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Signature construction and
molecular subtype identification
based on cuproptosis-related
genes to predict the prognosis
and immune activity of patients
with hepatocellular carcinoma

Xingyu Peng1,2†, Jinfeng Zhu1,2,3†, Sicheng Liu1,2, Chen Luo1,2,
Zitao Liu1,2, Xun Wu1,2, Yanzhen Li4* and Rongfa Yuan1*

1Department of General Surgery, The Second Affiliated Hospital of Nanchang University,
Nanchang, China, 2Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated
Hospital of Nanchang University, Nanchang, China, 3Department of General Surgery, The Second
Xiangya Hospital of Central South University, Changsha, China, 4Department of Clinical Medicine,
Nanchang Medical College, Nanchang, China
Background: Hepatocellular carcinoma (HCC) is one of the most common

malignancies in the world, with high incidence, high malignancy, and low

survival rate. Cuproptosis is a novel form of cell death mediated by lipoylated

TCA cycle proteins-mediated novel cell death pathway and is highly associated

with mitochondrial metabolism. However, the relationship between the

expression level of cuproptosis-related genes (CRGs) and the prognosis of

HCC is still unclear.

Methods: Combining the HCC transcriptomic data from The Cancer Genome

Atlas(TCGA) and Gene Expression Omnibus (GEO) databases, we identified the

differentially expressed cuproptosis-related genes (DECRGs) and obtained the

prognosis-related DECRGs through univariate regression analysis.LASSO and

multivariate COX regression analyses of these DECRGs yielded four genes that

were used to construct the signature. Next, we use ROC curves to evaluate the

performance of signatures. The tumor microenvironment, immune infiltration,

tumor mutation load, half-maximum suppression concentration, and

immunotherapy effects were also compared between the low-risk and high-

risk groups. Finally, we analyzed the expression level, prognosis, and immune

infiltration correlation on the four genes that constructed the model.

Results: Four DECRGs s were used to construct the signature. The ROC curves

indicated that signature can better assess the prognosis of HCC patients.

Patients were grouped according to the signature risk score. Patients in the

low-risk group had a significantly longer survival time than those in the high-

risk group. Furthermore, the tumor mutation burden (TMB) values were

associated with the risk score and the higher-risk group had a higher

proportion of TP53 mutations than the low-risk group.ESTIMATE analysis
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showed significant differences in stromal scores between the two groups.N6-

methyladenosine (m6A) and multiple immune checkpoints were expressed at

higher levels in the high-risk group. Then, we found that signature score

correlated with chemotherapeutic drug sensitivity and immunotherapy

efficacy in HCC patients. Finally, we further confirmed that the four DECRGs

genes were associated with the prognosis of HCC through external validation.

Conclusions: We studied from the cuproptosis perspective and developed

a new prognostic feature to predict the prognosis of HCC patients. This

signature with good performance will help physicians to evaluate the overall

prognosis of patients and may provide new ideas for clinical decision-making

and treatment strategies.
KEYWORDS

cuproptosis, hepatocellular carcinoma, immune infiltration, prognostic signature,
immune microenvironment
Introduction

Liver cancer is a malignant disease of the digestive system

and ranks the third cause of cancer-related deaths worldwide (1).

Only a small proportion of patients with early liver cancer can be

cured by surgical resection (2). Hepatocellular carcinoma (HCC)

is the majority of primary liver cancer, with up to 850,000 new

cases occurring each year (3). Although it has been shown that

the main risk factors for HCC are associated with a sustained

virological response to hepatitis C, hepatitis B virus suppression

in treatment, and alcoholic and nonalcoholic fatty liver disease

(4). But its etiology and molecular mechanisms remain largely

unknown (5).HCC is a highly heterogeneous disease, with

intratumoral morphological and genetic heterogeneity further

complicating our understanding of hepatocarcinogenesis (6).

Copper is an essential nutrient involved in various biological

functions, and its redox properties make it both beneficial and

toxic to cells (7). The imbalance of copper can cause oxidative

stress in the body and thus affect tumor development (8).

Copper has recently been found to induce cell death by

targeting lipoylated TCA cycle proteins (9). Cuproptosis is a

new form of programmed cell death (10), which is different from

the cell death associated with oxidative stress (such as cell

apoptosis (11), ferroptosis (12), and necroptosis (13). The

finding of cuproptosis reinforces the idea that mitochondria

are multifaceted regulators of cell death (14)and also challenges

the conventional idea that oxidative stress is the fundamental

molecular mechanism of metal-induced toxicity (15). Some

recent reports suggest that mitochondria can affect drug

resistance in cancer, leading to poor chemical therapy effects

in HCC patients (16, 17). Zhang et al. (18) showed that copper

content is closely related to hepatocellular carcinoma (HCC),
02
and that serum copper and ceruloplasmin levels can be used as

markers to detect HCC. In addition, the study by Koizumi et al.

(19) demonstrated that elevated levels of redox-active free

copper are closely associated with HCC due to acute hepatitis.

Additionally, Siddiqui et al. (20)showed that CuO NPs can

induce apoptosis in human hepatocellular carcinoma (HepG2)

cells via ROS through the mitochondrial pathway. The above

studies show that copper plays an important role in the

development of HCC, indicating that cuproptosis may be

closely related to the development of HCC. However, whether

cuproptosis is related to the prognosis of liver cancer patients has

not been studied.

Tumor mutational burden (TMB) is the number of somatic

mutations per megabase of the interrogated genome sequence in

a tumor sample, with the potential for predictive biomarkers

(21).TMB plays an important role in the immunotherapy of

tumors, and the higher the TMB, the better the immunotherapy

benefits (22, 23). It has been shown that non-small-cell

lung cancer and colorectal cancer with high TMB values

may have a poor prognosis (24, 25). It has been shown that

high TMB in HCC patients has a worse prognosis than patients

with low TMB (26). However, it has also been suggested that

higher TMB levels indicate longer overall survival (27).

Therefore, whether TMB can be used as a biomarker for HCC

remains unclear.

