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Objective: The aim of the study was to propose a signature based on genes

associated with antigen processing and presentation (APscore) to predict

prognosis and response to immune checkpoint inhibitors (ICIs) in advanced

gastric cancer (aGC).

Background: How antigen presentation-related genes affected the

immunotherapy response and whether they could predict the clinical outcomes

of the immune checkpoint inhibitor (ICI) in aGC remain largely unknown.

Methods: In this study, an aGC cohort (Kim cohort, RNAseq, N=45) treated by

ICIs, and 467 aGC patients from seven cohorts were conducted to investigate

the value of the APscore predicting the prognosis and response to ICIs.

Subsequently, the associat ions of the APscore with the tumor

microenvironment (TME), molecular characteristics, clinical features, and

somatic mutation variants in aGC were assessed. The area under the receiver

operating characteristic curve (AUROC) of the APscore was analyzed to

estimate response to ICIs. Cox regression or Log-rank test was used to

estimate the prognosis of aGC patients.

Results: The APscore constructed by principal component analysis algorithms

was an effective predictive biomarker of the response to ICIs in the Kim cohort

and 467 aGC patients (Kim: AUC =0.85, 95% CI: 0.69–1.00; 467 aGC:

AUC =0.69, 95% CI: 0.63–0.74). The APscore also was a prognostic

biomarker in 467 aGC patients (HR=1.73, 95% CI: 1.21−2.46). Inhibitory

immunity, decreased TMB and low stromal scores were observed in the high

APscore group, while activation of immunity, increased TMB, and high stromal

scores were observed in the low APscore group. Next, we evaluated the value

of several central genes in predicting the prognosis and response to ICIs in aGC

patients, and verified them using immunogenic, transcriptomic, genomic, and
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multi-omics methods. Lastly, a predictive model built successfully

discriminated patients with vs. without immunotherapy response and

predicted the survival of aGC patients.

Conclusions: The APscore was a new biomarker for identifying high-risk aGC

patients and patients with responses to ICIs. Exploration of the APscore and

hub genes in multi-omics GC data may guide treatment decisions.
KEYWORDS

antigen processing and presentation, immune checkpoint inhibitor, immunotherapy,
tumor microenvironment, survival
Introduction

The morbidity and mortality of gastric cancer (GC) rank

fifth and fourth among all malignant tumors (1). In recent years,

immune checkpoint inhibitors (ICIs), such as anti-cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) inhibitors and anti-

programmed death 1 (PD-1)/programmed death-ligand 1 (PD-

L1) inhibitors, in combination with chemotherapy and

immunotherapy have made significant progress in multiple

types of cancers (2). Several ICIs have been approved for the

clinical treatment of advanced GC (aGC) patients (3, 4). But the

overall response to ICIs is only 20% to 40% for GC patients (2,

5). So it is urgent to accurately identify effective biomarkers to

select GC patients with responses to ICIs.

The tumor mutation burden (TMB), neoantigen load and

clonality, copy number alterations (CNA), microsatellite

instability (MSI) status, tumor microenvironment (TME),

especially T cell inflammation, PD-L1 expression, and mutations

in specific genes are now deemed to be predictive markers for

immunotherapy in aGC patients. These indicators do, however,

have limitations that have hindered their clinical application (6–9).

Tumor immunogenicity mainly consists of tumor antigenicity and

antigen presentation, playing a crucial part in response to ICIs in

most types of cancer (10, 11). But accuracy of identifying aGC

patients with response to ICIs according to TMB is low (12–14).

Tumor antigens frommutated proteins of tumor cells enable tumor

cells to be recognized and killed by CD8+ T cells through antigen-

presentation mechanisms (11, 15). Therefore, antigen presentation

significantly affects the effect of ICIs treatment. Nevertheless, we do

not find relevant studies on how antigen presentation-related genes

affect the immunotherapy response and whether they can predict

the clinical effect of ICIs therapy in aGC patients.

Thus, we proposed a signature based on antigen processing

and presentation genes to predict prognosis and response to ICI

in aGC patients. To the best of our knowledge, this study was the

first to explore the role of antigen processing and presentation in

aGC and select hub genes to understand progressive tumor
02
mechanisms and offer promising and personalized strategies to

diagnose and treat GC.
Methods

Data source

The study used GC-related data from two public platforms,

the Cancer Genome Atlas (TCGA) Genomic Data Commons

Data Portal (https://portal.gdc.cancer.gov/) and the Gene

Expression Omnibus database (GEO) (https://www.ncbi.nlm.

nih.gov/geo/). TCGA provided mRNA expression, copy number

mutation, and clinicopathologic profiles including age, gender,

Lauren type, tumor grade, tumor stage, and survival. GEO

provided six GC-related cohorts including GSE84437 (16),

GSE57303 (17), GSE34942 (18), GSE29272 (19), GSE15459 (20)

and ACRG/GSE62254 (21). The aGC was defined as the presence

of metastatic disease or tumor stages higher than IV. Patients

without any survival data as well as those with less stage IV or

primary tumors were excluded. The final merged aGC cohort

(FMAC) consisted of 467 patients, encompassing 103 from the

TCGA-STAD dataset and 364 from six GEO datasets. All gene

expression or transcriptome data were transformed with log2 (x

+1) and then were batch rectified by SVA Package of R (22).

