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Glucose metabolism-related genes play an important role in the development

and immunotherapy of many tumours, but their role in thyroid cancer is

ambiguous. To investigate the role of glucose metabolism-related genes in

the development of papillary thyroid cancer (PTC) and their correlation with the

clinical outcome of PTC, we collected transcriptomic data from 501 PTC

patients in the Cancer Genome Atlas (TCGA). We performed nonnegative

matrix decomposition clustering of 2752 glucose metabolism-related genes

from transcriptome data and classified PTC patients into three subgroups (C1

for high activation of glucose metabolism, C2 for low activation of glucose

metabolism and C3 for moderate activation of glucose metabolism) based on

the activation of different glucose metabolism-related genes in 10 glucose

metabolism-related pathways. We found a positive correlation between the

activation level of glucose metabolism and the tumour mutation burden (TMB),

neoantigen number, mRNA stemness index (mRNAsi), age, and tumour stage in

PTC patients. Next, we constructed a prognostic prediction model for PTC

using six glucose metabolism-related genes (PGBD5, TPO, IGFBPL1, TMEM171,

SOD3, TDRD9) and constructed a nomogram based on the risk score and

clinical parameters of PTC patients. Both the prognostic risk prediction model

and nomogram had high stability and accuracy for predicting the progression-

free interval (PFI) in PTC patients. Patients were then divided into high-risk and

low-risk groups by risk score. The high-risk group was sensitive to paclitaxel

and anti-PD-1 treatment, and the low-risk group was sensitive to sorafenib

treatment. We found that the high-risk group was enriched in inflammatory

response pathways and associated with high level of immune cell infiltration.

To verify the accuracy of the prognostic prediction model, we knocked down

PGBD5 in PTC cells and found that the proliferation ability of PTC cells was
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significantly reduced. This suggests that PGBD5 may be a relatively important

oncogene in PTC. Our study constructed a prognostic prediction model and

classification of PTC by glucose metabolism-related genes, which provides a

new perspective on the role of glucose metabolism in the development and

immune microenvironment of PTC and in guiding chemotherapy, targeted

therapy and immune checkpoint blockade therapy of PTC.
KEYWORDS

metabolic genes, papillary thyroid cancer classification, immune signatures,
prognosis, PD-1, PGBD5
Introduction

The incidence of thyroid cancer (TC) has been increasing

worldwide in recent decades. The most common histologic

subtype of TC is papillary thyroid carcinoma (PTC), which is

the only histologic subtype of TC that is systematically

increasing in all countries (1). The incidence of PTC is almost

always higher in women than in men (2). PTC is less malignant

than other subtypes of TC, but many patients are still at risk of

recurrence and metastasis, at which point the survival rate

decreases significantly (3). The construction of prognostic

prediction models by abnormally expressed genes as well as

nomograms to assess the prognosis of tumour patients and the

classification of tumour patients into high-risk and low-risk

groups to guide treatment have been developed and applied in

several tumourtypes (4, 5). However, reasonable and accurate

prognostic prediction models are still lacking in PTC. The

current study found that glucose metabolism plays an

important role in the development and treatment of PTC (6,

7), and it is unknown whether a reasonable prognostic

prediction model can be constructed to predict PTC prognosis

and guide PTC treatment by glucose metabolism-related genes

in PTC.

Various metabolic pathways have been suggested to play an

important role in the development of cancer, such as aerobic

glycolysis, glutamine catabolism, and fatty acid metabolism, which

produce various nutrients that promote cell growth and

proliferation (8–10). Compared to normal tissue, in vitro cancer

tissue can use large amounts of glucose to produce lactate even in

the presence of oxygen, a phenomenon known as aerobic

glycolysis or the Warburg effect. Lactate dehydrogenase

(LDHA), which is involved in glycolysis, is a transcriptional

target of the oncogene MYC and is required for increased

glycolysis and tumorigenesis in tumour cells, which provides the

molecular basis for the Warburg effect (8). BRAF mutations,

which are closely associated with the development of PTC, have

also been found to be closely associated with overexpression of

several competence metabolism-related genes (11, 12), and
02
inhibition of metabolism-related gene expression has a

significant inhibitory effect on PTC progression (13).

The importance of immunotherapy in tumour treatment is

constantly being studied, and it forms the basis of cancer

treatment together with surgical treatment, radiotherapy and

targeted therapy (14). Current studies have found that the

metabolism of energy in a variety of tumour cells can affect

immune cell function and immunotherapeutic efficacy either by

acting directly or influencing the tumour microenvironment

(TME). Tumour depletion of glucose metabolically limits T-cell

function, leading to their diminished antitumor capacity and thus

tumour progression (15). Tumour cells produce large amounts of

lactate through aerobic glycolysis and release excess lactate into

the TME via monocarboxylate transporter protein 4 (16). Lactate

in the TME inhibits the therapeutic efficacy of ipilimumab in

melanoma (17). Increasing the pH in tumour tissue improves

cytotoxic T lymphocyte infiltration and enhances anti-CTLA-4,

anti-PD-1 and chimeric antigen receptor (CAR) T-cell therapy

(18). However, the effect of glucose metabolism on immune cell

infiltration and immunotherapy in PTC has rarely been reported.