To explore the prognostic value of cuproptosis-related genes

(CRGs) and the relationship with tumor mutations and

immunotherapy, differential expression was performed by

analysis and prognostic analysis of CRGs. We then

constructed a new prognostic gene signature using four

differentially expressed cuproptosis-related genes (DECRGs).

Our data suggest that risk scores and staging were identified as
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independent prognostic factors. Furthermore, we explored the

impact of risk scores on TMB and immunotherapy to further

assess the value of signature in molecular therapy. Finally, we

performed external validation of the expression levels and

prognostic value of the four genes in the signature.
Materials and methods

Multiomics data collection
and processing

In the first, we downloaded the gene transcriptome data

(n = 424), clinical data (n = 377), and gene mutation data

(n = 364) of patients with HCC from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). Fragments per

Kilobase million were used for the transcriptome data, which

subsequently transformed into transcripts per million (TPM).

We processed the survival information of HCC patients and

deleted one sample with incomplete survival information. Next,

we downloaded the GSE76427 dataset from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)

and retained the tumor sample information for merging with the

TCGA data. The clinical characteristics of all HCC patients are

shown in Table 1. Digital focal-level copy number variation (CNV)

was downloaded from the GDC TCGA Liver Cancer (LIHC)

project on the UCSC Xena server(https://xena.ucsc.edu/).

In addition, we downloaded the LIRI-JP data from the

International Cancer Genomics Consortium (ICGC) database

(https://dcc.icgc.org/).
Differential expression analysis and
identification of prognostic-related CRGs

We used Wilcoxon rank-sum test for differential analysis to

identify differential expression levels of cuproptosis-related

genes (CRGs) between HCC samples and non-tumor samples.

Kaplan-Meier (KM)analysis and univariate Cox regression were

then used to further determine the CRGs associated

with prognosis.
Consensus clustering analysis of CRGs
GSVA and ssGSEA

Consensus clustering analysis, cumulative distribution

function (CDF), and consensus matrix were performed to

determine the optimal number of types. The correlation

between types, overall survival (OS) status, and risk score was

explored by the “GGalluvial” R package. Gene Set variation

analysis (GSVA) analysis of pathway differences between
Frontiers in Immunology 03
different types. Then we assessed immune cell infiltration in

different classifications using ssGSEA analysis.
The intersection of genes and
enrichment analysis

We integrated TCGA liver cancer data with GSE76427 data.

We considered it as statistically significant when |log2(fold
TABLE 1 The clinical characteristics of the TCGA cohort and
GSE76427 cohort.

Variables TCGA cohort
(N = 376)

GSE76427 cohort
(N = 115)

Age

≤ 65 years 235 65

>65 years 141 50

Sex

Female 122 22

Male 254 93

Grade

G1 55 NA

G2 180 NA

G3 123 NA

G4 13 NA

unknow 5 NA

Stage

I 175 55

II 86 35

III 86 31

IV 5 3

unknow 24 1

T classification

T1 185 NA

T2 94 NA

T3 81 NA

T4 13 NA

TX 1 NA

unknow 2 NA

M classification

M0 272 NA

M1 4 NA

MX 100 NA

N classification

N0 257 NA

N1 4 NA

N2 114 NA

unknow 1 NA

Survival status(OS)

Death 132 23

Survival 244 92
NA: Not available.
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change) | > 0.585 and adjust P value< 0.05.Next, we used the

“org.Hs.eg.db” and “enrichplot” packages to perform the Gene

Ontology (GO) enrichment analyses to explore the relevant

biological functions and structures, and the related pathways

were obtained using the Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses.
Signature generation and validation

We obtained univariate significant genes by univariate Cox

regression analysis. Next, LASSO Cox regression analysis

was performed on univariate significant genes to minimize the

risk of overfitting between signatures (28, 29). Multivariate Cox

regression further screened out the four best genes for risk model

construction and calculated their correlation coefficients. Then

we calculated the risk score for each patient using the following

formula: Riskscore =on
i=1 exp (Xi)� coef (Xi), here “exp(Xi)”,

“coef(Xi),” and “n” represented the expression level, the

coefficient, and the four genes, respectively.

Based on the median risk score of the training group, all

HCC patients were divided into a high-risk group and a low-risk

group. Log-rank test was used to analyze the different OS

between high-risk and low-risk groups. The sensitivity and

specificity of the signature were assessed by time-dependent

receiver operating characteristics (ROC) analysis. Next, we

constructed the programs using risk score, age, sex, and

clinical stage. In addition, we plotted the calibration curves for

years 1,3, and 5 to verify the accuracy of the nomogram.

Furthermore, we analyzed the prognostic differences between

subgroups stratified by age, gender, and clinical stage.
Assessing the tumor microenvironment,
tumor mutation burden correlation, and
immune checkpoints

We used the ESTIMATE algorithm to assess the immune

score, stromal score, and ESTIMATE score in the tumor

microenvironment (TME) (30, 31). The algorithm was able to

estimate the levels of stromal cells and immune cells in

malignant tumor tissues using gene expression signatures. The

ESTIMATE algorithm is implemented using the R package

(estimate, https://sourceforge.net/projects/estimateproject/).

The proportion of the corresponding component in the TME

is indicated by the score. The TMB scores for each HCC patient

in the TCGA cohort were assessed using somatic mutation

analysis. We constructed correlation scatter plots and boxplots

based on Pearson correlation analysis to search for the effect of

risk score on TMB. Waterfall plots regarding high- and low-risk

groups were generated by R package “maftools”. We identified
Frontiers in Immunology 04
m6A genes and potential immune checkpoints based on

previously published literature (32–35).
Evaluation of drug sensitivity and efficacy
of immunotherapy

We used the R package “pRRophetic” to measure the 50%

maximum inhibitory concentration (IC50) of different groups of

samples by ridge regression to predict chemotherapeutic

sensitivity (36). Wilcoxon sign-rank test was used to compare

the IC50 of different groups. Next, we used the Tumor Immune

Dysfunction and Exclusion (TIDE) Tool to predict

immunotherapy responsiveness(http://tide.dfci.harvard.edu/).
Tissue specimens and
immunohistochemical staining

We collected tissue samples from 16 HCC patients at the

Second Affiliated Hospital of Nanchang University. This study

was reviewed by the Medical Ethics Committee of the Second

Affiliated Hospital of Nanchang University. Patients included in

this experiment were informed and written consent was obtained,

and this study met the criteria set by the Declaration of Helsinki.