Next, this study included two cohorts of cancer patients treated

with immunotherapy. 45 aGC patients treated with ICIs in Korea

(5) (The Kim cohort, PRJEB25780, https://www.ebi.ac.uk/ena/data/

view/PRJEB25780) were included in the first cohort. The cohort

collected some data about RNAseq data, immunotherapy regimens,

response to ICIs, TCGA subtype, microsatellite instability (MSI),

Epstein‐Barr virus (EBV), Mesenchymal subtype, single nucleotide

variants (SNVs) and immune signature (5). The second cohort, the

IMvigor210 cohort (23) (http://research-pub.gene.com/

IMvigor210CoreBiologies) of bladder cancer (BC), provided gene

expression data, survival, immunotherapy regimens and response.

Partial response (PR) and complete response (CR) to ICIs were
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considered to be immunotherapy responses (responses to ICIs).

Moreover, patients without immunotherapy responses included

those with progressive disease (PD) and stable disease (SD).
Weighted gene co-expression
network analysis

To identify antigen processing and presentation genes

related to immunotherapy response, WGCNA package of R

was used to calculate Pearson correlation coefficient among

genes, and select an appropriate soft threshold b according to

the scale-free topological fitting index of R2 >0.9 and average

connectivity (24). So, the constructed network could be in line

with the standard of scale-free network.

Next, the gene network was constructed by one-step method,

and the adjacency matrix of expression data was transformed into a

topological overlap matrix. The hierarchical clustering method was

used to plot the hierarchical cluster tree to cluster genes into

different color modules. The feature values of gene modules were

calculated, and then Pearson correlation coefficient and correlation

between the feature vector and clinical information were calculated.

The gene set modules with the highest correlation with

immunotherapy response, antigen processing and presentation

were selected for further analysis. We first calculated the

eigenvalues of gene modules, and then calculated the correlation

coefficients between the feature vectors of the modules and clinical

features (immunotherapy and antigen processing and

presentation). The gene set modules with significant correlation

with immunotherapy response and antigen processing and

presentation were available for further analysis.
Analysis of biological function and
pathways of genes

The Gene Ontology (GO; molecular function, cellular

component, and biological process) database and informatics

resource (http://www.geneontology.org) were used to annotate

gene function enrichment. Kyoto Encyclopedia of Genes and

Genomes (KEGG) database (http://www.genome.ad.jpl/kegg/)

with analysis of cells or organisms senior functional behavior

was used to annotate various pathways enrichment of genes.

Additionally, the identification of key pathways enriched by hub

genes was conducted by the GSCALite(http://bioinfo.life.hust.

edu.cn/web/GSCALite/) and the Metascape web server(http://

metascape.org/) (25, 26).
Construction of APscore

The WGCNA selected genes associated with immunotherapy

response and antigen processing and presentation for further
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analysis. Above genes often involved hundreds of genes, of

which significant interrelationships were inevitable. To better

analyze the expression data of these genes, we synthesized

multiple variables with multiple correlations into several

representative variables, representing the majority of the original

variables’ information but unrelated to each other. Therefore, we

performed principal component analysis (PCA) to reduce the

dimension of the above genes expression data set (27). Then we

obtained principal component 1 and 2, of which the sum was

defined as the APscore (28). The specific formula is as follows:

APscore=o​(PC1i + PC2i), where i represents the expression of

genes. PCA scores for some important tumor-related pathways

including antigen processing machinery, immune checkpoint,

CD8 T effector, DNA damage repair, epithelial-mesenchymal

transition (EMT) and so on were calculated according to the

expression of genes enriched in these pathways (29–31).
Assessment of immune
microenvironment and
immunotherapy response

Twenty-two immune cell invasions according to gene

expression were assessed by the CIBERSORT algorithm (32).

According to gene expression, the absolute abundance of eight

immune and two stromal cell populations were evaluated by the

microenvironment cell populations-counter (MCP-counter)

method (33). The ESTIMATED algorithm assessed each

patient’s immune and stromal scores according to gene

expression (34). The TIDE algorithm platform was used to

evaluate immunotherapy response according to standardized

gene expression in FMAC (35).
Selection of hub genes association with
prognosis and immunotherapy response

The ten most crucial hub genes associated with

immunotherapy response and antigen processing and

presentation were identified using the MCODE and Cytohubba

of the Cytoscape software (36, 37). Then we assessed the efficacy of

hub genes predicting prognosis in FMAC and immunotherapy

response in the Kim cohort. The predictive efficacy was also

validated in another aGC cohort (GSE26253) treated with

chemoradiotherapy (38).
Construction of predictive model for
prognosis and immunotherapy response

First, we selected target differently expressed genes (DEGs)

that were associated with immunotherapy response and

enriched in the antigen processing and presentation in the
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Kim cohort. Second, those target DEGs were intersected with

genes from FMAC, and then shared genes were obtained and

used to construct the predictive model for prognosis by Cox

regression in FMAC and for immunotherapy response by

logistics regression in the Kim cohort. Last, the risk score of

the predictive model was calculated based on the coefficient of

Cox regression or logistics regression and gene expression. The

specific formula is as follows:

risk   score =o​ expression   of   genei � coefficientið Þ
Construction of nomogram for prognosis

We used Cox regression to select some independent

variables including several signaling pathways, the risk score of

the predictive model for prognosis and immunotherapy

response, and the ratio of M1 Macrophages to M2

macrophages, which had significant associations with the

prognosis of GC patients. According to the above independent

variables, we built a nomogram to predict the survival of aGC

patients. Additionally, each patient’s risk score and 3, 5 and 8-

year survival were calculated.

