
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Toshiki Watanabe,
St. Marianna University School of
Medicine, Japan

REVIEWED BY

Kazumi Nakano,
The University of Tokyo, Japan
Anne Van Den Broeke,
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leukemogenesis: A game of
hide-and-seek with the host
immune system
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Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus which mainly infects

CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATL), is primarily

transmitted via direct cell-to-cell transmission. This feature generates a wide

variety of infected clones in hosts, which are maintained via clonal proliferation,

resulting in the persistence and survival of the virus. The maintenance of the

pool of infected cells is achieved by sculpting the immunophenotype of

infected cells and modulating host immune responses to avoid immune

surveillance. Here, we review the processes undertaken by HTLV-1 to

modulate and subvert host immune responses which contributes to viral

persistence and development of ATL.
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Introduction

Human T-cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered

(1–3), was identified as the etiological agent of adult T cell leukemia/lymphoma (ATL)

(4, 5) and to date, one of the only seven human viruses with strong epidemiological links

to human cancers (6). The virus primarily infects CD4+ T cells and induces a lifelong

infection in infected individuals as asymptomatic carriers (ACs) (Figure 1). Nevertheless,

approximately 3-5% of infected individuals eventually develop ATL, a malignant CD4+ T

cell neoplasm (7) (Figure 1). HTLV-1 is also associated with various other inflammatory

diseases including uveitis, dermatitis, arthropathy (8) and most notably HTLV-1-

associated myelopathy/tropical spastic paraparesis (HAM/TSP) which affects 1-4% of

infected individuals (7, 9, 10) (Figure 1).
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HTLV-1 is mainly transmitted through three routes: (1)

sexual intercourse, (2) breastfeeding, and (3) blood transfusion

and needle sharing (11). The peculiar thing about HTLV-1

transmission is that cell-free infection of HTLV-1 is extremely

inefficient (12). Instead, HTLV-1 primarily relies on direct cell-

to-cell transmission via virological synapse (13), viral biofilm

(14) or cellular conduits such as tunneling nanotubes (15).

Within an infected individual, HTLV-1 presence is then

maintained largely via mitotic division of infected cells (16)

(Figure 1) with a minor contribution by infectious spread (17).

In fact, immune cells are constantly surveilling the body to

look for and eliminate foreign pathogens or pre-cancerous and

cancerous cells (18). This process is called immune surveillance

(18) and is carried out by both the innate and acquired immune
Frontiers in Immunology 02
system. Immune response to HTLV-1 has been extensively

reviewed elsewhere (19–22) with most of the recent work

focusing on the innate immune responses, including retroviral

restriction factors (23, 24) and chemokines (25). HTLV-1 mainly

infects CD4+ T cells, which are one of the major players of the

cell-mediated immune response primarily carried out by T cells

(26). Cell-mediated immune response is activated upon antigen

presentation by professional antigen-presenting cells (APCs)

such as dendritic cells (DCs) and B cells to T cells (26).

Elimination of the foreign pathogen or cancerous cells is then

carried out through the production of inflammatory cytokines

and the killing action of effector cells including cytotoxic T

lymphocytes (CTLs), macrophages and natural killer (NK) cells

(26). To ensure long-term survival and circumvent this immune
FIGURE 1

Natural history of HTLV-1 infection. HTLV-1 primarily infects CD4+ T cells and spread mainly by cell-to-cell transmission via viral synapse.
The pool of infected cells are maintained by clonal proliferation which is promoted by Tax, HBZ mRNA and other viral accessory proteins
while HBZ protein and host CTLs act to suppress them. Most HTLV-1-infected individuals remain life-long asymptomatic carriers. However,
in approximately 5% of infected individuals, acquisition and accumulation of certain mutations leads to malignant transformation of infected
cells into adult T-cell leukemia (ATL) cells. Additionally, about 4% of infected individuals develop HTLV-1-associated myelopathy/tropical
spastic paraparesis (HAM/TSP), which is caused by infiltration of infected cells and CTLs into the central nervous system.
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surveillance, HTLV-1 would have developed certain traits to

modulate host cell’s immunophenotype, immune response and

environment so that the infected cells have a survival advantage.