Tissue specimens were fixed with 4% paraformaldehyde and then

embedded in paraffin. Slice the tissue into 5 mm slices using a

slicer. This was followed by dewaxing with xylene and water

incorporation with ethanol solutions of varying concentrations for

antigen repair. They were then sealed with 10% goat serum. Then

we used anti-TAF6(1:100) to incubate overnight at 4°C. Following

three washes, slides were incubated with secondary antibody for

30 mins at 25°C. After incubation, DAB was used to stain for

10 min, and hematoxylin was re-stained for 2 min.
Cell culture and transfection

The human HCC cell line (HCCLM3) was purchased from

the Shanghai Institute of Cell Research, Chinese Academy of

Sciences, and the cells were validated by the cell bank of short

tandem repeats. The HCCLM3 cell lines were cultured in

DMEM culture media with penicillin G (100 mg/mL),

streptomycin (100mg/mL), and 10% fetal bovine serum (FBS;

Gibco; USA), and the cells were grown at 37°C with 5% CO2.

The logarithmic growth cells were taken for the experiment. We

used Lipofectamine 3000 Transfection Reagent (Invitrogen,

Waltham, Massachusetts, USA) and interfering fragment

siRNA and negative control si-NC (Hanheng Biotechnology

Co. Ltd. Shanghai, China) to make transfection in HCCLM3

cells based on provided directions. Western blot (WB) and qRT-
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PCR were used to detect cell transfection efficiency. The

sequences of siRNA are shown in Table S1.
Quantitative real-time PCR and protein
extraction and western blot

First, we used the Trizol method to extract total RNA from

tissues and cells. Next, we reverse transcribed it into cDNA

(TaKaRa, RR047A) and used it for real-time quantitative PCR

(TAKARA, RR420A). Data analysis was performed using the 2-

DDCt method. The primer sequences used are listed in Table S1.

Total protein from HCCLM3 cells transfected with or without

si-TAF6 was extracted, and western blotting was performed

using the following primary antibodies:anti-TAF6 (1:500,

Bioss, Beijing, China), anti-PD1/CD279 (1:2000, Proteintech,

Wuhan, China) and anti-GAPDH (1:8000, Proteintech,

Wuhan, China).
Cell counting kit-8 assay and EdU assay

The proliferative capacity of HCCLM3 with/without TAF6

downregulation was observed by CCK-8 assay and EdU assay.

Three group cells were seeded in 96-well plates at 3×103 cells per

well for the CCK-8 assay. Cell proliferation was detected using a

CCK8 kit(Bioss, Beijing, China). 10ml CCK-8 reagent was added
to each well at 0h, 24h, 48h, and 72h after transfection, and the

cells were incubated at 37°C for 1.5h without light. The

absorbance was measured at 450nm and we repeated each

experiment at least three times. In addition, three group cells

were seeded in 96-well plates at 1.5×104 cells per well for EdU

assay. According to the instructions of the YF®594 Click-iT

EDU(UE, Shanghai, China) staining kit, the EDU was diluted to

50 mmol/L by the complete medium. Then we added 100 mL to

each well and incubated for 2 h. Next, the medium was removed,

and the cells were fixed in 4% paraformaldehyde and neutralized

with 2mg/mL glycine solution, and washed twice with 3%BSA.

0.5%Triton X-100 was used as the osmotic enhancer, and the

required Click-iT working solution was configured and

incubated for 30min under dark conditions.1×Hoechst 33342

solutions were used for Nuclear redyeing. Finally, Images were

taken with a fluorescence microscope and analyzed with Image

J(version1.8).
Wound healing assay and transwell
migration assay

The migration ability of HCCLM3 with/without TAF6

downregulation was observed by wound healing assay and

transwell migration assay. The cells were digested, centrifuged,

resuspended, and counted. Then seed plate in a 6-well plate by
Frontiers in Immunology 05
6×105 per well. Then the cells were placed in incubators and

incubated. When the monolayer was adherent to the wall, the

scratch test was performed with a 200mL sterile pipette. Then the

cells were washed with PBS 3 times, added to a serum-free

medium, and placed in an incubator at 37°C. Finally, images

were taken at 0h, 24 h, and 48h with a microscope and analyzed

by ImageJ. In addition, HCCLM3 cells with/without TAF6

downregulation were seeded in transwell chambers at 2×104

cells per group. Serum-free medium was used for the upper layer

of the chamber, and a complete medium with 10% FBS was used

for the lower layer of the chamber. Then we cultured HCCLM3

cells at 37°C with 5% carbon dioxide. After 24 hours of culture,

wash, fix and stain. Finally, images were taken with a microscope

and analyzed with ImageJ(version1.8).
Statistical analysis

We performed a descriptive statistical analysis of HCC

patients in TCGA and GEO. Continuous variables were

described as the mean ± standard deviation, and categorical

variables were described as frequency and proportions. The

Kruskal-Wallis rank-sum test was applied to examine the

differences in CRGs and DECRGs expression in the various

classifications of the pathological stage and histological grade of

HCC patients. The chi-square test was used to analyze

clinicopathological features between the training and test set.

The log-rank test was used to compare the OS and the median

OS. The Wilcox test was used to assess the correlation between

signature genes and immune checkpoint expression levels. All

statistical analyses were performed using R version 4.1.3 and

GraphPad Prism 8. P< 0.05 represented a statistical difference.
Results

Differential expression and genetic
alterations of CRGs

The general process of this study is shown in Figure 1. First,

we obtained 19 CRGs (NFE2L2, NLRP3, ATP7B, ATP7A,

SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT, PDHA1,

PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, DLST) from

previous studies (37). Next, we analyzed the differentially

expressed genes of the CRGs between the tumors and the

normal tissues of the HCC patients in the TCGA database.