Therefore, predicting the sensitivity to immunotherapy before

administering it to patients with advanced PTC is challenging, but

necessary, for individualizing patient treatment and optimizing

health care costs.

In this study, we hypothesized that glucose metabolism plays

an important role in the development of PTC and modifies the

immune microenvironment. Therefore, we clustered information

from clinical samples of 501 patients in the TCGA-THCA cohort

and 10 glucose metabolism-related pathways. Three subgroups of

PTC were identified by unsupervised transcriptome analysis,

namely, C1, C2, and C3. Next, we analysed the proportion of

PTC subgroups by different clinical stage, mutation type, and

frequency of each mutation type. We also compared the tumour

mutation burden (TMB), neoantigen number, and mRNA

stemness index (mRNAsi) occurring in each of the three

subgroups. Then, we further generated the prognostic genes that

contributed most to the progression-free interval (PFI) of PTC by

Lasso Cox analysis, constructed a prognostic prediction model for
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PTC based on six prognostic genes (PGBD5, TPO, IGFBPL1,

TMEM171, SOD3, TDRD9), constructed a nomogram based on

risk score and clinical parameters, divided patients into high risk

(HRisk) and low risk (LRisk) groups based on risk score, and then

analysed the prognostic differences, immune infiltration, clinical

characteristics and sensitivity to drug treatment between the

HRisk and LRisk groups. Finally, we evaluated the reliability of

the scoring model by observing PGBD5 knock down in PTC.

These studies will help to discover the mechanisms of PTC

development and guide chemotherapy, targeted therapy and

immunotherapy for PTC.
Materials and methods

Papillary thyroid cancer patient cohorts

We obtained TCGA-THCA cohort data from the TCGA

data portal (https://www.cancer.gov/tcga/), which contains the

gene expression profiles of 512 PTC patients. After eliminating

the samples with no follow-up time, the gene expression

information of 501 patients was finally retained for subsequent

analysis. Gene mutation information was also downloaded

through the TCGA data portal, and after matching clinical

data, gene mutation information was collected for 401

patients. We divided the data of 501 patients into a training

set (n=334) and a test set (n=167) based on a 2:1 ratio.
Gene set variation analysis

We downloaded 10 gene sets related to glucose metabolism

from the GO terms and KEGG and REACTOME gene

annotation collections from MSigDB (http://www.gsea-msigdb.

org/gsea/msigdb/collections.jsp). Then, we used the gene set

variation analysis (GSVA) package to calculate the enrichment

scores of 10 glucose metabolism-related pathways, used the

pheatmap package for clustering analysis, used the limma

package in R software for differential analysis of 113 metabolic

scores, and defined a signature with an absolute log2-fold change

(FC) > 0.2 (adjusted P<0.05) as the differential expression

signature. Finally, three subgroups of high, low and medium

glucose metabolism activation (C1, C2 and C3) were obtained.

Next, we evaluated the different genetic types between the

different subgroups, including TMB, neoantigen number,

mRNAsi, as well as the mutation types and mutation

frequencies in the different subgroups.
Characterization of PTC subgroups

We identified differentially expressed genes (DEGs) among

PTC subgroups using the limma package in R and defined genes
Frontiers in Immunology 03
with absolute log2FC>1 (adjusted P < 0.01) as DEGs.

c2.cp.kegg.v7.2. symbols and h.all.v7.2. symbols downloaded

from the Molecular Signature Database (https://www.gsea-

msigdb.org/gsea/msigdb) were then used. The symbols gene set

files, functional and pathway enrichment analysis was performed

using the Cluster Analyser R package, setting the significance

threshold to an adjusted P<0.05.
Screening of prognostic genes and
construction of prognostic signatures

The genes associated with PFI of PTC were obtained from

TCGA (unicox P < 0.05) and analysed with the DEGs by Venn

analysis. Finally, 18 genes associated with the PFI of PTC were

obtained. Then, the prognostic genes that contributed most to

the PFI of PTC were further generated by Lasso Cox analysis to

obtain six glucose metabolism-related genes associated

with the prognosis of PTC, and the prognostic profile of

glucose metabolism-related genes was constructed using

the following formula: risk score = (0.540425503*PGBD5)