In this review, we will discuss on what is known so far on the

virus–host interplay which renders infected cells invisible from

immune surveillance and thus contributing to HTLV-1

persistence in infected individuals. The article is divided into 3

major sections which chiefly describes: (1) immune escape

mechanisms utilized by HTLV-1-infected cells for persistence,

(2) malignant transformation of infected cells plus additional

mechanisms employed by leukemic cells, and (3) new findings

on the hijack of physiological T-cell activation mechanisms for

immune evasion.
Immune escape mechanisms
used by HTLV-1-infected cells
for persistence

During the infectious phase, thousands of infected-cell

clones are established before plateauing and only those which

escaped initial CTL detection continue to live on for decades in

infected individuals (27, 28). Here, we will review some of the

host and virus factors which sculps the clonal landscape of

HTLV-1-infected cells.
Regulation of HTLV-1
provirus transcription

The HTLV-1 provirus is around 9 kb in length and encodes

several structural (gag, pol and env), regulatory (tax and rex) and

accessory proteins [p12, p13, p30 and HTLV-1 bZIP factor

(HBZ)]. Among them, Tax and HBZ are important for the

maintenance and proliferation of the pool of infected cells. Tax,

which is encoded in the sense strand, is a highly immunogenic

protein; while HBZ, encoded in the anti-sense strand, has a

lower immunogenicity (29, 30). As such, there is a need for

different expression pattern between tax and hbz to minimize the

activity of Tax-specific CTLs.

Transcription from the sense and anti-sense strand of the

provirus is controlled by different mechanisms. Sense strand

transcription is strongly enhanced by Tax protein, which recruits

cAMP response element binding protein (CREB) and the

transcriptional coactivators CBP/p300 to the Tax response

elements in the 5’ long terminal repeat (LTR) (31). This

transcriptional burst is then suppressed by the viral proteins

p30, which binds and retains Tax mRNA in the nucleus (32), and

HBZ, which interacts with the KIX domain of p300 (33).

Interestingly, HBZ acts in a negative feedback loop to control

provirus expression and re-establish provirus latency as a small
Frontiers in Immunology 03
surge of HBZ transcription is observed during the late stage of

the Tax burst (34).

Epigenetically, the 5’ LTR is heavily methylated which

silences sense strand transcription. However, this only extends

up to roughly three quarters of the provirus with the HBZ and 3’

LTR remaining free of DNA methylation, allowing continued

expression of HBZ (35, 36). This unique pattern of epigenetic

modification is achieved through the insulator-binding protein

CCCTC-binding factor (CTCF) that acts to define boundaries

between transcriptionally active and inactive regions of the

genome by restricting the spread of epigenetic modifications

(37). Binding of CTCF to the proviral DNA at a defined

epigenetic border helps to regulate and modify provirus

transcription. Additionally, a novel enhancer region was

recently identified near the 3’ LTR which acts to enhance

transcription from the 3’ LTR as well as acting as another

barrier to prevent spreading of epigenetic modifications

towards the 3’ LTR (38).

Differences in promoter activity, epigenetic modifications as

well as regulatory elements as described above contribute to the

contrasting transcriptional kinetics of Tax and HBZ whereby the

tax gene is being expressed transiently in rare, self-limiting

bursts (34, 39) while the hbz gene is continuously expressed at

low levels (40, 41) (Figure 2).
CTLs response against HTLV-1-
infected cells

Among the various viral proteins, Tax is the major viral

antigen targeted by CTL (42, 43). The antigen specificity and

quality of the CTL response is determined by the human

leukocyte antigen (HLA) class I alleles of infected individuals.

Several studies reported that individuals with HLA-A*02 had

stronger affinities towards various Tax epitopes, especially Tax11-

19, which confers a lower proviral load due to the selective

pressure against Tax-expressing cells. The same studies also

revealed that individuals with HLA-Cw*08 are associated with

lower proviral load while HLA-B*54 is associated with higher

proviral load (44–48).