The results showed that APT7A, LIAS, LIPT1, LIPT2, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, and DLST

showed significantly higher expression in tumor tissues than

in normal tissues, and NLRP3, SLC31A1, and DBT had higher

expression levels in normal tissues(Figure 2A). The correlation

analysis of CRGs expression showed a strong positive

relationship between MTF1 and ATP7A (Figure 2B). Next, we
frontiersin.org
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constructed the protein-protein interaction (PPI) networks

(Figure 2C) by String (https://string-db.org/). We performed

the copy number variation(CNV) frequency analysis of CRGs.

The results showed that the increasing frequency of ATP7B and

CDKN2A copies was significantly higher than the deletion

frequency, and the deletion frequency of NLRP3 and LIAS

copies was significantly higher than the deletion frequency

(Figures 2D, E). We also found that 38 somatic cells (10.24%)

out of 371 liver cancer samples had mutations and CDKN2A

(3%) showed a higher mutation frequency (Figure 2F).
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Next, we used KM analysis and COX analysis to assess the

prognosis significance of CRGs of HCC patients in the TCGA

and GSE76427 datasets collection files. Studies showed that 15

genes in the KM analysis were associated with OS prognosis

(Figures 3A–O). The COX analysis showed those genes were

associated with HCC patients (Table 2). Prognostic network

maps of CRGs indicate LIAS, FDX1, SLC31A1, and ATP7B as

protective factors in HCC, while NFE2L2, NLRP3, ATP7A,

LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A,

DBT, GCSH, and DLST are the risk factors (Figure 3P).
FIGURE 1

Flow chart of this study.
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B C

D E F

A

FIGURE 2

Expression and genetic alteration of CRGs in HCC. (A) the expression of 19 CRGs in HCC and normal tissues. (B) correlations between the
expression of CRGs; (C) Protein-protein interaction (PPI) networks between CRGs; (D–F) the CNV and mutation frequency and classification of
19 CRGs in HCC. *p<0.05, wfi 2***p<0.001; ns, not statistically different.
B C D

E F G H

I J K L

M N O P

A

FIGURE 3

Prognosis significance of CRGs of HCC patients in TCGA and GEO in HCC. (A–O) K-M survival curve displays the OS of HCC patients.
(P) Prognostic network of CRGs.
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Division subtypes, GSVA, and ssGSEA
analysis based on consensus
cluster analysis

The consistency matrix of the subtypes works best when

K=3. Accordingly, we divided all HCC patients into three main

subtypes (cluster A, cluster B, and cluster C) (Figure 4A). Next,

we performed survival analysis on the three clusters and the KM

curve showed significant differences in the prognosis between
Frontiers in Immunology 08
the different clusters, and the HCC patients with cluster B had

the best prognosis (Figure 4B). A complex cluster-based heat

map (Figure 4C) was constructed by combining the age, sex, and

clinical stage of HCC patients in TCGA and GSE76427. Gene set

variation analysis(GSVA) shows the differences between the top

20 most significant pathways in cluster A, cluster B, and cluster

C (Figures 4D–F). The boxplot showed the difference in the

proportions of different immune cells across the three

clusters (Figure 4G).
TABLE 2 UniCOX and KM analysis of CRGS.

id HR HR.95L HR.95H pvalue km

LIPT1 2.041268484 1.400769396 2.974634537 0.000203862 6.66E-06

DLAT 1.318058945 1.107153366 1.569140677 0.001908279 0.000401478

GLS 1.199420121 1.043613805 1.37848754 0.010429257 0.003546961

ATP7A 1.409013614 1.05092514 1.889115873 0.021906859 0.008726055

PDHB 1.422772785 1.046290093 1.93472385 0.024543058 0.000414516

CDKN2A 1.151808608 1.016979706 1.304512826 0.026078951 0.002017522

NFE2L2 1.244314507 1.010434898 1.532328897 0.039620311 0.00505845

PDHA1 1.322017444 1.001537181 1.745047669 0.048745858 6.45E-05

MTF1 1.330351119 0.998711 1.772118361 0.051039522 0.018175397

GCSH 1.384991055 0.969040108 1.97948486 0.07387713 0.01826058

NLRP3 1.301558707 0.957318834 1.769582929 0.092635707 0.025387446

DLD 1.154216856 0.907978458 1.467233655 0.241409877 0.024130156

DLST 1.098050387 0.84537204 1.426253288 0.483289071 0.00517199

ATP7B 0.939395043 0.763851007 1.155281643 0.553616744 0.027650563

SLC31A1 0.969486093 0.782805565 1.200685491 0.776427617 0.065469526

DBT 1.015629815 0.791019231 1.304018766 0.903203134 0.16315505

FDX1 0.988440028 0.767063253 1.273706809 0.92838493 0.045997776

LIAS 0.992922625 0.694396004 1.419788324 0.96894854 0.079838689
fro
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FIGURE 4

Clustering analyses of the signature. (A, B) Concordance matrix and K-M survival curve of the three clusters. (C) Complex heat maps show
clinical correlations among the three clusters. (D–F) The GSVA heat map showed the differences in pathways in the three clusters. (G) The
differential analyses between immune cells and the scale of fraction for cluster A and cluster B and cluster C. *p<0.05, **p<0.01, ***p<0.001.
ntiersin.org

https://doi.org/10.3389/fimmu.2022.990790
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.990790
Acquisition of intersection genes and
enrichment analysis

The principal component analysis (PCA) results showed that

we can segment cluster A, cluster B, and cluster C (Figure 5A)

according to the expression level of CRGs. Next, we performed a

differential analysis of the three clusters to obtain differentially

expressed cuproptosis-related- genes (DECRGs) among different

types. The Venn diagram shows the intersection of DECRGs

(Figure 5B). Then, possible functions and pathways were

identified using the GO and KEGG enrichment analysis. The

GO analysis showed that the DECRGs were closely related to the

endoplasmic reticulum lumen and basolateral plasma membrane

in the Cellular Component (CC). Biological processes (BP) are

mainly involved in the response to xenobiotic stimulus and

regulation of body fluid levels. The Molecular Function (MF)

can affect iron ion binding and monooxygenase activity

(Figure 5C). The results of KEGG enrichment analysis showed

that DECRGs are involved in chemical carcinogenesis−DNA

adducts, alcoholic liver disease, xenobiotics by cytochrome P450,

and drug metabolism − cytochrome P450, bile secretion, and

retinol metabolism (Figure 5D).
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Consensus clustering analysis for
partition subtype and prognostic model
construction

First, we randomly divided 487 patients in a 1:1 ratio into the

training set (n = 244) and the testing set (n = 243). Then we

screened the 77 DECRGs by univariate Cox regression analysis

to obtain the univariate significant genes (uniSigGenes)

(Supplementary S1) and subtyped the uniSigGenes.

