariate Cox regression analysis were included in the

construction of prognostic risk models. Next, the iteration

least absolute shrinkage and selection operator (LASSO) Cox

regression model was used to screen for the best gene signature

involved in patient resistance to TKIs (28). Finally, multivariate

Cox proportional hazards regression was performed to model

the risk score and previously published algorithms were used to

calculate the risk score. The median of risk scores was used as a

cut-off to stratify patients into high- and low-risk groups.

Differences in survival between the high- and low-risk groups
frontiersin.org
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were further compared using Kaplan–Meier analysis. Univariate

Cox regression analysis and multivariate Cox regression analysis

were performed using the “survminer” package in R to

investigate the relationship between risk score and prognosis.

Using the “timeROC” package in R, the area under the curve

(AUC) was used to test the performance of the classifier. We also

assessed the prognostic value of these genes in the model.
Development and validation of the
prognostic nomogram

Based on the risk scores of clinical risk factors and

multivariate Cox regression coefficients, a prognostic

nomogram was built using the “rms” R package, and the

predictive accuracy of this nomogram was assessed using the

calibration curve and the concordance index.
Statistical Analysis

All statistical calculations were performed using R software

(version 3.6.1). Analysis of differentially expressed genes

between different defined groups was performed using the

empirical Bayesian approach of the “limma” R package, with

significance criteria set as adjusted P-value< 0.05 and log2 |fold

change (FC)| > 1. Differentially expressed mRNAs were

visualized as heatmaps and volcano plots in R using the

packages “pheatmap” and “ggplot2”. To calculate the TMB per

megabase, the total number of mutations counted was divided by

the size of the coding region of the targeted territory in the

TCGA-LIHC cohort (9). The mutation landscape oncoprint was

generated using the R package “ComplexHeatmap. The

comparison of normally distributed variables between the two

groups was performed using an unpaired t test, and the statistical

significance of the nonnormally distributed variables was

estimated using the Mann–Whitney U test (Wilcoxon rank-

sum test). Spearman’s correlation analysis was performed to

calculate the correlation coefficient between the two factors.

Based on the correlation between gene expression and patient

survival, the optimal cut-off point for each dataset was

determined using the “survminer” R package, and the “surv-

cutpoint” function was used to repeat all potential cut-off points

to obtain the maximum rank statistic, divided into two groups:

high and low. Survival curves for prognostic analysis were

generated using the Kaplan–Meier method, and significant

differences were determined using the log-rank test. The false

discovery rate (FDR) method was used to adjust the P-value for

multiple comparisons, and statistical significance was set at

p<0.05; that is, the FDR was less than 0.05. The asterisks

represent the statistical P-value (*P< 0.05; **P< 0.01;

***P< 0.001).
Frontiers in Immunology 05
Results

Establishment of MDH gene signatures
based on TKI-resistant HCC

As shown in Figure 1A, we designed this study to construct

MDH gene signatures and investigate their potential value for

individualized therapy and clinical application in HCC. We first

cultured sorafenib-resistant HCC cell lines using our previously

published method (Figures 1B, C) (18). Interestingly, CCK-8 and

clonogenic cell survival assays indicated that sorafenib-resistant

HCC cells were also significantly less sensitive to lenvatinib

(Figures 1D, E), implying multidrug resistance. To delineate the

alterations in gene expression and functional characteristics of

TKI-resistant HCC cells, we conducted transcriptome

sequencing of TKI-resistant HCC cells and parental HCC cells

and further performed KEGG pathway enrichment analysis on

the differentially expressed genes (DEGs). The results suggested

that upregulated genes in TKI-resistant HCC cells were mainly

enriched in the cell cycle and metabolic pathways (Figure S1A),

while downregulated genes were mainly enriched in the FoxO

signalling pathway, adherens junction and AMPK signalling

pathway (Figure S1B). We further verified the above results

using GSVA, which indicated four major variations in tumour

metabolism, tumour-associated signalling, tumour phenotype

and tumour immunity in TKI-resistant HCC cells (Figure 2A).

No tab l y , tumour metabo l i sm , such a s ox ida t i v e

phosphorylation, gluconeogenesis, and fatty acid metabolism,

was dramatically enriched in TKI-resistant HCC cells. Among

tumour-associated signalling and tumour phenotypes, TGF-b
signalling, PI3K/AKT/mTOR signalling, KRAS signalling, and

EMT signalling were remarkably enriched in parental HCC cells,

while Wnt/b-catenin signalling, DNA repair and angiogenesis

were significantly enriched in TKI-resistant HCC cells.

Moreover, tumour immunity, such as the inflammatory

response, IL6/JAK/STAT3 signalling and IL2/STAT5

signalling, was prominently enriched in parental HCC cells

(Figure 2A). Finally, we obtained 161 genes from TKI-resistant

HCC cells to establish MDH gene signatures (Figures S1C, D).

To further screen potential key genes in vivo for constructing

MDH gene signatures, we developed and induced a TKI-

resistant PDX model of HCC by in vivo sorafenib injection.