The Cox regression was conducted by rms or survival

package of R; the nomogram was plotted by regplot package of

R (39). The timeROC package of R was used to plot receiver

operating characteristics (ROC) curves for 3, 5 and 8-year

survival, respectively (40). The calibration and decision curves

were plotted by the rms package and rmda of R, respectively.
Specimen collection

Twenty-five patients with GCwho underwent surgical resection

in the Affiliated Hospital of Jiangnan University were collected.

None of the patients received any chemotherapy, radiotherapy or

biotherapy before surgery. This study was approved by the ethics

committee of affiliated hospital of Jiangnan University and followed

the guidelines of the Declaration of Helsinki. Informed consent was

obtained from all participants. All specimens were diagnosed as GC

by two independent pathological diagnosis doctors. All

samples were immersed in formalin solution and fixed for

paraffin embedding (FFPE). 4 mm sections were prepared for

immunohistochemical staining.
Hematoxylin-eosin staining

The FFPE section was dewaxed with xylene. Xylene was then

deoxidized with gradient alcohol. The tissue was stained for

3min by Hematoxylin. The nuclear staining was observed under

the microscope. The tissue was further stained for 90s by the
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Eosin solution, and the staining was examined under

the microscope.
Immuno-histochemistry

Quantitative analysis methods performed IHC and multi-

color immunofluorescence. First, FFPE was dewaxed and

hydrated, and the EDTA method repaired tissue antigen.

H2O2 was used to inactivate endogenous peroxidase in tissues.

Second, the tissue was covered entirely with primary antibody

solution and placed in a wet box at 4°C for 12 hours. Then, the

tissue retemperature at room temperature for 30min. The

second antibody (horseradish peroxidase-labeled) was added

and incubated for 60 min at room temperature for

Tetramethylbenzidine color rendering. An optical microscope

observed the brown-yellow particles as a positive color reaction.

The primary antibody used in this study: CK (ab52625,

Abcam, 1: 1000), CD8 (14-0081-82, Invitrogen Antibodies,

1:200), PD-L1(ab205921, Abcam PD-L1(ab205921, Abcam, 1:

1000), STAT1: (ab29045, Abcam, 1:2000), IFIT3 (ab76818,

Abcam, 1:000), TAPBM (ab13518:Abcam, 1: 400). Immune

classifications of GC were defined by the CD8+ T cells

infiltrating the extent and number of tissues (41, 42). The

immune-inflamed subtype was characterized by CD8+ T cells

spread throughout the tumor parenchyma and surrounding

stroma. The excluded-immune subtype was characterized by

CD8+ T cells infiltration in the peritumor stroma, not in the

parenchyma. The deserted-immune subtype was characterized

by the absence of CD8+ T cells in tumor parenchyma

and stroma.
Multi-color immunofluorescence

After being dewaxed, the (FFPE section was repaired by

EDTA antigen repair buffer (PH 9.0). The tissues were added

with PBS (PH7.4) and primary antibody and incubated

overnight at 4°C. The tissues were then covered with

secondary antibodies and incubated at room temperature for

50min. DAPI dye was dropped and incubated for 10min at room

temperature, away from light. The slices were briefly shaken dry

and sealed with anti-fluorescence quenching sealing tablets. The

fluorescence microscope was used to observe the protein’s

location, shape and quantity, and images were collected.
Statistical analysis

The t-test or Wilcoxon signed-rank test was used to compare

two groups of continuous variables. One-way analysis of

variance or Kruskal-Wallis H test was used for comparison
frontiersin.org
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among multiple (n>2) groups. The chi-square test or

nonparametric rank-sum test was used to compare categorical

variables. Pearson or Spearman correlation analysis conducted

correlation analysis of two continuous variables. Kaplan-Meiers

curve was used to show the survival of the sample over time, and

the log-rank test was used to test whether there were significant

differences in the survival of multiple groups. The Cox regression

was used to select factors affecting survival. Logistic regression

was used to screen factors affecting immunotherapy response.

All statistical analysis was conducted in R software (version

4.0.3). All analyses were two-sided and tested at the nominal 0.05

significance level.
Results

Selection of key modules associated with
prognosis and response to ICIs

We identified 2759 DEGs in patients with and without

response to ICIs in the Kim cohort (Figure 1A; Table S1).

According to the optimal soft-thresholding power of 26,

WGCNA of these DEGs was conducted (Figures S1A, B) and

showed that these DEGs were divided into four different

modules (Figures 1B, C). Of which the blue module (r = 0.4,

p = 0.007), the brown module (r =0.56, p = 6e–05) and the grey

module (r = −0.65, p = 1e–06) were significantly related with

immunotherapy response (Figure 1C), respectively.

Furthermore, the number of brown module members (n=85)

significantly correlated with the gene signature (r=0.3, p=0.005,

Figure 1D). Similar result was found in the grey module

(n=1737, r=0.55, p=6.5e–138; Figure 1E). However, there were

no significant correlations of the gene signature with the blue

module and turquoise module (blue module: r= −0.13, p=0.21;

turquoise module: r= −0.078, p=0.35; Figures S1C, D).