Based on the k-value selected by the highest correlation

coefficient, we classified all HCC patients into three major

subtypes (cluster A, cluster B, and cluster C) (Figures 6A, B).

Patients in Cluster B had better OS compared to clusters A and

clusters C (Figure 6C). A complex cluster-based heat map

(Figure 6D) was constructed by combining the age, gender,

and clinical stage of HCC patients in TCGA and GSE76427.

Furthermore, we analyzed the differential expression of genes

associated with CRGs between different clusters. The boxplot

indicated that SLC31A1, FDX1, FDX1, and GCSH have the

highest expression levels (Figure 6E) in cluster B. Next, we

performed a LASSO regression analysis to reduce the

overfitting of genes during signature generation and identified
B

C D

A

FIGURE 5

Functional enrichment analysis of DECRGs. (A) Principal component analysis of three clusters. (B) The Venn diagram shows the intersection of
DECRGs (C) Analysis of BP, CC, and MF terms of GO enrichment demonstrated the possible function of the DECRGs. (D) Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis revealed the possible pathways.
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11 significant genes (LASSOSigGenes) (Figures 6F, G). Then, the

multivariate COX regression analysis of the LASSOSigGenes was

performed, which finally identified the best four genes (TAF6,

SPP2, CFHR4, DNASE1L3).The data in the training set was used

to build the prognostic model, and the signature formula is as

follows: Risk score = expTAF6×0.257 + expSPP2× (-0.093) +

expCFHR4× (-0.112) + expDNASE1L3× (-0.205). The 244

patients in the training set were divided into low and high-risk

groups according to the median score calculated by the risk score

formula. Then 243 patients were divided into low-risk and high-

risk groups based on the median value of the risk score of the

training group. Next, we combined the training set and

the testing set files to get all set files. The Sankey diagram

shows the construction of the prognostic model (Figure 6H).

Boxplots indicate the differences in risk scores in the CRGs

cluster (Figure 6I) and the gene cluster (Figure 6J). The

differential analysis of CRGs expression in the collection file

was performed and the boxplot results (Figure 6K).
Validation of the prognostic value of
the signature

We performed prognostic analysis on all set, training set, and

testing set data. The KM curve indicates that the low-risk group
Frontiers in Immunology 10
showed a better OS probability (Figures 7A–C) compared with the

high-risk group. In addition, we plotted 1-year, 2-year, and 3-year

ROC curves to assess the sensitivity and specificity of the signature

(all AUC > 0.600, Figures 7E–G). Univariate and multivariate

COX regression analysis was performed in all sets. Univariate Cox

regression analysis indicated that the risk score and clinical stage

were significantly associated with OS (Figure 7D). Multivariate

Cox regression analysis also identified risk score and clinical stage

as independent predictors of OS (Figure 7H). Next, we

constructed OS-related nomograms to test the proportional

hazards hypothesis (Figure 7I) in the multivariate Cox model.

The subsequent calibration curve further validated the accuracy of

the nomogram (Figure 7J). Finally, we performed a clinically

stratified analysis of clinical factors(age, gender, and tumor stage)

to understand the applicability of the signature. We observed that

for HCC patients aged<= 65 or > 65 years, the survival rate was

significantly higher in the low-risk group than in the high-risk

group (Figures 7K, L, all p< 0.001). Furthermore, for male or

female HCC patients, the low-risk group was significantly higher

than the high-risk group (Figures 7M, N, all p< 0.05). Similarly,

for patients with tumor stage I-II (p< 0.001) or III-IV (p<0.001),

survival in the low-risk group was significantly higher than in the

high-risk group (Figures 7P, O).

Next, we analyzed the expression differences of the four

genes constructing the signature in the all set (Figure 8A),
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FIGURE 6

Clustering analyses of the signature. (A) The cumulative distribution function based on the sign indicated that the optimal number of subtypes
was 3. (B) Concordance matrix of subtypes. (C) K-M survival curve of the three clusters. (D) A complex heat map illustrated the expression
patterns. (E) Expression of CRGs between cluster A, cluster B, and cluster C (H) Ggalluvial shows the construction of the prognostic model.
(F, G) LASSO regression analyses for screening LASSOSigGenes. Boxplots indicate the differences in risk scores in the CRG cluster (I) and the
gene cluster (J).The differential analysis of CRGs expression (K). *p<0.05, **p<0.01, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.990790
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.990790
training set (Figure 8B), and testing set (Figure 8C). By mapping

the heat map, we found that TAF6 was upregulated but SPP2,

CFHR4, and DNASE1L3 had higher expression in the low-risk

group. In addition, we also analyzed the mutation situation of

TP53 with a higher mutation frequency in the three groups. We

found that TP53 had a higher proportion of mutations in the

high-risk group for the all-set (Figure 8D), training-set

(Figure 8E), and testing-set (Figure 8F).
Association of signature with immune
cell infiltration and mutational load and
immune checkpoints

Immunotherapy had revolutionized cancer treatment,

enabling longer survival for cancer patients (38). However,

immune cell infiltration and immune checkpoints are important

factors in immunotherapy (39, 40). Therefore, we performed a

multifaceted analysis of the relationship between signatures and

immunity. The results showed that there was no difference

between the two groups, and the stromal score and estimated
Frontiers in Immunology 11
score of the risk group were significantly higher than the high-risk

group (Figure 9A). Next, we analyzed the correlation of the four

genes with immune cells. The correlation heatmap (Figure 9B)

shows the immune correlation results. Next, we analyzed the

expression of the checkpoint genes between the high-risk and

low-risk groups. The boxplot results showed that the expression of

all checkpoint genes was statistically significant (Figure 9C),

especially IDO2, TNFRSF14, CTLA4, TNFRSF18, TNFRSF4,

LGALS9, CD276, HHLA2, CD80, VTCN1, HAVCR2, TNFSF4,

and TNFSF15 (p<0.001). Studies have shown that the recurrence,

metastasis, and chemotherapy resistance of liver cancer are

associated with the presence of cancer stem cells (41).