+ ( - 0 . 0 7 8 7 4 0 2 3 8 * TDRD9 ) + ( - 0 . 2 8 1 3 0 7 0 5 1

*TMEM171)+(-0.008488446 *IGFBPL1)+(-0.171726033

*TPO)+(-0.001972683*SOD3). Then, the PTC group was

divided into the HRisk and LRisk groups according to the

expression of six prognostic genes. The prognostic differences,

immune infiltration, clinical characteristics and differences in

sensitivity to drug treatment were compared between the two

groups. And functional and pathway enrichment analysis were

performed for both groups by gene set enrichment analysis

(GSEA) (19), and GSVA analysis (20).
Prognostic statistical analysis

The Kaplan-Meier(K-M) analysis was used to calculate the

difference in PFI between the HRisk and LRisk groups in the

different data sets.The time-dependent receiver operating

characteristic (ROC) analysis was used to predict the area

under the curve of risk scores for PFI at 1, 3, and 5 years for

different data sets. The risk score and clinicopathological

features (age, gender, disease stage, and signature) were

evaluated by multivariate Cox regression analysis to screen

independent risk factors for PFI.
Construction and evaluation of
the nomogram

Using clinical data from all patients, we used the bootstrap

self-sampling method to validate the predictive effect of the

model using the model itself and then constructed nomogram by

the regplot package. We divided the patients into high- and
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low-scoring groups according to their total points to predict the

prognostic differences. The ROC curves, calibration curves,

clinical impact curve (CIC) and decision curve (DCA) were

applied to evaluate the nomogram’s prediction accuracy

and stability.
Estimation of immune infiltration

The method used to estimate immune infiltration in this

study was single-sample GSEA (ssGSEA) and quantified by the

R package GSVA using the ssGSEA method. Using a predefined

set of genes (usually from functional annotations or results of

previous experiments), genes were sorted according to the

degree of differential expression in the two types of samples,

and then it was tested whether the predefined set of genes was

enriched at the top or bottom of this sorting table.
Prediction of the benefit of each
subgroup from chemotherapy, targeted
therapy and immune checkpoint
blockade therapy

The MD Anderson melanoma cohort that received anti-

CTLA-4 or anti-PD-1 therapy was considered for the prediction

of immunotherapy response (21). In addition, we performed

SubMap (21) analysis of data obtained from the Genomics of

Drug Sensitivity in Cancer (GDSC) database (https://www.

cancerrxgene.org) to investigate the difference in sensitivity

between the HRisk and LRisk groups after treatment with

sorafenib or paclitaxel.
Cell culture and cell transfection

The TPC-1 and KTC-1cell lines were purchased from

American Type Culture. All cell lines were identified by short

tandem repeat analysis. TPC-1 and KTC-1 cells were cultured in

RPMI-1640 medium (Gibco, USA) supplemented with 10%

foetal bovine serum (FBS, Biological Industries, Israel), 2 mM

L-glutamine (Gibco, USA), penicillin and streptomycin (Gibco,

USA). Cells were maintained in a humidified incubator at 37°C

and 5% CO2. To study the function of PGBD5, we synthesized a

siRNA against PGBD5 (GenePharma, China). The sequence of

the synthesized siRNA is shown in Supplementary Table 1. TPC-

1 and KTC-1 cells were transfected using Lipofectamine 2000

(Invitrogen, USA) according to the manufacturer’s protocol

(serum-free medium was used for transfection) and replaced

with complete medium containing 10% FBS after 6 h. Cells were

harvested for subsequent experiments after continued

incubation for 24 h.
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RNA extraction and RT‒qPCR

Total RNA was extracted from cells using TRIzol reagent

(Spark Jade, AC0101-B) according to the manufacturer’s

instructions. For RT‒qPCR, RNA was reverse transcribed to

cDNA by using a Reverse Transcription Kit (Takara, Dalian,

China). For RT‒qPCR, PCRs were set up with 2xHQ SYBR

qPCR Mix (ZOMANBIO, ZF501) on a 7500 Fast Real-Time

PCR System (Applied Biological Systems), and PCRs were

performed according to the manufacturer’s description. All

samples were normalized to b-actin. The primers used in RT‒

qPCR are listed in Supplementary Table 2.
Cell growth and proliferation assays

For cell proliferation assays, an EdU Kit (US EVERBRIGHT,

C6015 M) was used according to the manufacturer ’s

instructions. For the EdU assay, 5×104 cells were plated into

24-well plates and cultured in complete culture medium. After

24 hours, the cells were stained and photographed according to

the instructions of the EdU kit.
Statistical analysis

For normally distributed continuous data, comparisons were

made using the t-test, while non-normally distributed data were

tested by the Wilcoxon rank sum test. Comparisons between

more than two groups of factors were performed using the

Kruskal-Wallis test. Differences in survival rates between

groups were analyzed by K-M plots and log-rank tests. P

values less than 0.05 were considered statistically significant

differences. All analyses were performed using R version 4.0.2

(http://www.r-project.org). Statistical analysis of mRNA

expression levels and EdU staining levels in PTC cells were

performed using the software SPSS 22.0 (SPSS Inc., Armonk,

NY, USA). All values are presented as the mean ± standard

deviation (SD) of 3 independent replicates. Student’s t test was

performed to compare differences. Significant differences were

indicated by P<0.05, P<0.01, P<0.001, and P<0.0001.
Results

Correlation of PTC subgroups with
classical metabolic pathways and
clinical features