Importantly, consistent with the in vitro analysis, our

transcriptome sequencing and GSEA analysis demonstrated

that metabolism-related signalling pathways were also

markedly enriched in the TKI-resistant PDX model (Figure

S1E). GSVA further emphasized that metabolism-related

signalling is the main enriched pathway in TKI-resistant HCC,

while EMT signalling, the inflammatory response and IL2/

STAT5 signalling are the critical characteristic pathways in

TKI-sensitive HCC (Figure S1F). These results revealed that

among the myriad of signalling pathways, alterations in
frontiersin.org

https://doi.org/10.3389/fimmu.2022.990571
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2022.990571
metabolism-related signalling, tumour phenotype and tumour

immunity were potentially crucial mechanisms of TKI resistance

in HCC. Combined with previous in vitro results, we further

screened 70 genes to construct MDH gene signatures (Figure 2B

and Table S8).
Unsupervised analysis of MDH gene
signatures revealed four HCC subtypes

An unsupervised cluster analysis was performed using 368

HCC samples from the TCGA-LIHC dataset to recognize
Frontiers in Immunology 06
distinct HCC subtypes and investigate the potential value of

screened MDH gene signatures in HCC. The consensus

clustering algorithm determined the number and stability of

clusters. This analysis revealed that the molecular profiles of

HCC could be clustered into four distinct MDH subtypes

(Figure S2A). PCA analysis further revealed significant

distinctions in the transcriptional profiles among the four

subtypes (Figure 3A). A combined heatmap was plotted to

visualize MDH subtype gene expression levels and

clinicopathological features to investigate the correlation

between these subtypes and features in HCC (Figure 3B).

Notably, we observed remarkable disparities in gene
B C

D E

A

FIGURE 1

The culture of HCC sorafenib-resistant cell lines. (A) Schematic overview of the workflow in this study. (B) CCK-8 assays for parental HCC cells
and corresponding sorafenib-resistant HCC cells treated with a range of concentrations of sorafenib. Cell viability was assessed 3 d after
sorafenib treatment. (C) Clonogenic cell survival assay in specified cells treated with sorafenib for 24 h. (D) CCK-8 assays for parental HCC cells
and corresponding sorafenib-resistant HCC cells treated with a range of concentrations of lenvatinib. Cell viability was assessed 5 d after
lenvatinib treatment. (E) Clonogenic cell survival assay in specified cells treated with 10 mmol lenvatinib for 24 h. The asterisks in B and D
represent the statistical p-value (**P< 0.01).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.990571
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2022.990571
expression abundance among different MDH subtypes.

Moreover, subtypes 3/4 were markedly associated with higher

histological grade and more advanced staging in HCC, and

subtype 3 was strongly associated with HBV infection.

Subtypes 1/2/4 were all significantly associated with HCC

fibrosis relative to subtype 3 (Figure 3B). Prognostic analysis

of pairwise comparisons further indicated that patients with

subtype 3 HCC had significantly worse overall survival rates

than those with subtypes 1/2/4, while patients with subtype 1

had a relatively better prognosis than those with subtypes 3/

4 (Figure 3C).

KEGG pathway enrichment analysis was performed utilizing

the gene expression profiles of each MDH subtype from the

TCGA-LIHC dataset to investigate the potential mechanisms

contributing to the differences in clinical features and prognosis

across MDH subtypes. Interestingly, the upregulated genes in
Frontiers in Immunology 07
subtype 1 were dramatically associated with tumour metabolism,

including metabolic pathways and drug metabolism (Figure

S2B), while tumour-associated signall ing pathways,

such as ECM receptor interaction, focal adhesion, the NFKB

signalling pathway and the TNF signalling pathway, were

markedly downregulated (Figure S2C). Conversely, the

upregulated genes in subtype 3 were dramatically involved in

tumour-associated signalling pathways, including the cell cycle,

ECM receptor interaction, P53 signalling pathways, pathways in

cancer, PI3K/AKT signalling pathways, focal adhesion and DNA

replication (Figure S2B), while tumour metabolism in subtype 3

was remarkably suppressed (Figure S2C). Additionally,

upregulated genes in subtype 2 and downregulated genes in

subtype 1 were markedly enriched in tumour metabolism-related

signalling, but genes in subtype 1/2 were not distinctly connected

to oncogenic-associated signalling pathways (Figures S2B, C).
B

A

FIGURE 2

Generation of the MDH gene signatures. (A) GSEA enrichment analysis of differentially expressed genes (DEGs) between parental HCC cells and
corresponding sorafenib-resistant HCC cells. (B) Venn diagram of MDH gene signatures acquired from the sorafenib-resistant PDX model and
HCC cell lines.
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We further presented a combined heatmap using GSVA to

visualize the pathway differences between subtypes and the

associations with clinical features of HCC, which also

validated that metabolism-related signalling pathways were
Frontiers in Immunology 08
enriched in subtype 1, while oncogenic signalling pathways