So we performed a stem-cell correlation analysis. The

correlation scatters plot (Figure 9D) indicates a higher risk

score and a higher stem cell content. In addition, we analyzed

the differences in m6A-related gene expression between the

high-risk and low-risk groups. The results(Figure 9E) showed

that METTL3, ALK8H5, WTAP, RBM15, YTHDC1,

YTHDC2, HNRNPC, FTO, YTHDF2, and YTHDF1 showed

higher expression in the high-risk group compared to the low-

scoring risk group. Next, we analyzed the differences in
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FIGURE 7

Validation of the prognostic value of the signatures. (A–C)The KM curve of all sets, testing set, and training set. (D) Univariate Cox regression
analysis and multivariate Cox regression (H) analysis risk score and clinical stage as independent predictors of OS. (E–G) ROCs for 1-year, 2-
year, and 3-year OS prediction. (I) The nomogram of the risk score and clinical parameters (age, gender, and stage) of all sets. (J) The calibration
curves displayed the accuracy of the nomogram in the 1st, 2nd, and 3rd years. (K, L) Comparison of the OS between the high-risk and low-risk
groups of patients who are<= 65 or > 65 years, male (M) or female (N) with a stage of stage I-II (O) or stage III-IV (P).
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mutation frequency in the high-risk groups and low-risk

groups. The waterfall map shows (Figures 9F, G) that the

mutation frequency of TP53 is much higher in the high-

risk group than in the low-risk group. Furthermore, the

KM survival curves showed a combination of higher TMB

values and higher risk scores associated with worse OS

(Figures 9H, I).
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Signature predict the efficacy of
response to chemotherapy and
immunotherapy

We compared the relationship between high-risk and low-

risk populations and the efficacy of the drug to assess the

predictive effect of this signature on HCC drug therapy. Our
B C

D E F

A

FIGURE 8

Analysis of gene expression and mutation correlation. (A–C) The risk curve consists of genes expression heat map, risk score curves, and survival status
point plot. (D–F) Comparison of the proportion of the TP53 mutation status in the high- and low-risk groups in the training, testing, and all sets.
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study showed that the low-risk group was significantly

associated with higher IC50 with chemotherapy drugs such

as Axitinib, Imatinib, Lapatinib, Gefitinib, and Bicalutamide

(Figures 10A–E).In contrast, the high-risk group was more

sensitive to Cisplatin, Gemcitabine, Doxorubicin, Etoposide,

Rapamycin, and Nilotinib treatment (Figures 10F–K).

Furthermore, we assessed differences in immunotherapy

between high-risk and low-risk patients by TIDE score. The

results showed that the TIDE score is significantly lower

(Figure 10L) in high-risk patients compared with low-risk

patients. Next, we used TIMER2.0 (http://timer.cistrome.org/)

to perform the correlation analysis of the four genes

constituting the signature with PDC1, LMTK3, and CTLA4

expression (42). After adjusted by purity, the results

(Supplementary Figures 1A–C) revealed that the expression

level of CFHR4, DNASE1L3, and SPP2 were significantly

negatively correlated with PDCD1, LMTK3, and CTLA4 in
Frontiers in Immunology 13
HCC, but TAF6 was positively correlated with PDCD1,

LMTK3, and CTLA4 in HCC.
Differential expression analysis and
prognostic analysis of the
signature genes

To further explore the credibility of the signature. We

performed the differential analysis of the expression of signature

genes on data from TCGA and CPTAC (http://ualcan.path.uab.

edu/analysis-prot.html). The analysis of TCGA data showed that

(Figures 11A–D), CFHR4, DNASE1L3, and SPP2 were

significantly higher in adjacent non-tumor tissues, while TAF6

was upregulated in HCC tissues. Then we analyzed the CPTAC

dataset, and the results were consistent with previous studies

(Figures 11E–H). Furthermore, we used TIMER2.0 to analyze the
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FIGURE 9

To assess the tumor microenvironment, immune checkpoint genes, and tumor mutation burden (TMB) in different groups. (A) Comparison of
ESTIMATE scores, stromal scores, and immune scores between the high-risk and low-risk groups. (B) Correlation between the model-
constructed genes and immune cells. (C) Differential expression of immune checkpoint genes between the high-risk group and the low-risk
groups. (D) Correlation between the stem cell content and the risk score. (E) Differential expression of m6A-related genes (F, G) and the
frequency of mutations in the high-risk and low-risk groups. (H, I) The KM curve of the tumor mutation burden versus the OS. *p<0.05,
**p<0.01, ***p<0.001; ns, not statistically different.
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expression differences of the signature genes between the two

groups of wild TP53 andmutated TP53 in HCC patients. Boxplots

(Figures 11I–L) indicated that CFHR4, DNASE1L3, and SPP2 had

higher expression levels in the wild TP53 group, while TAF6

showed higher levels in the mutated TP53 group.

Next, we analyzed the relationship of the label genes with the

prognosis. We used Kaplan-Meier Plotter (http://kmplot.com/

analysis/index.php?p=service) to analyze the association of the

signature genes with overall survival (OS) in HCC patients. The

KM (Supplementary Figure 2A) curve of OS showed that all four

genes were significantly associated with the prognosis of HCC

patients. We then performed a prognostic analysis of the liver

cancer data (Supplementary Figure 2B) from the ICGC database.