Notably, HBZ-specific CTLs have a significantly lower

frequency than Tax-specific CTLs in infected individuals (30,

49) and are unable to lyse infected cells (29). It has been

suggested that the lower frequency and weak immune

response of HBZ-specific CTLs is a consequence of the low

expression and antigenicity as an immunogen. This is not

surprising, given the indispensable roles of HBZ in

maintaining the survival and proliferation of infected cells (50,

51) in vivo which necessitates the need for persistent expression

(Figure 3). Such mechanism is not specific to HTLV-1 as it was

observed in other oncogenic viruses as well, such as EBNA-1 in

Epstein-Barr virus (EBV) (52) and E7 in human papilloma virus
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(HPV) (53). Furthermore, HBZ in its RNA form elicits

additional functions including anti-apoptotic activity and

suppression of Tax transcription to evade Tax-specific CTLs

(54) (Figure 3).

In terms of clonal selection during viral persistence, the

expression of Tax confers a disadvantage towards the survival of

infected cells whereas HBZmight not. This selective advantage is

not specific for ATL cells, but rather a general aspect of HTLV-1

infection, which was demonstrated in a comprehensive DNA-

capture-seq analysis whereby in all HTLV-1-infected

individuals, the proportion of 5’ defective provirus is around

15% but 3’ defective ones are extremely rare (~2.5%) (55).

Analysis of viral genes expression also showed that Tax is not

expressed in approximately 60% of ACs and ATL cases but HBZ

expression can be seen in all of them (40, 56, 57), which is

consistent with the notion that Tax expression is unfavorable for

survival in vivo.
Integration preference and
provirus structure

HTLV-1 prefers to integrate into transcriptionally active,

accessible regions in the host genome with a slight bias to
Frontiers in Immunology 04
transcriptional start sites (TSS). However, as these proviruses

are transcriptionally active, viral genes are expressed resulting in

a majority of these cells being eliminated. Most of the infected

cells that survived this initial selection are those with integration

sites in transcriptionally quiescent regions (58–60).

Nevertheless, some of these clones with provirus integrated in

transcriptionally active regions do survive and remain in

circulation at least partially due to the spatial organization of

the chromosome harboring the integrated provirus (61).

Although HTLV-1 shows no preference for any given

chromosome during initial integration, the clones that

survived and persisted in vivo are frequently found in the long

arm of acrocentric chromosomes (chromosomes 13, 14, 15, 21

and 22) and close to the centromere (61, 62). The centromere-

proximal regions of these chromosomes are situated in

transcriptionally repressive regions in the nucleus – the

nucleolar periphery or nuclear lamina – hence these regions

are transcriptionally quiescent which favors the survival of these

clones (61).

Besides integration site preference, the proviral structure also

determines clonal survival and longevity. Defective proviruses are

preferentially selected as these may lack the 5’ LTR and flanking

regions coding immunogenic proteins, Tax in particular, which

confers survival advantage by evading Tax-specific CTLs (63–65).
FIGURE 2

Expression pattern of several related genes during HTLV-1 persistence and leukemogenesis. After a long latency period, about 5% of HTLV-1-infected
individuals develop ATL. Both Tax and HBZ are critical for leukemogenesis with the HBZ gene being constantly expressed while tax is transcribed in rare,
short, self-limiting bursts. Infected cells exhibit increased expression of genes related to T-cell activation (CD25) as well as Treg (FOXP3). Subsequent
accumulation of certain mutations during the lifetime of infected clone potentiates leukemic transformation which is accompanied by a loss of CD7
expression and an increase in CADM1 expression. Expression of CD25 and FOXP3, as well as HLA-II, is maintained throughout the latency phase as well
as in ATL cells after malignant transformation.
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The loss of the 5’ LTR has been well characterized in ATL patients

where there are about 30% defective proviruses (55, 66, 67) while in

ACs and HAM/TSP patients, about 15–20% of provirus are

defective (55), suggesting that deletion of certain regions from the

provirus genome for immune evasion is a general feature of HTLV-

1-infected clones (55). Several studies have demonstrated that

oncogenesis can still occur despite the absence of Tax, indicating

that Tax is important for de novo infection but may be dispensable

for leukemic transformation and maintenance of the clonal

population of infected cells (64). Thus, both proviral integration

site and structure plays a role in determining the fate of infected

cells in vivo.
Immunophenotype remodeling through
Foxp3 expression

Tregs, defined as CD4+Foxp3+ T cells, play a role in suppressing

excessive immune activity and function as ‘guardians’ of immune

homeostasis. Interestingly, however, 60–70% of ATL cells express
Frontiers in Immunology 05
Foxp3 (68–71). Hence, ATL was previously considered as a tumor

of HTLV-1-infected Tregs (72). However, recent findings have

demonstrated the immunophenotypic modifying properties of

HBZ induces some features of Treg in conventional CD4+ T cells,

although it does not confer suppressive function. HBZ induces

Foxp3 expression via Smad3-dependent TGF-b signaling (73).