GO analysis showed that brown module genes were enriched

in several immune functions, such as immune receptor activity,

major histocompatibility complex (MHC) protein binding, T

cell activation and cytokine activity (Figure S1E; Table S2).

Those grey module genes were enriched in the extracellular

organization and MHC protein complex functions (Figure S1F;

Table S3). Moreover, KEGG analysis showed that brown module

genes were enriched in cytokine-cytokine receptor interaction,

antigen processing and presentation, T cell receptor signalling

pathway, NOD-like receptor signalling pathway, JAK-STAT

signalling pathway, TNF signalling pathway and Toll-like

receptor signalling pathway, which affected the occurrence,

progression and response to ICIs in multiple types of tumors

(29–31) (Figure 1F; Table S4). Those grey module genes were

enriched in the cGMP-PKG signaling pathway, antigen

processing and presentation, Gastric acid secretion and Rap1

signaling pathway (Figure 1G; Table S5). Notably, five brown

module genes and 23 grey module genes were enriched in
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that antigen presentation status may significantly contribute

to immunotherapy.

Next, of 1822 genes (85 brown and 1737 grey genes), 637

genes (turquoise module) were significantly related to antigen

processing and presentation by WGCNA (r=0.54, p=1e–04;

Figures S2A, B). Furthermore, 637 genes significantly correlated

with the gene signature (r=0.56, p=7.3e–54; Figure S2C).
The APscore predicts immunotherapy in
the Kim cohort

After intersecting 637 genes above with 10936 genes from

FMAC (GSE84437, GSE57303, GSE34942, GSE29272, GSE15459,

ACRG/GSE62254 and TCGA-STAD), altogether 366 genes were

used to construct a scoring system based on the PCA algorithm,

which we called APscore (Figures 2A, B). To estimate the

relationships of the APscore with target genes, immunotherapy

response, immune signature, mesenchymal subtype, TCGA

subtype, number of SNVs, EBV subtype and MSI subtype in

GC, a combined heat map was plotted (Figure 2A).

Based on the cutoff thresholds derived by the Youden index for

continuous variables—the APscores of all patients, each patient

was regrouped into the high or low-APscore group (43). It was

found that most of the 28 genes enriched in antigen processing and

presentation were expressed higher in the high-APscore group

than in the low-APscore group. The APscore could distinguish

between patients with vs. without response to ICIs [area under

curve (AUC) =0.85, 95% CI (confidence interval): 0.69–1.00;

Figure 2C]). Moreover, higher APscore was observed in patients

with immunotherapy response (p=0.00019, Figure 2D).

Next, the APscore was significantly different among four

TCGA subtypes, two MSI subtypes, two EBV subtypes and three

Mesenchymal subtypes (Figures 2E–I, all p<0.05). High-APscore

patients were likely to have positive EBV status, highMSI status and

high mutational load, which were known as beneficial factors of

immunotherapy, implying that the APscore may be a valuable

indicator of immunotherapy. Similarly, higher APscore was

observed in the high immune signature subtype (P= 7.5e–05,

Figure 2J). The immune signature involved 12 genes, CCL2,

CCL3, CCL4, CCL5, CCL8, CXCL9, CXCL10, CXCL11, CXCL13,

CL18, CCL19 and CCL21, of which expression levels reflected

tumor microenvironment in GC (44). So, it was worth further

exploring microenvironment features in different APscore groups.
Immune microenvironment
characteristics of different
APscore groups

To assess the immunotherapy response, standardized genes

expression of all patients in FMAC were entered into TIDE
frontiersin.org
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algorithm platform. The APscore of each patient was calculated

based on the standardized expression of 366 genes, which were

associated with antigen processing and presentation.

The APscore showed significant negative correlations with

TIDE, Dysfunction, CD8, Merck18, IFNG and MSI Expr Sig,

and positive correlations with CAF, TAM M2, Exclusion and

MDSC (all p< 0.05; Figures 3A, S3A). A high TIDE score

represented poor efficacy of immune checkpoint blocking

therapy (ICB) and short survival. Moreover, a higher APscore
Frontiers in Immunology 06
was observed in patients with response to ICIs predicted by the

TIDE algorithm (Figure 3A, p=1.2e–10), consistent with

Figure 2D. Expected, the APscore distinguished patients with

response to ICIs from patients without response to ICIs in

FMAC (AUC=0.69, 95% CI: 0.63–0.74; Figure S3C). These

results show that the APscore can predict immunotherapy

response in aGC patients.

Next, we used the CIBERSORT algorithm to estimate the

infiltration of the 22 immune cells. The APscore had
B

C D E

F G

A

FIGURE 1

Identification of genes associated with immunotherapy response. (A) The volcano figure of differentially expressed genes (DEGs) associated with
immunotherapy response in the Kim cohort. logFC: log-fold changes. (B) Weighted gene coexpression network analysis (WGCNA) of 2759 DEGs
with a soft threshold b = 26. (C) Heat maps showing the gene modules associated with immunotherapy response. The relationship between the
gene signature and brown module genes (D) or grey module genes (E). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis for genes in brown module (F) or grey module (G).
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significantly positive correlations with regulatory T cells (Tregs),

memory resting CD4 T cells, M0 Macrophages, activated mast

cells and activated NK cells, and significantly negative

correlations with gamma delta T cells, follicular helper T cells,

plasma cells, resting dendritic cells, memory B cells, eosinophils,
Frontiers in Immunology 07
activated dendritic cells, neutrophils and CD8 T cells (all p<