We first quantified 10 glucose metabolism-related processes

using the GSVA R package and then performed differential

analysis to find subgroup-specific metabolic profiles. The results
frontiersin.org
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of analysis showed that PTC patients could be divided into three

subgroups (C1 for high activation,C2 for low activation, andC3 for

moderate activation) based on the activation of glucose

metabolism-related genes in different metabolic pathways. In

addition, the correlation between the different subgroups and the

clinicopathological information (age, gender, and clinical stage) of

the patients were analysed. In the C1 subgroup and C3 subgroup,

the proportion of patients aged >40 was higher, while those aged <

40 were mostly found in the C2 subgroup (Figure 1A). This

suggested that in patients with PTC, there may be a significant

positive correlation between the patient’s age and the level of

glucose metabolism in the organism. As shown in Figure 1B, the

proportions of Stage II, Stage III, andStage IVwere higher in theC1

subgroup than in the C2 and C3 subgroups, suggesting that the

higher the level of glucosemetabolismactivation in their bodies, the

higher the patient’s clinicopathological stage.Wealsoobserved that

NRAS and HRAS mutations were mainly present in the C1

subgroup, while the more classical BRAF mutations occurred

mostly in the C2 and C3 subgroups (Figure 1C). This illustrated

the different responses of these two genomic subtypeswhenglucose

metabolic stresses are different in PTC patients. NRAS and HRAS

mutations may be more stimulated in patients when induced with

higher glucose metabolic stress, while BRAF mutations are

upregulated in the low glucose metabolic activation group.

Next, we also analysed whether there were differences in

TMB (Figure 1D), tumour neoantigen number (Figure 1E), and

mRNAsi (Figure 1F) in different subgroups. The results showed

that TMB, neoantigen number, and mRNAsi were higher in C1

subgroup than in C2 and C3 subgroups, and the differences were

statistically significant (all P < 0.05). This suggested that the high

glucose metabolic level in PTC patients may be able to promote

the production of TMB, neoantigen, and the expression of

tumour stemness.

Finally, we performed differential analysis of metabolism-

related genes in the C1 and C2 subgroups, setting log2-fold

change (FC) >0.5 and P<0.05, and finally screened 152 DEGs

(Figure 1G). Subsequently, we selected the 20 most significantly

upregulated genes (ALDH2, MT3, ALDH4A1. ACAT1, MDH2,

ENPP1, CHCHD10, NDUFB2, PPIF, COX8A, CYC1, SLC4A4,

ENO3, PFKFB2, HKDC1, PPARGC1A, GPD1, OGDHl, NUPR1

and ALDOA) from 152 DEGs for enrichment analysis and

found that these 20 differentially expressed genes were mainly

enriched in the generation of ATP from ADP, ATP metabolic

processes, glycolytic processes, and the production of precursor

metabolites and energy (Figure 1H).
Screening of glucose metabolism-related
genes associated with the PFI of PTC

Next, we obtained the genes associated with PFI of PTC

(unicox P < 0.05), and performed Venn analysis with 152

previously obtained glucose metabolism DEGs, and finally
Frontiers in Immunology 05
obtained 18 genes associated with PFI in glucose metabolism

DEGs (ALDOA,NDUFB2,PGBD5,RRAGD,ST3GAL4,

CLCNKA, TDRD9,TMEM171,IGFBPL1,SELENOV,MT1F,

MT1H,TPO,SOD3,TFCP2L1,CDH16,CARTPT,TFF3)

(Figure 2A). The prognostic genes that contributed most to the

PFI of PTC were then further generated by Lasso Cox analysis,

and the formula was constructed as follows: Risk score =

(0. 540425503*PGBD5) + (-0.078740238*TDRD9) +

(-0.281307051*TMEM171) + (-0.008488446* IGFBPL1) +

(-0.171726033*TPO) + (-0.001972683*SOD3) (Figure 2B, C).

To confirm the strong predictive potential of the prognostic

features constructed from the above analysis in different

datasets, we used the caret package to divide the TCGA-

THCA cohort into training and test sets uniformly and

randomly. Next, in the training set, test set and entire set as a

whole, we divided the patients into the high risk (HRisk) and low

risk (LRisk) groups according to the expression of six glucose

metabolism-related genes. We also ranked the patients in each

dataset according to the risk score from low to high, and

displayed the PFI according to the ranking and the event

occurrence of the patients. The PFI of the HRisk group was

significantly shorter than that of the LRisk group. Among the six

glucose metabolism-related genes screened for prognostic

relevance, the expression of five genes (TPO, IGFBPL1,

TMEM171, SOD3, TDRD9) was higher in the LRisk group

than in the HRisk group, except for PGBD5, which was

significantly more highly expressed in the HRisk group than in

the LRisk group (Figure 2D, E, F).
Analysis of prognostic differences
between different risk groups and the
accuracy of ROC curve prediction