However, HBZ then interferes with the DNA binding activity and

function of Foxp3 by direct physical interaction (74). Thus, Foxp3+

HTLV-1-infected and Foxp3+ ATL cells may not always possess the

suppressive function of Tregs (75–77). The key question here is why

does HTLV-1 alter the immunophenotype of its host cell to mimic

the ‘guardians’ of immune homeostasis? One plausible explanation

is that Foxp3+ infected T cells can evade immune surveillance via

the expression of immune checkpoint molecules such as CTLA-4,

PD-1 and TIGIT and immunoregulatory cytokines including IL-35

and IL-10. The similarities and differences of immunosuppressive

mechanism between Treg and HTLV-1-infected cells still require

further understanding and further studies utilizing single-cell

methods for precise immunophenotyping will provide more

evidence on how HTLV-1 evade host immunity (78, 79).
FIGURE 3

Role of HBZ in immune evasion of infected cells. HBZ induces expression of co-inhibitory molecules to suppress immune activation and confers
anti-apoptotic properties by altering expression pattern of pro- and anti-apoptotic proteins. HBZ also induces IL-10 expression in infected cells and
antigen presenting cells through TIGIT. IL-10 acts to suppress host immune response as well as enhancing cellular proliferation of infected cells
through modulation of STAT signaling by HBZ (not shown).
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Host restriction factors

Restriction factors, the first line of antiviral defense, are host

cellular proteins that recognize and interfere with specific steps

of the virus replication cycle, thus blocking infection. Restriction

factors were first described as counteractors of HIV-1 infection

and some well-characterized ones include APOBEC3G

(apolipoprotein B mRNA-editing enzyme, catalytic subunit-

like 3G), SAMHD1 (sterile alpha motif and histidine aspartate

domain-containing protein 1), Tetherin/BST-2 (bone marrow

stromal antigen 2) and TRIM5a (tripartite motif 5a) (80).
However, as HTLV-1 rarely produce free viral particles and

spread primarily via cell-to-cell transmission, CTL response

against immunogenic viral proteins, particularly Tax, is the

predominant immune response against HTLV-1, especially

during the initial stages of infection with the role of restriction

factors remain poorly understood (23, 81). Nevertheless, in view

of the complexity of clonal persistence and the wide spectrum of

associated diseases caused by HTLV-1, mechanisms of intrinsic

immunity may yet have a role to play. Studies pertaining to

HTLV-1 restriction factors are rather limited with the majority

of them discovered through studies in HIV-1 infection. The role

of restriction factors in HTLV-1 infection has been extensively

reviewed elsewhere (23, 24) and is summarized briefly in Table 1.
Malignant transformation of infected
cells and additional mechanisms
employed by leukemic cells

Among the many infected clones, only a selected cell clone

will eventually undergo leukemic transformation. The long

latent period before ATL onset suggests that malignant

transformation occurs when HTLV-1-infected cells acquire a

certain set of genetic and epigenetic alterations (90–92) while

escaping host’s immune surveillance. Once HTLV-1-infected

cells become malignant, they will have to escape not only HTLV-

1-specific immune surveillance but also cancer-specific

ones (93).
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Modulation of immune
checkpoint expression

HTLV-1 is also known to modulate the expression of

immune checkpoint molecules on the cell surface of infected

cells for immune evasion. Several studies have shown that

HTLV-1 infection upregulates both the expression of

stimulatory and inhibitory immune checkpoint molecules and

is further augmented by leukemic transformation and ATL

progression (78, 79, 94). For instance, the viral protein Tax is

involved in the overexpression of OX40 (95, 96), a costimulatory

molecule which promotes cellular proliferation, enhances cell

survival and suppresses Treg activity (97). Interestingly, HTLV-1

selectively enhances expression of particular coinhibitory

receptors while suppressing the others. For example, Kinosada

et al. (98) showed the involvement of the viral protein HBZ in

this process whereby HBZ enhances the expression of TIGIT

and PD-1 but suppresses the expression of BTLA and LAIR-

1 (98).