The results indicate that low expression of CFHR4 and

DNASE1L3 is associated with poor prognosis in HCC patients,

while high expression of TAF6 is associated with poor prognosis

in patients. In addition, we analyzed the differential expression

of the signature genes in the different histological grades,

pathological stages, and T stages of HCC in the TCGA

database. The expression levels of the four genes (CFHR4,

DNASE1L3, SPP2, and TAF6) varied in the different

histological grades, pathological stages, and T stages of HCC,

except for DNASE1L3, which did not show any statistical

differences between the T stages (Supplementary Figure 3).
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Validation of signature genes
expression levels

We collected tissue samples from 16 HCC patients for the

analysis of signature gene expression levels at the Second

Affiliated Hospital of Nanchang University. The real-time

quantitative PCR results showed that CFHR4, SPP2, and

DNASE1L3 were expressed higher in non-tumor tissues (Non-

Tumor) (Figures 12A–C) than in tumor tissues (Tumor), and

TAF6 was expressed higher in tumor tissues (Figure 12D) than

in non-tumor tissues. Due to the importance of TAF6 in the four

signature genes, we further evaluated it. IHC results showed that

TAF6 was highly expressed in liver cancer (Figures 12E, F).

These results further verified the correctness of the above

bioinformatics research. In addition, we assessed the

expression level of TAF6 in the cell lines in liver cancer cell

lines. including HepG2,SMCC7721,MHCC97H,Huh-7 and

HCCLM3.As shown in (Figure 12G), compared with HL7702

(normal liver cells), TAF6 was expressed at relatively higher

levels in liver cancer cell lines. Next, we used the HCCLM3 with

the highest TAF6 mRNA expression level for subsequent trials.

The real-time quantitative PCR was used to test the knockdown

efficiency. The bar graphs (Figure 12H) indicate better silencing

for si-TAF6#1 and si-TAF6#2.
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FIGURE 10

Signature predicts chemotherapy and immunotherapy response. (A–E) The signature showed high-risk scores were associated with a lower
IC50 for chemotherapeutics such as (A) Axitinib, (B) Imatinib, (C) Lapatinib, (D) Gefitinib, and (E) Bicalutamide, whereas they were related to a
higher IC50 for (F) Cisplatin, (G) Gemcitabine, (H) Doxorubicin, (I) Etoposide, (J) Rapamycin and (K) Nilotinib treatment. (L) Differences in TIDE
score between high- and low-risk groups.
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TAF6 expression was associated with
poor prognosis in HCC

The better knockdown si-TAF6#1 and si-TAF6#2 were used

for subsequent trials. To assess the effect of TAF6 on

proliferation in HCC, we used CCK-8 and EdU staining assays

in HCCLM3 with/without TAF6 knockdown. After interfering

with TAF6 expression in HCCLM3 cells, the cell proliferation

rate in thesi-TAF6#1 and si-TAF6#2 groups was significantly

lower than that in the si-NC group (Figures 13A, D, E). The

effect of inhibiting TAF6 expression on HCC cell migration was

further analyzed. Transwell assays and wound-healing

experiments together showed that the migratory ability of

HCCLM3 cells was significantly reduced upon inhibition of

TAF6 expression (Figures 13B, C, F, G). Furthermore, we

explored the relationship between the immune checkpoint PD-

1 and TAF6 in HCC cells. Interestingly, we found that inhibiting

the expression of TAF6 reduced the protein expression of PD-1

by western blotting (Figures 13H–J). In summary, in vitro,

experimental data suggest that high expression of TAF6 is
Frontiers in Immunology 15
closely related to better immunotherapy results and poor

prognosis in patients with HCC.
Discussion

The incidence of liver cancer has been on the rise in recent

years, and it is estimated to exceed 1 million cases by 2025 (43,

44). As the major histological type of liver cancer, hepatocellular

carcinoma (HCC) accounts for the vast majority of liver cancer

diagnoses and death (45). Although enhanced diagnostic

techniques and treatments have enabled improved outcomes

for early-stage HCC patients, the overall prognosis of HCC

remains poor (46). Therefore, seeking a valid signature is

significant for evaluating the prognosis and treatment of

patients with HCC. Recent studies have shown that

cuproptosis is a new form of programmed cell death, different

from oxidative stress-related cell death, such as apoptosis,

ferroptosis, and necroptosis (9). Studies have shown that

copper death-related genes play important roles in clear-cell
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FIGURE 11

Differential expression of the signature genes. (A–D) Differential expression of CFHR4, DNASE1L3, SPP2, and TAF6 in adjacent non-tumor tissues
and HCC tissues in the TCGA database. (E–H) Differential expression of CFHR4, DNASE1L3, SPP2, and TAF6 in adjacent non-tumor tissues and
HCC tissues in the CPTAC dataset. (I–L) Differential expression of CFHR4, DNASE1L3, SPP2, and TAF6 of HCC patients in the wild TP53 group
and the mutant TP53 groups. ***p<0.001.
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renal cell carcinoma (47), neuroinflammation (48), and

chemotherapeutic drugs (49). In addition, numerous studies

have shown the importance of pyroptosis (50), ferroptosis

(51), and necroptosis (52) in the development and treatment

of HCC. However, no study has analyzed the relationship

between cuproptosis and prognosis prediction and targeted

therapy in HCC patients.

In this study, we performed a clustering analysis of

cuproptosis -related genes(CRGs) that yielded differentially

expressed cuproptosis-related- genes (DECRGs). Then, the

univariate regression analysis, LASSO Cox regression analysis,

and multivariate regression analysis yielded four DECRGs. Next,

we used four DECRGs to construct a novel prognostic risk

signature and identify potential molecular subtypes to better
Frontiers in Immunology 16
predict the prognosis of HCC. Furthermore, we evaluated the

performance of the signature through survival analysis,

mutation correlation analysis, and independent prognostic

analysis. In conclusion, our results indicate that the signature

is better predictive. Our signature genes include TAF6, SPP2,

CFHR4, and DNASE1L3, all of which are cuproptosis -related

differential genes with a strong correlation with cuproptosis –

related- genes (Supplementary Figure 4). Our signature genes

have the potential to be a prognostic risk gene for HCC patients.