such as cell cycle and DNA replication were enriched in

subtype 3 (Figure 3D and Figure S3A). Notably, GSVA

enrichment analysis of the indicated pathway sets revealed that
B

C D

E

A

FIGURE 3

The four distinct MDH subtypes identified in HCC. (A) Principal component analysis for the transcriptome profiles in distinct MDH subtypes of
the TCGA-LIHC cohort. (B) Unsupervised clustering of MDH gene signatures in the TCGA-LIHC cohort. (C) Survival analyses for distinct MDH
subtypes of the TCGA-LIHC cohort. (D) GSVA enrichment analysis showing the activation states of biological pathways in distinct MDH subtypes
of the TCGA-LIHC cohort. A heatmap was used to visualize these biological processes. (E) Differences in the expression of known signatures,
including stromal activation-related signatures, tumour promotion-related signatures and immune activation-related signatures, in distinct MDH
subtypes of the TCGA-LIHC cohort. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes
represent the median value, and black dots show outliers. The asterisks represent the statistical p-value (**P< 0.01 and ***P< 0.001).
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subtype 3 not only had the most remarkable correlation with

signalling pathways such as the cell cycle, DNA replication, and

EMT signalling but also had a strong association with tumour

immune checkpoints, while subtype 2 was significantly

correlated with angiogenesis (Figure 3E). In brief, our analysis

revealed that HCC could be clustered into four distinct subtypes

as shown in Figure 1A, namely, subtype 1, metabolic activation,

oncogenic signalling inhibition, and fibrosis; subtype 2,

metabolic activation, angiogenesis, and fibrosis; subtype 3,

oncogenic signalling activation, metabolic inhibition, and

nonfibrosis; and subtype 4, metabolic inhibition and fibrosis.
Immune microenvironmental
characteristics of four MDH subtypes
in HCC

Significant progress has been recently achieved by

combining immunotherapy and TKIs to treat HCC (29),

illustrating the importance of the immune microenvironment

in HCC therapy. Studies have revealed that tumours with a

higher TMB are more responsive to immunotherapy (30). Our

results suggested that the overall TMB of subtype 1 was

markedly higher than that of other subtypes with mutations

mainly derived from CTNNB1 gene (Figures 4A, B), while the

mutation of P53 gene in subtype 3 was remarkably more

frequent than that of other subtypes (Figure 4B). Next, we

analysed the association of each subtype with the tumour

immune microenvironment. Based on the ESTIMATE

algorithm, subtype 1 had the poorest immune cell infiltration

and stromal cell proportions and had the worst ESTIMATE

score relative to other subtypes. Moreover, there were no

statistical differences in immune cell infiltration between

subtypes 2, 3 and 4, whereas subtype 2 had comparatively

higher levels of stromal cell infiltration and ESTIMATE scores

(Figure S4A). According to previously published methods (12,

25), we further calculated the types of infiltrating immune cells

for each subtype and performed pairwise comparisons to further

elucidate the differences in immune cells between subtypes.

Consistently, the analysis indicated that subtype 1 had an

extremely poor innate immune cell infiltration compared to

subtypes 2/3/4, including T cells, B cells, natural killer cells,

macrophages, eosinophils, mast cells, monocytes, MDSCs, and

plasmacytoid dendritic cells (Figure 4C). Most solid tumours

exhibit three main immunological phenotypes, termed immune

inflamed, immune excluded and immune desert (31). Thus,

MDH subtype 1 in HCC was classified as an immune desert.

Indeed, an overall decrease in the expression of MHC molecules,

adhesion molecules and immune checkpoints in subtype 1 was

further confirmed (Figure 4D).

In contrast, natural killer CD56+ cells, Th2 cells,

plasmacytoid dendritic cells (DCs) and activated CD4 T

immune cells were abundant in subtype 3 (Figure 4C). Our
Frontiers in Immunology 09
prognostic analysis implied that natural killer CD56+ cells, Th2

cells, plasmacytoid DCs and activated CD4 T immune cell

infiltration were negative factors for HCC patients (Figure 4E).

Notably, MHC molecules and adhesion molecules were more

abundant in HCC subtype 3 than in subtypes 1/2/4 (Figure 4D).

Moreover, PD1 and PD-L1 expression levels were dramatically

increased in subtype 3. Cytokines with analogous expression

trends include CD80 and CD86, ligands for CTLA-4

(Figure 4D). In theory, subtype 3 should be the tumour type

with a better immune response in HCC; however, patients with

subtype 3 did not display a matching survival advantage

(Figure 3C). Previous studies have identified that tumours

with an immune-excluded phenotype also exhibit infiltration

of abundant immune cells, whereas these immune cells are

retained in the stroma surrounding tumour cell nests rather

than penetrating the parenchyma (31). Stromal activation is an

essential driver of T-cell suppression (32). Our ESTIMATE

analysis indicated that subtype 3 was markedly associated with

stromal cell infiltration (Figure S4A). Our GSVA further implied

that subtype 3 was associated with dramatically enhanced

stromal activation, including increased levels of TGF-b
signalling and EMT signalling (Figure S3A). Thus, MDH

subtype 3 in HCC was classified as immune-excluded.