Since we evenly randomized the PTC cohort into training

and test sets by the caret software package, we next divided the

patients between the training cohort, test cohort, and entire

cohort groups into the HRisk and LRisk groups based on the

median risk score of each group and compared the prognosis of

PFI between the two groups. The results showed that the

prognosis of patients in the HRisk group was worse than that

in the LRisk group in all three datasets (all P < 0.05)

(Figures 3A–C), and to further elucidate the accuracy of

prognostic features in predicting patients’ PFI, we also

performed ROC curve prediction over time. In the training

set, the area under the curve (AUC) of the prognostic features

reached 0.824, 0.704, and 0.709 at 1, 3, and 5 years, respectively.

Similarly, in the test set, the AUC results were 0.613, 0.603, and

0.716 at 1, 3, and 5 years, respectively, and in the entire set, the

AUC results were 0.738, 0.668 and 0.700. Overall, our results

suggested that the prognostic characteristics of genes related to

glucose metabolism can predict the development of PTC with

relatively high accuracy (Figures 3D–F). Finally, a multifactorial
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B C

D E F

G H

A

FIGURE 1

Clinical characteristics of PTC subgroups in TCGA. (A) Correlation of the subgroups of PTC patients (C1, C2 and C3) in the TCGA cohort with
the 10 glucose metabolism-related pathways and the clinical characteristics of the patients. (B) Proportional distribution of the different
pathological stages (stage I, II, III and IV) of PTC patients in the three subgroups. (C) Oncoprint of the mutational status of the three PTC
subgroups. The frequency of NRAS and HRAS mutations were significantly higher in C1 subgroup than in C2 and C3 subgroups. The frequency
of classical BRAF mutations was significantly higher in C2 and C3 subgroups than in C1 subgroup. *P < 0.05, ***P < 0.001. Differences in tumour
mutation burden (TMB) (D), number of neoantigens (E) and mRNA stemness index (mRNAsi) (F) among the three PTC subgroups. TMB,
neoantigens and mRNAsi were all higher in C1 subgroup than in C2 and C3 subgroups. Statistical differences were compared by the Wilcoxon
rank sum test. (G) Volcano plot of differentially expressed genes (DEGs) between the C1 and C2 subgroups. A total of 152 DEGs were screened
(log2-fold change > 0.5, P < 0.05). (H) Enrichment analysis of the 20 most significantly upregulated DEGs.
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Cox regression analysis confirmed the signature of the high risk

score as an independent prognostic factor (Figures 3G–I). The

above analysis showed that the risk score constructed by six

glucose metabolism-related genes (PGBD5, TPO, IGFBPL1,

TMEM171, SOD3, TDRD9) could well predict PFI in

PTC patients.
Construction of the nomogram and
evaluation of prediction accuracy

We constructed a nomogram based on the regplot package

of clinicopathological information of all patients (Figure 4A) and

classified patients into high- and low-scoring groups according
Frontiers in Immunology 07
to their total points to compare the prognostic differences and

found that patients in the high-scoring group had a worse

prognosis than those in the low-scoring group (Figure 4B). To

further assess the accuracy of the total score in predicting the

prognosis of PFI, we also plotted the ROC prediction curves over

time. The AUC of the nomogram was 0.915, 0.868 and 0.941 at

1, 3 and 5 years, respectively (Figure 4C). Compared with the

prognostic prediction model, the AUC of the nomogram was

higher at 1, 3 and 5 years, indicating that the nomogram we

constructed is highly reliable. The Hosmer-Lemeshow test also

demonstrated that the predicted values of nomogram are highly

consistent with the true values (p=0.96) (Figure 4D). This

reflected that the predicted probability of the nomgram is

close to the actual probability and the nomogram has an
B C

D E

F

A

FIGURE 2

Screening for glucose metabolism-related genes highly associated with PFI and construction of a prognostic prediction model for PTC. (A) The
genes associated with the PFI of PTC were obtained from the TCGA cohort (unicox P < 0.05) and overlapped with glucose metabolism DEGs,
resulting in 18 genes associated with the PFI of PTC. (B) LASSO coefficient profiles of the prognostic value. (C) Partial likelihood distribution with
the corresponding l-logarithm value. (D–F) The distribution of risk scores for the three data cohorts (training cohort, test cohort and entire
cohort), the recurrence and nonrecurrence PFIs of the three data cohorts and the heatmap of the expression of six prognostically relevant
genes related to glucose metabolism in the High- risk and Low-risk groups.
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acceptable calibration. In addition, the clinical impact curve