TIGIT is a competitive inhibitor of the costimulatory

receptor CD226 for binding with the CD155 ligand, resulting

in poor T cell activation. Physiologically, TIGIT-mediated

signaling inhibits T cell proliferation through the interaction

of its cytoplasmic ITIM domains with the THEMIS : SHP

complex (99). However, HTLV-1-infected and ATL cells can

proliferate in vivo despite the upregulation of TIGIT, indicating

that downstream TIGIT signaling is impaired. This impairment

thus enhances cellular proliferation and is mediated by HBZ

which interacts with THEMIS and weakens its interaction with

the phosphatases SHP1 and SHP2 (100). Additionally, HBZ also

suppresses CD226 expression (100).

An increase in TIGIT-mediated signaling was correlated

with increased IL-10 production as shown in TIGIT+CD4+ T

cells of HBZ-transgenic mice (100). Likewise, an elevated IL-10

levels was observed in the serum of HTLV-1-infected and ATL

patients (101, 102). This increased IL-10 production not only

occurs from DCs, but from infected T-cells as well (100, 102).

IL-10 is an immunoregulatory cytokine with the functions of

suppressing inflammation and Th1 responses (103). Therefore,

this elevated expression leads to the generation of an
TABLE 1 Restriction factors and their impact on anti-HTLV-1 immunity.

Restriction
factor

Impact on HTLV-1

APOBEC3G
(A3G)

• Can be incorporated into HTLV-1 particles but is weakly susceptible to A3G activity and limited by a peptide motif in the nucleocapsid (82, 83)
• Generates nonsense mutations in vivo but as it targets the minus strand during reverse transcription, the HBZ gene is spared which in part

explains the constant expression of HBZ and sense-strand silencing (84)

BST2 (Tetherin) • Minimal effect due to efficient spread of HTLV-1 virions via virological synapse (85)

SAMHD1 • Aborts HTLV-1 infection of myeloid lineage cells via STING-mediated apoptosis (86)

TRIM5a • Little information available; but an association is observed between TRIM5a polymorphisms with proviral load (87, 88)

miR-28-3p • MicroRNA which targets a sequence within the HTLV-1 gag/pol mRNA, reducing viral replication and gene expression (89)
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immunosuppressive microenvironment which enhances

survival of HTLV-1-infected and ATL cells. Furthermore,

IL-10 was reported to support proliferation of ATL cells

despite not known to promote T cell proliferation normally

(104). This stark contrast of IL-10 function is attributed to the

viral protein HBZ as it can modulate IL-10 signaling by

interacting with STAT3 (105). This indigenous strategy by

HTLV-1 enables the virus to modulate IL-10-mediated

signaling pathways for suppressing host immune response in a

paracrine manner, while supporting proliferation of infected

cells in an autocrine manner.

The role of PD-1 upregulation in HTLV-1 infection is much

less established. Expression of PD-1, as well as its ligand PD-L1, is

shown to be augmented in HTLV-1-infected individuals and ATL

patients (106, 107). Several studies showed that upon PD-1/PD-L1

blockade, CTL function was restored indicating operating PD-1/

PD-L1 axis during HTLV-1 infection which diminishes CTL

function (106–108). The PD-1 ligands, PD-L1 and PD-L2, are

expressed on the surface of dendritic cells and reverse signaling

from these ligands stimulates IL-10 expression and confer

dendritic cells with an immunosuppressive phenotype (109).