Furthermore, subtype 2 and subtype 4 contained abundant

activated CD8 T cells, activated B cells, immature B cells and

eosinophil cells, and HCC subtype 2 contained abundant DCs,

including activated DCs (aDC), immature DCs (iDC), and

plasmacytoid DCs (pDC) (Figure 4C). Our prognostic analysis

implied that activated CD8 T cells, activated B cells and immature

B cells, eosinophils and plasmacytoid DC infiltration were

protective factors in HCC, while activated DCs and immature

DCs were detrimental factors (Figure 4E). DCs are responsible for

antigen presentation and the activation of naive T cells, bridging

innate and adaptive immunity, and their activation depends on

the expression levels of MHCmolecules, costimulatory molecules,

and adhesion molecules (24). Our analysis indicated that the

expression of MHC molecules, costimulatory molecules and

adhesion molecules was indeed somewhat higher in subtype 2

than in subtypes 1/4 (Figure 4D). However, we noticed that

subtype 2 HCC had more abundant stromal cell infiltration

than subtype 1/4 (Figure S4A), and angiogenesis was also

enriched in subtype 2 (Figure 3E), suggesting that stromal cells

in subtype 2 HCC were also partially activated. Therefore, subtype

4 was classified as immune-activated HCC, while subtype 2 was

classified as at the borderline between immune-activated and

immune-excluded.
The MDH score predicts the TKI
response and prognosis in HCC

The ferroptosis index and mRNAsi are also scores used to

measure tumour malignancy (10, 11). Notably, the mRNAsi
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score and ferroptosis index of HCC were significantly higher

than those of nontumor liver tissues, indicating that tumour

stemness and ferroptosis susceptibility in HCC were markedly

higher than those of nontumor tissue (Figures S5A, B). Notably,

subtype 3 had a higher ferroptosis index than subtypes 1/2/4

(Figure S5A), but the mRNAsi across subtypes could not be

completely distinguished (Figure S5B). Combined with previous

ESTIMATE scores (Figure S4A), these results indicated that
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although MDH gene signatures can classify HCC into four

subtypes with individual features, there are restrictions in

quantifying various known features in HCC. We speculated

that each gene in the MDH gene signature has different

weights in predicting malignancy and individuality

characteristics in HCC. Additionally, the above analysis was

only based on the HCC patient population and could not

precisely forecast and quantitate the gene expression patterns
B
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FIGURE 4

Immune infiltration analysis of distinct MDH subtypes in the TCGA-LIHC cohort. (A) Tumour mutation burden (TMB) in distinct MDH subtypes of
the TCGA-LIHC cohort. (B) The gene mutation frequency in distinct MDH subtypes of the TCGA-LIHC cohort. Each column represents
individual patients. The upper bar plot shows TMB. The number on the right indicates the mutation frequency in each gene. The right bar plot
shows the proportion of each variant type. (C) Unsupervised clustering of two previously published immune cell gene signatures in distinct MDH
subtypes of the TCGA-LIHC cohort. (D) Differences in the expression of MHC molecules, costimulatory molecules and adhesion molecules in
distinct MDH subtypes of the TCGA-LIHC cohort. The upper and lower ends of the boxes represent the interquartile range of values. The lines
in the boxes represent the median value, and black dots show outliers. The asterisks represent the statistical p-value (**P< 0.01 and ***P<
0.001). (E) Survival analyses for two previously published immune cell gene signatures based on the TCGA-LIHC cohort.
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of individual patients. Considering the individual heterogeneity

and complexity of HCC, we constructed anMDH score based on

the PCA-score algorithm to group each HCC patient and

provide appropriate clinical guidance (33).

We first confirmed that there were remarkable differences in

MDH scores among each subtype: subtype 3> subtype 4>

subtype 2> subtype 1 (Figure 5A). We then divided the HCC

patients in the TCGA-LIHC database into two groups according

to the MDH score to facilitate subsequent analysis (Figure 5B).

The patients with high MDH scores were mainly derived from

subtype 3/4 HCC, while those with low MDH scores mostly

originated from subtype 1/2 HCC (Figure S5C). We found that a

high MDH score in HCC was dramatically associated with a

high ferroptosis index and mRNAsi score (Figures 5C, D), and

the correlation analysis revealed that the MDH score was

remarkably positively correlated with the ferroptosis index and

mRNAsi score (Figure 5D). We calculated the MDH scores of

established TKI-resistant HCC cell lines and HCC TKI-resistant

PDX models to further validate our results. The results indicated

a significant distinction in the gene transcription profiles
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between the MDH score groups. Moreover, MDH scores were

considerably higher in TKI-resistant HCC than in TKI-sensitive

HCC, and MDH scores were significantly positively associated

with the ferroptosis index and mRNAsi score (Figures S5D,

S5E). Consistently, datasets from the GEO database were utilized

to confirm the potential value of MDH scores in discriminating

gene expression profiles and predicting TKI responses, the

ferroptosis index and the mRNAsi score (Figures S5F, S5G).