0.05, Figure 3B). Of note, the correlations of the APscore with

PCA genes scores of crucial biological pathways showed that the

APscore had significantly positive correlations with cell cycle,

TGF beta signaling pathway, Wnt signaling pathway, antigen
B C D E

A

F G H I J

FIGURE 2

The characteristics of the APscore as an indicator of immunotherapy response in aGC patients. (A) The relationship of the APscore with other
subtypes of GC. (B) Venn showing 366 genes associated with the APscore. (C) Receiver operating characteristics (ROC) for the APscore in
predicting immunotherapy response. Comparison of the APscore in different groups of responses to immunotherapy (D), TCGA subtypes (E),
MSI subtypes (F), EBV subtypes (G), Mesenchymal subtypes (H), Number of SNVs subtypes (I) and immune signature subtypes (J).
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processing machinery, antigen processing and presentation,

DNA damage repair, angiogenesis, EMT1 and nucleotide

excision repair scores, and significantly negative correlations

with mismatch repair, DNA replication, EMT2, MAPK signaling

pathway, JAK/STAT signaling pathway, NF kappa B signaling

pathway, ECM receptor interaction and base excision repair

scores (Figure 3C, all p< 0.05).

Patients exceeding a certain APscore threshold, defined by

the Youden index, were classed as a high-APscore group, the

opposite as a low-APscore group. By log-rank test, patients in

the high-APscore group had poorer survival than those in the

low-APscore group (p=0.0022, HR=1.73, 95% CI: 1.21−2.46,

Figure 3D). In addition, we used ESTIMATED algorithms to

estimate immune and stromal scores for each patient. The

estimate, immune, and stromal scores were significantly higher

in the low APscore-group than that in the high APscore-group,

while the opposite trend was observed for the tumor purity (all

p<0.05, Figure 3E). Similarly, representative cells for anti-tumor

immunity such as NK cells, memory resting CD4 T cells, Tregs,

Monocytes and M0 Macrophages were more abundant in the

high-APscore group (all p<0.05, Figure 3F). These results further

verify that the APscore may influence the prognosis and

response to ICIs through classifying tumor subtypes according

to the tumor microenvironment.
SNVs of different APscore groups

Previous studies suggest that accumulated somatic

mutations induced the immune system to produce anticancer

cells, and tumor mutation load affected immunotherapy

response and the survival of GC patients (10, 11, 44). To

explore the genetic imprints of different APscore groups, we

used SNV data of 101 aGC patients from TCGA-STAD to

analyze the relationship between the TMB and the APscore.

The APscore had a significantly negative correlation with TMB

(r=−0.42, p=1.2e–05, Figure 3SD). The high-APscore group had

lower TMB than the low−APscore group (p=0.001, Figure 3SE).

Moreover, the high-TMB group had longer survival than the

low-TMB group (log-rank test, p = 0.015, Figure 3SF). However,

we could not find significantly different survival with a p-value of

0.05 among four subgroups formed by the APscore and TMB

(p=0.05, Figure 3SG). This result may be largely due to limited

samples (n=101).

Next, the APscore as a binary variable entered into Cox

regression model, and then was an independent prognostic

predictor of aGC patients after adjusting other clinicopathologic

characteristics, including Lauren subtype, age, gender, cancer

grade, CD274 expression, TMB and the ratio of M1

Macrophages to M2 Macrophages (HR=4.42, 95% CI:1.36

−14.28, Figure 3SH). Moreover, the efficacy of the APscore

predicting survival of aGC patients was explored in 14

independently thermal TCGA cohorts including 6673 patients
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(Table S6). The APscore was a significant factor in the prognosis

of patients with breast invasive carcinoma (BRCA), head and neck

squamous cell carcinoma (HNSC), brain lower grade glioma

(LGG) or skin cutaneous melanoma (SKCM), which were

generally considered thermal tumors with infiltration by a

variety of T cells (Figure S3I). Therefore, it needs to explore

further the interaction mechanism of the APscore and T-cell

infiltration to influence the prognosis.

To assess the driver mutations in different APscore groups,

the mutated genes from TCGA-STAD were listed using

maftools. In the high-APscore group, the top five mutated

genes were TP53, TTN, MUC16, LRP1B, and DNAH5,

respectively, whereas the top five were TTN, MUC16,

ARID1A, PIK3CA and KMT2D, respectively, in the low-

APscore group (Figure S3J). Of note, compared with the low-

APscore group, the high-APscore group had lower frequencies

of mutated genes ARID1A, PCLO, KMT2D, OBSCN and

PIK3CA (all p<0.05, Figure S3J). A previous study used the

TCGA-STAD dataset to estimate the correlation of PIK3CA

with sensitivity or resistance (8). Our results provide new

insights into the role of the APscore in GC with special

emphasis on its effect on individual mutations to offer a

reference for the effect of tumor immunotherapy.
Selection of hub genes associated
with prognosis