(CIC) confirmed that the nomogram accurately predicted the

event at risk thresholds from 0-0.3 (Figure 4E), and the decision

curve analysis (DCA) confirmed that nomogram’s predictive

ability was better than clinical indicators (Figure 4F).
Pathway enrichment analysis of HRisk
and LRisk and drug sensitivity prediction

By analysing the differences in enrichment pathways

between the overall HRisk and LRisk groups, we found that in

the HRisk group, there was activation of different cellular

pathways, such as positive regulation of cell‒cell adhesion,
Frontiers in Immunology 08
adaptive mediated immunity, granulocyte neutrophil

chemotaxis migration, and extracellular encapsulating

structure organization. In the LRisk group, there was also

transport across the homeostasis barrier; in addition,

endothelial signalling factor pathway, thyroid hormone

biosynthetic generation, and skeletal muscle cell development

were also activated in the LRisk group (Figure 5A). Then, we

further evaluated the activation difference of the HALLMARK

pathway between the HRisk and LRisk groups in the training

and test set and found that IL6-JAK-STAT3, interferon-alpha

response, apical junction and G2M checkpoint were activated in

the HRisk group, while myogenesis and hypoxia were activated

in the LRisk group (Figure 5B). The above enrichment analysis

revealed that the level of inflammatory infiltration was higher in
B C

D E F

G H I

A

FIGURE 3

The association of different risk groups with the PFI of PTC. (A–C) The Kaplan-Meier survival curve of PFI for the three datasets (training set, test
set, and entire set) in the TCGA cohort. Statistical significance of differences was developed by the log-rank test (P < 0.05 for all). (D–F)
Time-dependent ROC analysis of the three datasets (training set, test set, and entire set) predicted the area under the curve of the risk score for
the PFI at 1, 3, and 5 years, respectively. (G–I) Multivariate (age, gender, stage, signature) Cox regression analysis of three datasets (training set,
test set, entire set).
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the HRisk group. This suggested that PTC patients in the HRisk

group may develop metabolic inflammation, and the long-term

presence of this inflammation can cause morphological and

functional damage to the relevant organs and adversely affect

the prognosis of tumour patients.

Paclitaxel is currently used as a first-line chemotherapeutic

agent for PTC, while sorafenib is also being used in clinical trials

for PTC. Here, we evaluated the response of different risk groups

to these two drugs after their use. The results showed that the

half maximal inhibitory concentration (IC50) of paclitaxel in the

HRisk group was significantly lower than that of the LRisk

group, both in the training cohort and the test cohort, while the

IC50 of sorafenib in the HRisk group was significantly higher

than that of the LRisk group, suggesting that patients in the
Frontiers in Immunology 09
HRisk group are more suitable for paclitaxel treatment, while

patients in the LRisk group may be more suitable for sorafenib

treatment (Figure 5C).
Analysis of immune checkpoint
differences between HRisk and LRisk

By analysing the overall immune checkpoint expression

differences between the HRisk and LRisk groups, we found

that the expression levels of PD-L1, PD-L2, CTLA4, CD163,

IFNG, TIGIT, GZMA, and GZMB were all higher in the HRisk

group than in the LRisk group, and only VEGFA was higher in

the LRisk group (Figure 6A). Patients in the HRisk group had
B

C

D E F

A

FIGURE 4

Construction of the nomogram and evaluation of prediction accuracy. (A) Construction of the nomogram based on the regplot package for the
clinical data of all PTC patients. (B) The Kaplan-Meier survival curve of PFI of the high- and low-points groups in PTC. Statistical significance of
differences was developed by the log-rank test (P < 0.05). (C) Time-dependent ROC analysis predicted the area under the curve of the
nomogram for the PFI at 1, 3, and 5 years, respectively. (D) The calibration curves of the nomogram. (E) The clinical impact curves of the
nomogram. (F) The decision curve analysis of the nomogram.
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tumour cells that expressed a large number of immune

checkpoints on their surface. When inhibitory receptors such

as PD-L1 and CTLA-4 on the surface of tumour cells are

expressed in large numbers, they can deprive T cells of their

tumour cell-killing activity, thus enabling immune escape of

tumour cells. Enrichment analysis of 28 immune-related gene

sets by ssGSEA in the training cohort and test cohort revealed a

higher infiltration of immune cells in the HRisk group

(Figure 6B). The immune checkpoint blockade therapy with
Frontiers in Immunology 10
anti-PD-1 in the HRisk group of PTC patients may have a better

therapeutic effect (P < 0.01) (Figure 6C).
PGBD5 regulates proliferation of
papillary thyroid cancer cells