These results revealed that higher MDH scores in HCC were

associated with increased TKI resistance, higher tumour

stemness and reduced ferroptosis susceptibility. More

importantly, clinical analysis indicated that HCC with a high

MDH score was dramatically correlated with a higher

histological grade and Ishak score (Figure S5C). Moreover,

HCC patients with high MDH scores had markedly worse

overall survival outcomes than those with low MDH scores

(Figure 5E). The GSVA further implied that P53 signalling,

ROS signalling, oxidative phosphorylation, glycolysis, IL2/

STAT5 signalling, and DNA repair were remarkably

activated in HCC with high MDH scores, while KRAS
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FIGURE 5

Construction of the MDH score. (A) MDH score of distinct MDH subtypes in the TCGA-LIHC cohort. (B) The TCGA-LIHC cohort was divided
into two groups based on median expression values of MDH scores. (C) An overview of the association between known clinical features and
mRNAsi in patients in the TCGA-LIHC cohort. Columns represent samples sorted by mRNAsi from low to high (top row). Rows represent known
clinical and molecular features. (D) mRNAsi score and ferroptosis index in the MDH high- or low-score groups of the TCGA-LIHC cohort.
Correlation analysis of mRNAsi scores, ferroptosis index and MDH score in patients in the TCGA-LIHC cohort. (E) Survival analyses for MDH
high- or low-score groups of the TCGA-LIHC cohort. (F) GSVA enrichment analysis showing the activation states of biological pathways in the
MDH high- or low-score groups. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes
represent the median value, and black dots show outliers. The asterisks in A, B, D and F represent the statistical p-value (*P< 0.05; **P< 0.01 and
***P< 0.001).
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signalling, angiogenesis, adipogenesis and fatty acid

metabolism were inhibited (Figure 5F).
The MDH score predicts the response to
immunotherapy in HCC

Next, we evaluated the relationship between MDH scores

and immune cell infiltration using the ESTIMATE algorithm

(13). No significant distinction was found in stromal cells

between the two groups of HCC patients, but both immune

cell infiltration and ESTIMATE scores were higher in HCC with

high MDH scores than in HCC with low MDH scores (Figure

S6A). Notably, MDH scores were markedly positively correlated

with CD8 T cell, CD4 T cell, NK cell, B cell, DC and macrophage

infiltration but significantly negatively correlated with

eosinophil cell infiltration in HCC (Figures S6B, C). However,

as previously stated, HCC patients with higher CD8 T cell, B cell

and pDC infiltration had a better prognosis than HCC patients

with lower CD8 T cell, B cell and pDC levels (Figure 4E), which

appears to contradict the true overall survival time of HCC

patients. This contradictory actual overall survival outcome

implied that patients with high MDH scores may have an

immune-excluded phenotype. Supporting insights also

included that the expression levels of MHC molecules,

costimulatory molecules, and adhesion molecules in high-

MDH-score HCC patients were comprehensively elevated

(Figures 6A, S6D), and the MDH score was positively

correlated with the expression levels of PD1, CD80 and

CD86 (Figure 6A).

To further evaluate whether MDH scores could predict

immunotherapy response in HCC, we applied the TIDE

algorithm to the TCGA-LIHC dataset. Studies have suggested

that high TIDE scores are associated with poorer immune

checkpoint inhibition treatment efficacy and worse overall

survival outcomes in patients treated with anti-PD1 and anti-

CTLA4 (27). Importantly, there is a strong positive correlation

between MDH scores and TIDE scores (Figure 6B), indicating

that HCC patients with high MDH scores respond poorly to

immunotherapy. Moreover, our results suggested that MDH

scores were positively correlated with CD8 and T cell inflamed

(Merck18) levels and negatively correlated with microsatellite

steady-state (MSI). We also observed that the MDH score was

positively correlated with MDSC and TAM-M2 cell levels.

Meanwhile, the MDH score was directly correlated with

immune dysfunction and exclusion (Figure 6B), further

supporting that HCC with a high MDH score is tightly

associated with the immune-excluded phenotype. TIDE

analysis of a testing dataset GSE109211 further demonstrated

that HCC with a high MDH score, although responsive to

sorafenib, was markedly less responsive to immunotherapy

(Figure 6C). Correlation analysis also indicated that HCC with

a high MDH score contained abundant immunosuppressive
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cells, including MDSCs and CAFs. Importantly, HCC with a

high MDH score was indeed significantly positively correlated

with immune dysfunction and exclusion (Figure 6C). These

results revealed that HCC patients with a high MDH score

had more immune cell infiltration than those with a low MDH

score, but most of the cells were immune-escape and

immunosuppressive cells; thus, HCC patients with a low MDH

score responded better to immunotherapy.
Validation of the MDH score for therapy
selection in HCC