To assess novel targets for GC immunotherapy, we selected

the ten most important hub genes (STAT1, IRF1, ISG15, IRF9,

BST2, PSMB8, STAT2, IFI35, IFIT3 and OAS2) from above 366

genes being used to generate the APscore. Next, we plotted the

interaction map of hub genes and pathways using the Cytoscape

software (Figures 4A, B). Of note, ten genes were all enriched in

interferon-alpha (IFNa)/beta (IFNb) signaling using the

Metascape (Table S7). Some studies suggest that IFNa and

IFNb are potential anti-tumor immune cytokines, resulting in

improved outcomes for patients with malignancies of

heterogeneous histologies (45, 46). In the study, hub genes

activated four signaling pathways: cell cycle, EMT, ER

Hormone and apoptosis, and inhibited five signaling pathways:

RTK, RAS/MAPK, TSC/mTOR, PI3K/AKT and AR Hormone

pathway (Figure 4B). This result further highlights the potential

value of hub genes to predict immunotherapy. It needs to

explore the interaction between hub genes and T cells to

influence immunotherapy and prognosis in GC.

Next, it was found that ten genes affected the survival of

patients in FMAC (Figures 4C, D, 4SA). The expression level of

STAT1 and IFIT3 was significantly associated with longer

survival (STAT1: log-rank test, p = 0.021; IFIT3: log-rank test,

p = 0.00064). In the Kim cohort, patients responding to ICIs had

higher expression levels of ten genes than those (all P< 0.05,

Figure S4B). Intriguingly, STAT1 and IFIT3 distinguished
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FIGURE 3

The associations of the APscore with immunotherapy response, immune microenvironment, and survival in aGC patients. (A) The relationship of
the APscore with indicators of immunotherapy response predicted by the TIDE algorithm. (B) The relationship of the APscore with infiltration of
the 22 immune cells calculated by the CIBERSORT algorithm. (C) The interrelations of the APscore with PCA genes scores of important
biological pathways of GC. The white squares represent no statistically significant. (D) Kaplan-Meier survival plots in both groups of 467 aGC
patients. (E) Comparison of the tumor purity, estimate, immune, and stromal scores between the high-APscore and low APscore-groups.
(F) Comparison of the 22 immune cells proportions between the high-APscore and low APscore-groups. Asterisks denote significant differences
(*p< 0.05; **p< 0.01; ***p< 0.001).
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individuals with response to ICIs from individuals without

response to ICIs in the Kim cohort (STAT1: AUC =0.84, 95%

CI: 0.66−1.00; IFIT3: AUC =0.77, 95% CI: 0.59−0.95; Figure 4E).

Survival analysis further showed that high expression level of

STAT1 and IFIT3 predicted progression-free survival (PFS)

benefit for aGC patients in the GSE26253 cohort treated with

chemoradiotherapy (all p<0.05; Figures S4C, D). In addition, the

expression level of STAT1 and IFIT3 was positively related to

seven types of immune cells and negatively associated with

fibroblasts and endothelial cells calculated by the MCPcounter

(p< 0.05, Figure 4F; Table S8). We observed similar correlations

of the expression level of STAT1 and IFIT3 with activated

dendritic cells, activated NK cells, CD8 T cells and memory

activated CD4 T cells, which were representative cells for anti-

tumor immunity estimated by the CIBERSORT. (all p<

0.05; Figure 4SE).

To further explore the relationship between the expression

of STAT1 and IFIT3 and the immune grade of GC, we selected

25 FFPE samples to quantify the potential relationship between

the above two genes and tumor immune microenvironment

using HE staining, immunohistochemistry and multi-colour

immunofluorescence. The GC was divided into three immune

subtypes: immune-inflamed subtype, immune-excluded

subtype, immune-deserted subtype according to CD8+ T cell

infiltration in the tissues (Figure 4G). At the same time, the

relationship between the two genes and immune cell localization

and PD-L1 expression was also shown in Figure 4G. It was found

that the highest expression of PD-L1, STAT1 and IFIT3 in the

immune-inflamed subtype, followed by the immune-excluded

subtype and immune-deserted subtype. Moreover, we further

experimented with multi-color fluorescence staining to explore

the spatial relationship between the two genes and CD8 in

different immune subtypes of GC (Figure 4H). Expected,

STAT1 and IFIT3 were highly expressed in tumors with high

CD8 infiltration levels but lowly expressed in tumors with low

CD8 infiltration levels. These results suggest that two genes may

influence the role of CD8+ T cells in GC immunotherapy.
Association of hub genes variants
with prognosis

Many studies have shown that individual altered genes affect

the survival and response to ICIs in multiple types of tumors (12,

47). The distributions of SNVs from the TCGA-STAD cohort

showed that altered frequencies of STAT1 and IFIT3 came first

and third among 48 gastric cancer patients (Figure 4SF).

Similarly, the altered frequencies of STAT1 and IFIT3 came

second and fourth among 525 samples from the pan-cancer

TCGA cohort (Figure 4SF). TIMER web serve allowed us to

assess the relationship between six immune cell infiltrates and

hub gene somatic copy number variations (CNVs) according to

the TCGA-STAD dataset (48, 49). It was found that there were
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significant interactions between five various CNVs of each hub

gene and the infiltration level of six immune cells (all p<0.05;

Figure S5A). Moreover, heterozygous amplification was found

to dominate in uterine carcinosarcoma (UCS), esophageal

carcinoma (ESCA), adrenocortical carcinoma (ACC) and

testicular germ cell tumors (TGCT); and heterozygous deletion

was present in ovarian serous cystadenocarcinoma (OV) and

breast invasive carcinoma (BRCA, Figure S5B). Heterozygous

amplification and heterozygous deletion were the top two

presents in the TCGA-STAD dataset.