Xiao et al. showed that DNASE1L3 inhibits HCC progression by

inducing apoptosis and weakening glycolysis (53). Lu et al.

found that SPP2 is involved in regulating aerobic glycolysis

and affecting HCC tumorigenesis (54). Fan et al. have suggested

that SPP2 can serve as a biomarker to predict the prognosis of
B C D

E

F G H

A

FIGURE 12

Verify the mRNA expression levels of the four signature genes in the tissues. The qRT-PCR results showed thatDNASE1L3 (A), CFHR4 (B), and
SPP2 (C) were expressed higher in non-tumor tissues (Non-Tumor) than in tumor tissues (Tumor), TAF6 (D) was expressed higher in tumor
tissues (Tumor)than in non-tumor tissues (Non-Tumor). TAF6 representative IHC (E, F) stained images in HCC tissue and adjacent tissues(n = 16;
magnification: left, 100×; right, 200×). Expression levels of TAF6 (G) in HCC cell lines. The bar graphs (H) indicates better silencing for si-TAF6#1
and si-TAF6#2. *p< 0.05, **p< 0.01, and ***p< 0.001.
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patients with oral squamous cell carcinoma (55). The study of

Wang et al. has demonstrated the great potential of TAF6 in the

development of glioblastoma therapy (56). Furthermore, we

analyzed the differential expression of signature genes in the

TCGA database of genes and HCC data in the GSE76427

datasets and found significant differences in signature genes

between adjacent non-tumor samples and HCC samples. Our

results from qRT-PCR have also demonstrated the same results,

with the GEPIA2 and ICGC data survival analysis results

indicating those signature genes are significantly associated
Frontiers in Immunology 17
with prognosis, increasing the confidence of our signature

genes as prognostic models. Based on the regression

coefficients, TAF6 is considered the most important DECRG

in risk factors and prognosis prediction. We analyzed the

expression of TAF6 in normal hepatocytes and hepatoma cell

lines, and the results of real-time quantitative PCR indicated that

TAF6 expression was significantly higher in hepatoma cell lines

than in normal hepatocytes. In addition, we performed in vitro

experiments and found that interference with TAF6 expression

significantly inhibited HCC proliferation and migration.
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FIGURE 13

Adverse effects of TAF6 on HCC in vitro. (A, D) Compared with the control group, the proliferation rate of HCCLM3 cells was significantly
inhibited after TAF6 silencing by EdU staining. (B, E) Transwell experiments showed that the migratory ability of HCCLM3 was inhibited after
TAF6 silencing. (C) After TAF6 silencing, the cell viability of HCCLM3 was significantly inhibited by the CCK- 8 assay. (F, G) The wound healing
array showed that LTAF6-downregulated HCCLM3 cells exhibited significantly delayed wound healing compared with controls. (H–J) Effects of
with or without inhibition of TAF6 expression on PD-1 protein expression levels by western blotting. Scale bar: EdU,50mm; Transwell
experiments and Wound healing array,200mm. **p<0.01, ***p<0.001.
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Interestingly, we found for the first time that TAF6 inhibition

causes downregulation of CD279 (PD-1) protein expression,

which may provide new insights into immunotherapy

Our GO enrichment analysis indicates that the presence of

DECRGs mainly in the basolateral plasma membrane and in the

ER lumen may be associated with ER stress in regulating tumor

growth and antitumor immunity (57). It may also affect immune

responses by affecting iron ion binding (58). Accordingly, we

performed the immune correlation analysis, and the results

showed that there was no difference in the immune scores for

the data from the high-risk and low-risk groups, and the

significant differences in the stromal and estimated scores.

This suggests that our DECRGs have the potential to predict

the composition of the TME. The risk score was positively

correlated with T cells CD4 memory activated and NK cells

resting, and negatively correlated with T cells CD4 memory

resting and B cells naive (59, 60) (Supplementary Figure 5).

These results suggest that the high-risk group may have better

immune cell therapy effects. Furthermore, the results of KEGG

enrichment analysis indicated that DECRGs are involved in

chemically oncogenic DNA adducts, alcoholic liver disease, and

drug metabolism cytochrome P450. This result suggests that our

signature may be used for the treatment of HCC and for

developing chemotherapy drugs (61–63). Given the

therapeutic importance of drug therapy for HCC, we evaluated

the predictive effect of the signature on drug therapy for HCC.

Our study showed that Cisplatin (64), Gemcitabine (65),

Doxorubicin (66), Etoposide (67), Rapamycin (68), and

Nilotinib (69)have higher drug sensitivity in the high-risk

group, consistent with previous studies suggesting that our

signature has the potential to predict drug efficacy. TMB has

been proven to be an important and independent biomarker that

plays an important role in the prognosis and treatment of HCC

(70, 71). Our study showed that HCC patients in the high-score-

risk group had a higher frequency of TP53 mutations and a

worse prognosis, which is consistent with the study by Tang et al

(72).In recent years, the use of immunotherapy in the treatment

of HCC has attracted increasing attention (73), and checkpoint

inhibitor immunotherapy plays an important role in HCC

patients (74). We analyzed the expression levels of checkpoint

genes and the TIDE scores in the high-risk and low-risk groups.

The results showed that the checkpoint gene expression levels

were generally higher in the high-risk group than in the low-risk

group, while the high-risk patients had significantly lower TIDE

scores. This suggests that our signature may be used to evaluate

the expression of immune checkpoint genes and the effect of

immunotherapy. Furthermore, we used TIMER2.0 to analyze

the correlation analysis of the signature genes with the immune

checkpoint genes PDCD1, LMTK3, and CTLA4. The results

showed a significant correlation of the signature genes with both

PDCD1, LMTK3, and CTLA4.In conclusion, our signature has a
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good predictive prognostic power and facilitates the selection of

patients suitable for immunotherapy.

However, our study also has limitations. First, most of our

data are derived from the TCGA, GEO, and ICGC databases,

and we find a lack of comprehensive validation from the external

datasets. Furthermore, we performed partial expression volume

validation at the tissue level and cell level but the sample number

was small. In the future, we will continue to collect samples to

evaluate this signature with immunotherapy and to verify

whether there are differences in immunotherapy benefits

between high-risk and low-risk populations.

In conclusion, we constructed a new prognostic CRGs

signature to better predict the prognosis in HCC. This signature

will help clinicians to evaluate the overall patient prognosis and

provide new ideas for developing treatment strategies.
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