To verify the accuracy of the above study, we selected PGBD5,

which is highly expressed in tumour tissues, for experimental
B

C

A

FIGURE 5

Pathway enrichment and drug sensitivity prediction of different risk groups. (A) Differences in the activation of different pathways of the HRisk
and LRisk groups in the entire cohort. (B) Activation of different HALLMARK pathways in the HRisk and LRisk groups in the training cohort and
test cohort. (C) Assessment of IC50 values for different drugs (paclitaxel or sorafenib) in the HRisk and LRisk groups in the training cohort and
test cohort.
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validation. To explore the role of PGBD5 in PTC, we sought to

characterize the altered cellular phenotype in PTC cells in the

presence of PGBD5 deletion. In both TPC-1 and KTC-1 cell lines,

PGBD5was effectively knocked downby two siRNAs (si-PGBD5-1

and si-PGBD5-2) (Figure 7A). The proliferation of PTC cells was

significantly reduced after PGBD5 was kncked down, as shown by

EdU staining (Figure 7B). This demonstrated that PGBD5was able

to promote the proliferation of PTC cells, and when PGBD5 was
Frontiers in Immunology 11
knocked down, the proliferation ability of the cells was

significantly diminished.
Discussion

PTC is a common malignant tumour. Since PTC is an inert

tumour, its prognosis is often better (22). However, most
B

C

A

FIGURE 6

Immune characteristics of different groups in the metadataset. (A) Expression level (normalized count) of 9 immune checkpoint genes in the
HRisk and LRisk groups. The significant difference was compared through the Kruskal–Wallis test, and the P values are labelled above each
boxplot with asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (B) Heatmap describing the
abundance of immune and stromal cell populations in the HRisk and LRisk groups. (C) Prediction results of the response to anti-CTLA-4 and
anti-PD-1 therapy in the HRisk and LRisk groups by subclass mapping analysis.
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medical treatments are less effective in some patients when

distant metastasis occur in PTC (23–25), so accurate prediction

of the clinicopathological characteristics and responsiveness to

treatments in each PTC patient is the focus of PTC research.

Current studies have found that glucose metabolism-related

genes play an important role in tumour development and

various therapeutic modalities, including immunotherapy

(26). To date, no comprehensive analysis has been performed

using glucose metabolism-related genes as a prognostic model

for PTC. In this study, we first verified that abnormal
Frontiers in Immunology 12
expression of glucose metabolism-related genes was closely

associated with the clinicopathological features of PTC. We

then constructed a prognostic prediction model of PTC using

glucose metabolism-related genes. Patients were divided into

the HRisk and LRisk groups by risk score, and immune cell

infiltration and sensitivity to chemotherapy, targeted

therapy and immune checkpoint blockade therapy were

evaluated in different groups. Meanwhile, we accurately

predicted the PFI of PTC patients by prognostic prediction

model and nomogram.
B

A

FIGURE 7

PGBD5 promotes PTC cell proliferation. (A) Confirmation of PGBD5 knockdown in TPC-1 and KTC-1 cells by RT-qPCR. (B) EdU analysis of TPC-
1 and KTC-1cells after the inhibition of PGBD5. *P < 0.05, **P < 0.01, ***P < 0.001.
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Different metabolic pathways are closely associated with the

development and prognosis of a variety of tumours (8–10). To

determine the clinicopathological characteristics of PTC

subgroups that are closely related to glucose metabolic

processes, in this study we identified three subgroups of PTC

(C1, C2 and C3) by nonnegative matrix decomposition clustering

using RNA sequencing data of 2752 genes associated with glucose

metabolism. We found that glucose metabolism levels were

positively associated with an older age and higher tumour stage

in PTC, and both factors predicted a worse prognosis for the C1

subgroup with high glucose metabolism levels. We found that C1

subgroup were associated with higher TMB and higher

neoantigens. TMB has a very important prognostic value in

immunotherapy as a biomarker of immune checkpoint blockade

response (27). Numerous studies have found that high TMB is

positively correlated with better treatment outcomes after

immunotherapy (28, 29). Neoantigens are abnormal peptides

present on the surface of malignant tumour cells that are

specifically expressed. Most neoantigens are the products of

accumulated mutations in normal cells. Neoantigens have the

potential to be recognized by T cells in the context of major

histocompatibility complex class (30) and thus exert anticancer

effects. Neoantigens have been used in cancer immunotherapy for

CAR-T-cell therapy and the design and production of customized

vaccines against tumour cells (31). C1 subgroup with higher TMB

and more neoantigens may respond better to CAR-T-cell therapy

and immune checkpoint inhibitors. C1 subgroup has a higher

mRNAsi, which predicts that high glucose metabolism levels are

associated with higher levels of PTC stemness, and tumour

stemness is closely associated with survival, recurrence,

metastasis, and drug resistance in many tumours (32–34). PTC

development can be significantly inhibited by suppressing PTC

stemness (35), therefore, for the C1 subgroup with high glucose

metabolism levels, targeted stemness therapy may achieve good

therapeutic results.

Because of the favourable prognosis of PTC, it is difficult to

establish a good prognostic prediction model for PTC (36). In this

study, we developed a prognostic model containing six glucose

metabolism genes (PGBD5, TPO, IGFBPL1, TMEM171, SOD3,

TDRD9) to predict the prognosis of PTC. This model has good

predictive performance not only in the training cohort but also in

the test cohort, indicating the high stability of this prognostic

model. This model is an independent prognostic factor for PTC.