Next, survival analysis of pan-cancer showed that hub genes

might be risk factors of survival for five TCGA cohorts,

including LGG, kidney renal papillary cell carcinoma (KIRP),

kidney renal clear cell carcinoma (KIRC), uveal melanoma

(UVM) and thymoma (THYM; HR > 1, p< 0.05; Figure S6A),

while the opposite tendency was found for the SKCM cohort

(HR<1, P<0.05). Hub genes mainly inhibited apoptosis, EMT,

and ER hormone signaling pathways and activated RTK, AR

Hormone, PI3KAKT and TSCmTOR signaling pathways in pan-

cancer cohort (Figure S6B). Moreover, Hub genes expression

had significantly positive correlations with the frequencies of

CNV in most diverse cancer types, implying that CNV may

positively regulate the hub genes expression in the process of

invasion, metastasis and recurrence of a variety of tumors

(Figure S6C).
A predictive model for prognosis and
immunotherapy response

By intersecting 28 genes being enriched in antigen

processing and presentation (Figures 1F, G), with 10511 genes

from 467 patients in FMAC, 20 candidate genes were obtained

(Figure 5A). After stepwise backward Cox regression, the final

predictive model consisting of nine genes (B2M, CTSB, HLA-A,

HLA-C, HLA-DRA, HLA-F, HSPA2, KLRD1 and TAPBP) was

constructed. The formula of the predictive model calculated the

risk score of each patient. Risk scores in dead patients were

significantly higher than that in alive patients (p=2e−05,

Figure 5B). Those patients with risk scores exceeding the

median risk score were classified as high-risk patients. On the

contrary, other patients were classified as low-risk patients. The

survival of high-risk patients was poorer than low-risk patients

(p< 0.0001, Figure 5C). In particular, the risk score could identify

dead patients from alive patients (AUCs for one-year, three-year,

and five-year survival were 0.628, 0.643 and 0.676, respectively;

Figures 5D, E).

Next, we used the GSE26253 dataset to validate the

predictive model for prognosis and immunotherapy response

and found that risk scores in tumor progression samples were

significantly higher than those of tumor progression-free

samples (p= 0.0021, Figure 5F). The PFS of high-risk patients

was poorer than low-risk patients (log-rank test, p=0.00087,
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Figure 5G). Additionally, the risk score identified tumor

progression samples from tumor progression-free samples

(AUCs for one-year, three-year, and five-year survival were

0.782, 0.728 and 0.787, respectively; Figures 5H, I).
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To further explore whether the above nine genes can predict

the response to ICIs in the Kim cohort, the risk score of each

patient was calculated using the formula of logistic regression

analyses. Expectedly, patients with response to ICIs had higher
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A

FIGURE 4

Selection and characteristics of hub genes associated with immunotherapy response and prognosis. (A) A network of protein-protein
interactions for 10 hub genes. (B) The profiles of hub genes affecting canonical signaling pathways. The Kaplan-Meier survival curves of STAT1
(C) and IFIT3 (D) expression affecting prognosis. (E) ROC for the STAT1 and IFIT3 predicting immunotherapy response in the Kim cohort.
(F) The correlations of hub genes with abundance of seven immune and two stromal cells, calculated by the MCP-counter method.
(G) Immunohistochemistry detected the expression of CD8, PD-L1, STAT1, and IFIT3 in the immune-inflamed subtype, immune-excluded
subtype, and immune-deserted subtype of GC. The scale corresponds to 50mm. (H) Multi-color fluorescence staining detected the spatial
distribution of STAT1, IFIT3 and CD8 in the immune-inflamed subtype, immune-excluded subtype, and immune-deserted subtype of GC. The
scale corresponds to 20mm.
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risk scores than those without response to ICIs (p=2.6e−08,

Figure 5J). Of note, the risk score perfectly discriminated

patients with vs. without response to ICIs as evidenced from

the ROC curve and corresponding high AUC value (AUC=0.97,

95% CI: 0.92−1.00; Figures 5K, L). Moreover, we used the

IMvigor210 cohort of BC to estimate the ability of the risk

score to predict response to ICIs. Consistent with the results of

the Kim cohort, risk scores in BC patients with response to ICIs

were significantly higher than those without response to ICIs

(p=5.2e−05, Figure 5M). The risk score also could discriminate

BC patients with vs. without response to ICIs (AUC=0.63, 95%

CI: 0.57−0.69; Figures 5N, O). Lastly, the survival of high-risk

patients was poorer than low-risk patients (p=0.0036, Figure 5P)

for the IMvigor210 cohort. In brief, the risk score consisted of

nine genes associated with antigen processing and presentation

is an effective indicator of prognosis and response to ICIs for

aGC patients.
Predictive model genes for prognosis
and immunotherapy response

In the Kim cohort, patients with response to ICIs had lower

HSPA2 expression than that without response to ICIs, whereas

the opposite was observed for the other eight genes (all p<0.05,

Figure 6A). Of nine genes, eight could discriminate patients with

vs. without response to ICIs except for HLA-A (Figure 6B).