To ascertain the validity of the MDH score for

immunotherapy evaluation, we utilized the ICGC-LIHC dataset

as a test dataset to validate our above results. We first confirmed

that low MDH scores exhibited significant clinical benefits and

remarkably prolonged survival compared with high MDH scores

in HCC (Figure 7A). TIDE scores were then determined for

ICGC-LIHC samples, and the results suggested that high MDH

scores were indeed associated with high TIDE scores and poorer

immune responses in HCC (Figure 7B). Consistent with the

TCGA analysis, HCC with high MDH scores had higher

proportion of immunosuppressive infiltrating cells, including

MDSCs and CAFs (Figure 7B). High MDH scores in ICGC-

LIHC samples were also positively correlated with immune

exclusion (Figure 7B). Moreover, high MDH scores in ICGC-

LIHC samples were markedly positively correlated with high CD8

T cell and B cell levels and negatively correlated with eosinophil

cell levels in HCC (Figure S7A), and high MDH scores caused

comprehensive elevated expression of MHC molecules,

costimulatory molecules, and adhesion molecules in HCC

(Figure S7B). Consistent results also included pathway

enrichment analysis, with the analysis of ICGC-LIHC samples

indicating that high MDH scores were positively correlated with

the cell cycle, EMT signalling and DNA replication and adversely

correlated with angiogenesis (Figure 7C).

We further investigated whether MDH scores could predict

patient response to immune checkpoint blockade therapy based

on a published immunotherapy cohort (IMvigor210). As

expected, a survival benefit trend was observed in the anti-PD-

L1 immunotherapy cohort of patients with low MDH scores

(Figure 7D). Moreover, patients with low MDH scores had

relatively higher TMB (Figure 7E). Importantly, the clinical

response to anti-PD-L1 immunotherapy and prominent

therapeutic advantages were validated in patients with low

MDH scores compared with patients with high MDH scores

(Figures 7F, G). Moreover, patients with high MDH scores

exhibited markedly higher expression of PD1, PD-L1, CD80

and CD86, which indicated that an immune-excluded

phenotype may also be present in metastatic urothelial

carcinoma (Figure S7C). Inconsistent with HCC, high MDH

scores in IMvigor210 cohorts were significantly positively
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correlated not only with CD8 T cells and B cells but also with

eosinophil cells and NK cells (Figure S7D). Moreover, GSVA

suggested that high MDH scores were positively correlated with

EMT signalling, immune checkpoints, angiogenesis and CD8

effectors and negatively correlated with the cell cycle and DNA

replication (Figure S7E). These biological differences may be due

to tumour origin and heterogeneity.

We further analysed the association between individual

genes in MDH gene signatures with MDH scores and

prognosis in HCC. We found that 55 genes in the MDH gene

signatures were statistically significantly associated with the

MDH score, 26 of which were positively correlated and 29

negatively correlated (Figure S8A). Moreover, 35 of the 70

genes could be used individually as prognostic genes for HCC

patients, of which 12 genes were prognostic protective factors

and 23 genes were adverse prognostic factors (Figure S8B). We
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further screened 8 hub genes (Figure 7H), three positive

correlations and five negative correlations with MDH score

and immune checkpoints (Figures 7H, S8C). Consistent

correlation analysis results with immune checkpoints were also

confirmed using ICGC-LIHC samples (Figure S8D).

Importantly, the IHC results of our cohort validated that PD-1

expression was markedly more abundant in TKI-resistant HCC

than in TKI-sensitive HCC (Figures 7I, J). We then validated the

correlation of three Hub genes with sorafenib resistance using

our HCC cohort. A positive correlation between sorafenib

resistance and ALYREF protein expression, and a negative

correlation between sorafenib resistance and NR3C2 or

SORBS2 protein expression was obtained in our HCC cohort

(Figures 7I, J), further supporting the relevance of the hub genes

to sorafenib resistance in HCC. Furthermore, a positive

correlation between PD-1 levels and ALYREF protein
B C

A

FIGURE 6

The MDH score predicts the immunotherapy response in HCC. (A) Differences in the expression of MHC molecules, costimulatory molecules and
adhesion molecules in the MDH high- or low-score groups of the TCGA-LIHC cohort. The upper and lower ends of the boxes represent the
interquartile range of values. The lines in the boxes represent the median value, and black dots show outliers. (B) TIDE value of MDH high- or
low-score groups of TCGA-LIHC cohort. (C) TIDE values of sorafenib responders and nonresponders in the GSE109211 cohort. The chi-square
test was used to calculate significant differences in (B, C) The asterisks represent the statistical p-value (*P< 0.05; **P< 0.01 and ***P< 0.001).
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FIGURE 7