Thus, PD-1 upregulation by HTLV-1 in infected cells is a

possible mechanism for escaping immune surveillance. Another

study by Koya et al. (78) reported that upregulated PD-L1 in

malignant cells can be transferred to the microenvironment and

alter the anti-tumor immune response (78). However, contrary to

the reports above, Takeuchi et al. (110) reported a significant

association between PD-L1 expression and improved survival of

ATL patients (110). Additionally, similar to TIGIT, the

suppressive signaling from PD-1 is impaired via HBZ

interaction with the THEMIS : SHP complex, thus avoiding

growth suppression (98, 100). Furthermore, a clinical trial using

the anti-PD-1 antibody, nivolumab, showed that all three

participants showed dramatic progression of ATL with a rapid

expansion of predominant ATL clones, which was a result of an

unanticipated loss of ATL suppression rather than a selective

advantage for a specific clone after PD-1 blockade (111, 112).

These contrasting findings indicate that further studies are

warranted to understand the role and importance of PD-1/PD-

L1 upregulation by HTLV-1 and whether PD-1/PD-L1 blockade

can be used efficiently as immunotherapy for ATL patients.
CCR4 expression

CCR4 expression is a well-known hallmark of ATL cells

(113). CCR4 upregulation is reported to be induced by HBZ-

mediated GATA3 expression which then activates the promoter

of the CCR4 gene. Upregulated CCR4 is associated with

enhanced cellular proliferation and chemotactic properties of

ATL cells (114). Additionally, HTLV-1-infected cells produces

IFN-g (115), which induces production of the CCR4 ligands

CCL17 and CCL22 in keratinocytes and endothelial cells. This
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chemoattracts HTLV-1-infected cells and augments infiltration

into the skin (114). CCL22 production in infected cells is also

enhanced by the Tax protein, which in turn chemoattracts and

maintains a high frequency of CD4+Foxp3+CCR4+ regulatory T

cells (Treg) in circulation. These Treg in turn suppresses and

reduced the efficiency of HTLV-1-specific CTL response which

promotes survival of ATL cells (70, 116). Furthermore, frequent

gain-of-function mutations are observed in the CCR4 gene in

ATL patients. This improves cellular metabolism and survival by

prolonging the PI3K/AKT signaling (90, 117). These findings

spurred the way for the development of mogamulizumab, a

monoclonal antibody against CCR4, which was currently being

adopted for treatment of relapsed ATL (118–121).
New findings on the hijack of
physiological T-cell activation
mechanisms for immune evasion

We have thus far discussed on the immunomodulation

mechanisms of HTLV-1 and the role of HBZ which is

summarized in Figure 3. It is well established that HTLV-1-

infected and ATL cells exhibit a highly activated phenotype.

Physiologically, activated T cells are not long-lived and will

undergo apoptosis to restore T cell homeostasis, which is largely

achieved by cytokine deprivation and negative regulators such as

Foxp3 and CTLA4 (122). HTLV-1-infected and ATL cells,

which are highly activated, also exhibits a sustained expression

of Foxp3 and CTLA4 (Figure 2) but these cells are not targeted

for cell killing. This implies that HTLV-1 must have developed

ways to avoid these negative regulatory mechanisms while

maintaining a highly activated phenotype.

HLA class II (HLA-II) are important molecules for the

regulation of immune responses by CD4+ T cells and normally

found only on professional APCs and in T cells after activation.

We have recently shown that HTLV-1-infected cells also

upregulate HLA-II to present antigen to T cells. However,

HTLV-1-infected cells are not efficient APCs as they lack the

CD28 ligands CD80/CD86 and cannot provide the key

costimulatory signaling in T cells (79). This in turn may

contribute to the immune escape of infected cells as the lack of

costimulatory signals make responder T cells anergic, in a

manner similar to tolerogenic DCs (123). The suppression of

T cell activation by tolerogenic DCs is mediated by IL-10 (see

above) and a similar mechanism may be operating here as well.

Additionally, our study showed that T cells express anergy-

related genes upon stimulation by HLA-II on HTLV-1-infected

cells, which suggests that HLA-II induction in HTLV-1-infected

cells may induce other mechanisms for T cell anergy to inhibit

anti-HTLV-1 T cell response.

Additionally, HTLV-1-infected cells also upregulate the

expression of CIITA, a master regulator of HLA-II expression.
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We showed that promoter III of CIITA was more open in

infected cells and its activity increases proportionally to levels

of Tax (79) which suggests that Tax contributes to the

upregulation of HLA-II during HTLV-1 infection.