Thismodel andnomogramperformedwell inpredicting the1-year,

3-year and 5-year PFIs in PTC patients. Based on the results of the

ROC curve analysis, we found that the nomogram outperformed

the prognostic prediction model in predicting the PFI of PTC. We

verified the reliability of these results by intervening in the

transcript levels of glucose metabolism-related genes in PTC in

the model.

Among the six glucose metabolism-related genes we

screened (PGBD5, TPO, IGFBPL1, TMEM171, SOD3,
Frontiers in Immunology 13
TDRD9), only PGBD5 had significantly higher expression in

the HRisk group. This finding suggests that PGBD5

overexpression may play an important role in the development

of PTC. PGBD5 is an active DNA transposase expressed in most

paediatric solid tumours and is an important oncogene (37, 38).

It has been reported that in rhabdomyosarcoma cells PGBD5 is

physically linked to genome-specific signal sequences that

promote the induction of DNA rearrangements (39). In

addition, a multiomics analysis showed that PGBD5

amplification was associated with poorer overall survival in

lobular ductal types of invasive breast cancer (40). We

observed a significant inhibition of PTC cell proliferation by

siRNA inhibition of PGBD5 expression. This is consistent with

the findings of PGBD5 in other tumours. Our present study is

the first time to demonstrate that PGBD5 promotes the

development of PTC. PGBD5 may be an important target to

inhibit the development of PTC in the HRisk group.

The current TNM staging and pathological staging of PTC

cannot guide chemotherapy, targeted therapy and

immunotherapy for PTC. In this study, PTC was divided into

the HRisk and LRisk groups, and we found that the HRisk group

was sensitive to paclitaxel and anti-PD-1 therapy. Paclitaxel

causes polymerization and stabilization of microtubules mainly

by binding microtubule proteins and subsequently inhibits their

dynamic properties at the mitotic spindle, which leads to tumour

cell block in the G2/M cycle and induces apoptosis (41). We

found that genes in the HRisk group are enriched in the G2M

checkpoint signalling pathway, which may be the key factor for

cell proliferation in the HRisk group. Therefore, paclitaxel may

significantly inhibit tumour proliferation by affecting the G2/M

phase process in the HRisk group. In the analysis of immune

checkpoint gene expression in the HRisk and LRisk groups, we

found that PDL-1 was highly expressed in the HRisk group, and

that highly expressed PDL-1 could inhibit the migration and

proliferation of T cells by binding to PD-1 of T cells, thus

inducing tumour tolerance and T-cell failure. Anti-PD-1 could

significantly reverse this process to restore the anticancer

function of T cells (42); therefore, the HRisk group was more

sensitive to anti-PD-1 treatment. The above results suggest that

treatment with paclitaxel combined with anti-PD-1 in the HRisk

group may lead to better therapeutic outcomes. We found that

higher VEGFA expression in the LRisk group and high VEGFA

expression were associated with higher lymph node metastasis

and more advanced pathological stage in PTC and may promote

the transformation of PTC to undifferentiated cancer (43, 44).

The VEGF/VEGFR signalling pathway is an important target for

the action of sorafenib (45), which could explain the more

favourable treatment effect of sorafenib in the LRisk group.

Dividing progressive PTC into the HRisk and LRisk groups

according to the prognostic prediction model may be

advantageous for the selection of appropriate therapeutic

agents and more effective individualized treatment.
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We must acknowledge the flaws and limitations of our

experimental design, which may affect the overall relevance and

credibility of our findings. First, as this workwasmainly investigated

bybioinformaticmethods, theremaybedifferences betweendifferent

algorithms, and more basic and clinical experimental validation is

needed to confirm this. Our study suggests that glucosemetabolism-

related genes are associated with RAS and BRAF mutations, but the

mechanisms remain unclear and need to be further explored. In

addition,we foundthat theHRiskgroupcouldbenefit frompaclitaxel

and anti-PD-1 treatment, and the LRisk group could benefit from

sorafenib treatment,which requires further confirmationof accuracy

inclinical trials. Finally, basedonourfindings,wepropose for thefirst

time that PGBD5 could be a therapeutic target to inhibit the

progression of PTC, which requires additional studies to further

explore its accuracy.

Conclusion

Our study constructs a PTC prognostic prediction model and

proposes a new approach for PTC classification through

comprehensive analysis of glucose metabolism-related genes in

PTC, providing a new perspective on the role of glucose

metabolism in the development and immune microenvironment

of PTC and new ideas for guiding chemotherapy, targeted therapy

and immune checkpoint blockade therapy in PTC. In addition, we

propose for the first time that PGBD5 can be used as a therapeutic

target to inhibit PTC progression.
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