Validation of the MDH score for the immunotherapy response in HCC. (A) Survival analyses for MDH high- or low-score groups of the ICGC-
LIHC cohort. (B) TIDE value of MDH high- or low-score groups in the ICGC-LIHC cohort. The chi-square test was used to calculate significant
differences. (C) Differences expression of known signatures, including stromal activation-related signatures, tumour promotion-related
signatures and immune activation-related signatures, in the MDH high- or low-score groups of the ICGC-LIHC cohort. (D) Survival analyses for
MDH high- or low-score groups of the IMvigor210 cohort. (E) TMB score in the MDH high- or low-score groups of the IMvigor210 cohort.
(F) MDH score in complete response/partial response (CR/PR) patients and stable disease/progressive disease (SD/PD) patients in the IMvigor210
cohort. (G) Correlation analysis of the MDH score with TKI response in the IMvigor210 cohort. The chi-square test was used to calculate
significant differences. (H) The interaction between 8 hub genes in the MDH gene signatures of the TCGA-LIHC cohort. (I) Representative IHC
images of PD1, ALYREF, NR3C2 and SORBS2 staining in sorafenib sensitive- and resistant- groups from our HCC cohort. Scale bar denotes 40
mm. (J) Correlation analysis of sorafenib sensitivity and the expression of specified proteins. The asterisks in B, E, F and J represent the statistical
p-value (*P< 0.05; **P< 0.01 and ***P< 0.001).
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expression and a negative correlation between PD-1 levels and

NR3C2 or SORBS2 protein expression were obtained in our

HCC cohort (Figure S8E).
Construction of a nomogram predicting
OS in HCC based on a simplified MDH
risk score

To further simplify the MDH score and facilitate the clinical

application of MDH scores, we applied an iterative LASSO Cox

regression model (28). A 4-gene MDH risk score (Figures 8A,

S9A) then was obtained, MDH Risk score=0.19961×ATAD3A
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+0.19332×CHAF1B-0.07906×ADH4-0.18327×PPARGC1A.

Using TCGA-LIHC data, we confirmed that the MDH risk score

can be used as an alternative diagnostic predictor of the MDH

score, with an AUC of 0.659 (Figure S9B), and that it could also be

used as a prognostic predictor for HCC (Figure S9C). Moreover,

using the Human Protein Atlas, we confirmed that HCC with a

high MDH risk score had significantly higher protein levels of

ATAD3A and CHAF1B and relatively lower protein levels of

ADH4 (Figure 8B), but PPARGC1A was not found on the

website. Importantly, the correlation between the MDH score

and MDH risk score was 0.68, indicating that the MDH risk score

could replace the MDH score in clinical application (Figure S9D).

Univariate and multivariate analyses were performed on the four
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FIGURE 8

Construction of a nomogram predicting OS outcomes based on the MDH risk score in the TCGA-LIHC cohort. (A) Coefficients of 4 genes
involved in the prognostic signatures. (B) Representative IHC images of ATAD3A, CHAF1B and ADH4 in MDH high- or low-score groups from
the Human Protein Atlas. Scale bar denotes 50 mm. (C) Nomogram to predict the 3‐y and 5‐y overall survival of HCC patients. (D) Calibration
curve for the comprehensive survival nomogram model in the TCGA-LIHC cohort. The dashed diagonal line represents the ideal situation, and
the blue and red lines represent the 3‐y and 5‐y observed nomograms, respectively. (E) Survival analysis for the MDH risk score in the ICGC
cohort. (F) Alluvial diagram showing the association of the MDH subtype with patient survival status, MDH score and individualized therapy.
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genes, and a nomogram capable of predicting the 3- or 5-year

survival probability and mortality risk of HCC patients was finally

constructed (Figures 8C, S9E). The calibration curves at 3 and 5

years indicated good consistency between the prediction by the

nomogram and actual overall survival outcomes (Figure 8D). We

further calculated the MDH risk score for each HCC patient in the

ICGC-LIHC dataset and compared the survival difference

between the high MDH risk group and the low MDH risk

group. Importantly, the results suggest that the MDH risk score

can better predict the overall prognosis of HCC patients than the

MDH score (Figures 8E, 7A), which further proves the clinical

value of the MDH risk score in predicting the outcome of

HCC patients.
Discussion

Immune checkpoint inhibition has revolutionized the cancer

therapy paradigm, but effective durable responses are still

observed in only a minority of patients, sometimes with severe

side effects (34). Although the TKI resistance mechanisms in

HCC have been extensively explored, comprehensive analysis

based on the transcriptomic data of TKI-resistant HCC remains

lacking. Comprehensive analysis of RNA transcripts greatly

contributes to tissue deconstruction, provides a clear

understanding of transcriptome-specific variations across

various HCC subtypes and treatment responses, elucidates the

mechanisms of therapeutic resistance to TKIs and

immunotherapies and identifies novel therapeutic strategies.