In addition to the role in inducing stable HLA-II complexes,

previous studies showed that CIITA is a potent transcriptional

repressor for Tax-mediated HTLV-1 expression and a potential

host restriction factor (23). Tax-mediated HTLV-1 expression is

induced by the assembly of a multiprotein promoter complex

containing CREB, CBP and PCAF on the viral LTR promoter

(31). Tosi et al. (124) showed that CIITA disrupts the assembly

of this promoter complex by physically interacting with Tax,

thus inhibiting viral replication (124). Furthermore, it was also

reported that CIITA can inhibit Tax-mediated NF-kB activation

(125). This implies that CIITA may be crucial to counteract

HTLV-1 infection and oncogenic transformation. Therefore, it is

unexpected that HTLV-1-infected cells, which rarely express

Tax, exhibits a high CIITA activity with increased HLA-

II expression.

To reconcile the evidence above, here we propose the model

that HTLV-1 hijacks the CIITA-HLA-II axis to enhance its

survival and persistence in vivo (Figure 4). Firstly, irrespective of

when Tax expression occurs (either during initial infection or a
Frontiers in Immunology 08
Tax burst in the latency phase), induction of Tax leads to

increased CIITA expression. This then enhances presentation

of HLA-II molecules on the cell surface of infected cells which

confers infected cells with an immunosuppressive phenotype.

CIITA can also bind and sequester Tax to work in a negative

feedback loop, thus suppressing Tax-mediated expression. This

hijack of host’s cellular factors allows HTLV-1 to halt Tax

expression or burst, thus silencing the provirus. Additionally,

this also helps to reduce the amount of Tax available for antigen

presentation, thus minimizing CTL response against the virus.

However, there are still several ambiguous points, chiefly: (1)

how Tax interacts with the promoter of CIITA, and (2) how the

expression of CIITA and HLA-II is maintained throughout the

latent period. We speculated that it is highly possible that similar

to CCR4 expression in ATL cells (90, 113, 117), infected cells

acquire genetic or epigenetic alterations associated with

constitutive expression of the CIITA gene. Another possible

explanation is that infected cells modulates expression of certain

microRNAs which sustains CIITA expression, similar to how

epigenetic downregulation of miR31 expression leads to NFkB
activation in the absence of Tax (126). Secondly, by inducing

HLA-II expression in host cells, HTLV-1 modulates the immune

system to be less responsive and effective against Tax-expressing
FIGURE 4

Hypothetical model on how HTLV-1 hijacks the CIITA-HLA-II axis for immune evasion. (1) Upon induction of Tax either during initial infection or a Tax
burst, it promotes CIITA expression as well as further supporting HTLV-1 provirus expression in a positive feedback loop. As the level of Tax increases, so
does the levels of CIITA. (2) CIITA induces expression of HLA-II-related genes, leading to upregulation of HLA-II molecules on the cell surface of HTLV-
1-infected and ATL cells. This confers an immunosuppressive phenotype to these cells. Additionally, CIITA also binds and sequesters Tax. (3) Working in
a negative feedback loop, binding of CIITA and Tax reduces the amount of Tax available for the assembly of promoter complex on the LTR, leading to a
reduction in Tax-mediated expression of the HTLV-1 provirus, thus halting Tax expression or burst. Additionally, this also reduces the amount of Tax
available for antigen presentation to Tax-specific CTLs, thus reducing CTL activity against HTLV-1. The red question marks in (1) and (2) indicates the
points in which the regulation of CIITA in HTLV-1 infection is still unclear; namely (1) how Tax interacts with the promoter of CIITA, and (2) how CIITA
and HLA-II expression is maintained throughout the latent period.
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cells. This dual role hypothesis certainly warrants further

investigation to elucidate the role of CIITA in HTLV-1 infection.
Concluding remarks

HTLV-1 has developed different and unique strategies in

order to escape immune surveillance and induce disease in hosts.

This remarkable ability of HTLV-1 to outmaneuver host

immune surveillance while maintaining a pool of viral

reservoir is the major obstacle in drafting effective treatment

and prevention strategies. We expect that further uncovering of

the immune escape mechanisms of HTLV-1 will lead to the

development of innovative methods to reconstitute and restore

normal immune homeostasis.
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