Unlike previous reports, the MDH subtypes presented in our

study were segregated into clusters defined by distinct signalling

pathways and unique immune cell compositions. These MDH

subtypes facilitated the interpretation of the underlying

mechanisms of TKI resistance in HCC and revealed the

i n t r i n s i c c o n n e c t i o n s o f t h e t umou r immun e

microenvironment described among each subtype. Previous

studies have revealed that the biological processes, stroma, and

immunological activities of the immune microenvironment in

various cancers are remarkably similar (35). Notably, four MDH

subtypes could also be classified into four immunological

subtypes with markedly distinct immune cell infiltration

characteristics. Moreover, the observed MDH subtypes share

multiple similarities with immune clusters identified in previous

studies, reflecting or expanding those patterns. The stromal

components and cytokines classified subtype 1 as an immune

desert. Notably, the prognosis of subtype 1 was relatively good

compared to subtype 2/3/4, which may be associated with

marked suppression of oncogenic signalling pathways and

effective response to TKIs in subtype 1 of HCC. In addition,

subtypes 2/3/4 all had abundant immune cell infiltration and

cytokine expression, which were strikingly separated by stromal

activation level, immunosuppressive profile and mutational
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burden. Subtype 4 exhibits a consistent immune-activated

phenotype accompanied by massive immune cell infiltration.

However, subtype 3 clearly displayed a similar pattern to the

immune-excluded phenotype, with marked stromal cell

infiltration and activation and the worst prognosis in HCC

patients. Subtype 2 showed similarities to the immune-

enriched subtype but also had an angiogenic, fibrotic

phenotype and was therefore classified as at the borderline

between immune-activated and immune-excluded. The overall

survival of HCC patients also reflects that the prognosis of

subtype 4 is inferior to that of subtype 2. Our proposed MDH

typing differs from previous ideas of cancer immunograms or

cancer-immune set points, providing new insights for drug

selection and mechanism exploration in HCC.

Immune checkpoint therapy is currently only recommended as

the first-line treatment for HCC in clinical practice (36), but

individualized advice is not explicitly proposed. Precision therapy

can remarkably improve patient outcomes (37); thus, a priori

identification of responders is urgently needed. Here, we further

proposed an MDH score to predict the response to

immunotherapy. Our study revealed that immune cell infiltration

was more abundant in HCC with high MDH scores, and a high

MDH score was significantly positively correlated with high

expression of PD1, PDL1, CD80 and CD86. However, HCC with

high MDH scores responded poorly to immune checkpoint

blockade, which was mainly associated with the infiltration of

stromal cells. Therefore, immune checkpoint blockade with

concomitant inhibition of stromal cell activity or stromal

signalling may be a beneficial therapeutic strategy for HCC

patients with high MDH scores. Additionally, transcriptome

profiling and clinical validation suggested that HCC patients with

low MDH scores could benefit from TKIs and immunotherapy.

Notably, patients with low MDH scores mostly had subtype 1, with

an immune desert phenotype, suggesting that immune cell

infiltration is not the only reference factor affecting the immune

response and patient prognosis. Our results suggest that the TMB of

subtype 1 was significantly higher than that of other subtypes, while

stromal cell infiltration was significantly lower than that of other

subtypes. Meanwhile, patients with lowMDH scores also presented

with higher eosinophilic infiltration and microsatellite instability.

These results indicate that a comprehensive assessment of various

markers, rather than individual factors or cells, would more

accurately reflect the complexity and dynamics of the immune

microenvironment and better describe its prognosis. Our proposed

MDH score for predicting the efficacy of immunotherapy has been

validated with different datasets and our HCC patient samples,

which also indicates that our MDH score is superior in partial

predictive performance to assessing tumor immunotherapy

response based only on a single index.

Although multiomics studies have become more accessible

and widespread over the past decade (38, 39), clinical tools that

can be applied to medication decision-making for HCC patients
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are still lacking. To address this demand, we constructed an

MDH risk score and nomogram using an iterative LASSO Cox

regression model, which greatly reduces clinical effort, simplifies

the prediction process and is worthy of large-scale clinical

application. More importantly, MDH risk scores retain the

predictive abilities of the MDH score, providing a global

summary of all potential targetable alterations and

mechanisms for characterizing each HCC, further providing a

simple and reasonable selection for personalized treatment.

However, our study also has certain limitations. Since

immunotherapy has only been applied to the systemic

treatment of HCC in the past two years, we did not have

enough HCC samples to verify the validity of the MDH score

in predicting response to immunotherapy. Thus, we only applied

a public dataset containing clinical outcomes of immunotherapy

for validation and analyzed the correlation of huh genes using

our HCC samples. Next, we will conduct prospective clinical

trials to further explore the clinical significance of MDH score

and MDH risk score.
Conclusions

In conclusion, as shown in Figures 1A, 8F, this study

proposed a new subtyping model for HCC and deeply

investigated the underlying mechanisms of TKI resistance and

the cellular infiltration characteristics of the tumour

microenvironment. The MDH score might help to evaluate

individualized therapy and overall survival outcomes for HCC

patients, providing important clinical guidance for medication

decision-making for HCC patients.
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