We further assessed the correlations between nine predictive

model genes and 22 immune cells (Figure S7A). Eight genes

(TAPBP, KLRD1, HSPA2, HLA-DRA, CTSB, B2M, HLA-C and

HLA-A) were significantly associated with more than nine types

of immune cells in 467 patients (all p<0.05). This result implied

that nine genes might regulate immune cell infiltration in tumor

tissue. Notably, TAPBP was significantly correlated with most

immune cells (n=16) and was positively correlated with CD8 T

cells, activated memory CD4 T cells and activated NK cells,

which could kill tumor cells. The MCP-counter was used to

estimate the absolute abundance of eight immune and two

stromal cell populations in GC tissues from TCGA-STAD

transcriptomic data, showing that TAPBP had positive

relationships with most immune cells except for neutrophils

(Figure S7B). Additionally, the survival of patients with high

TAPBP expression was better than low TAPBP expression,

implying that this gene might be a protective factor (p = 0.019,

Figure 6C). The hematoxylin-eosin staining (HE) showed that

the infiltrating gastric carcinoma cells in tumor tissues were

higher than in adjacent tissues (Figure 6D). Moreover,

immunohistochemistry (IHC) was used to measure the

expression of TAPBP protein in tumor tissues and adjacent

normal tissues. The staining intensity score of TAPBP in tumor

tissues was significantly higher than that in adjacent normal

tissues (Figure 6D). According to the TCGA-STAD cohort, it

was found that the expression of TAPBP mRNA in tumor tissues
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was higher than that in normal tissues (Mann-Whitney U test,

p<0.0001; Figure 6E). Pair Wilcoxon signed-rank test also

suggested that the expression of TAPBP mRNA in tumor

tissues was higher than in adjacent normal tissues (p<0.0001;

Figure 6F). The multi-color fluorescence staining revealed the

highest expression of TAPBP and CD8 in the immune-inflamed

subtype, followed by the immune-excluded subtype and

immune-deserted subtype (Figure 6G).

Moreover, patients with high HLA-C, HLA-DRA, HLA-F and

KLRD1 expression had better survival, while the opposite trend was

observed for high B2M, CTSB, HLA-A and HSPA2 expression

(Figure 7SC). We used 1146 individuals with more stage III from 16

independent TCGA cohorts to assess the prognostic value of

TAPBP. Although TAPBP was not significantly associated with

survival in 16 types of tumors, the meta-analysis showed that

patients with high-expression TAPBP had better survival than

low-expression TAPBP (p<0.0001, Figure 8SA).

The distributions of somatic alterations from the TCGA-

STAD cohort showed that altered frequencies of B2M and

TAPBP came top two among 56 GC patients (Figure 6H).

Similarly, the altered frequencies of B2M and TAPBP came

first and fourth among 484 samples from pan-cancer TCGA

cohort (Figure 6I). We further analyzed the difference of nine

predictive model genes between subtypes in the pan-cancer

TCGA cohort, and found six types of hot cancers including

BRCA, lung adenocarcinoma (LUAD), glioblastoma multiforme

(GBM), KIRC, lung squamous cell carcinoma (LUSC) and

HNSC were the most significant (Figure 8SB). KIRC has the

largest fold difference of nine predictive model genes expression

between tumor and normal tissue (Figure S8C). Similar changes

in nine predictive model genes were observed for BRCA and

HNSC, whereas the opposite was observed for LUSC. The

heatmap showed that nine predictive model genes initiated

apoptosis, EMT, hormones ER and RAS/MAPK signaling

pathways, while the opposite function was observed in cell

cycle, hormones AR and DNA damage response signaling

pathways (Figure S8D). The above results revealed that nine

predictive model genes might interact with immune cells in the

tumor microenvironment to affect a variety of cancers invasion,

metastasis and recurrence.
A nomogram for prognosis

The univariate Cox analysis identified the risk score of nine

prediction model genes and nine signaling pathways, including

ECM receptor interaction, DNA damage repair, EMT2,

Nucleotide excision repair, Base excision repair, Immune

checkpoint, CD8 T effector and JAK-STAT signaling

pathways, significantly associated with the prognosis of GC

patients (all p<0.05; Figure 7A). The multivariate Cox analysis

further showed that the risk score of nine prediction model

genes, MAPK signaling pathway, Wnt signaling pathway, the
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ratio of M1 Macrophages to M2 macrophages were risk factors

of the survival in GC, while ECM receptor was a predictive factor

(all p<0.05; Figure 7B). Although CD8 T effector did not have a

significant association with the survival (p =0.055), it was an

essential indicator of immunotherapy and was enter into the

multivariate Cox analysis.

Next, we built a nomogram model of six significant variables

in the multivariate Cox regression (Figure 7C). The AUCs for
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predicting three-year, five-year, and eight-year survival of GC

patients were 0.657, 0.689 and 0.709, respectively (Figure 7D).

When compared to previously published prognostic biomarkers

of various measurements, including mRNA expression, lncRNA

expression, microRNA expression, protein, and DNA

methylation level for predicting the prognosis of GC patients

(50–55), the AUC of our nomogram model for predicting eight-

year survival appeared to be higher. The capacity to predict
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FIGURE 5

Construction and validation of the predictive model for prognosis and immunotherapy response. (A) Venn map showing hub genes used to
construct the predictive model. (B) Comparison of the standardized risk score between dead and alive patients in FMAC. (C) The Kaplan-Meier
survival curves between the high-risk and low-risk patients in FMAC. (D) Standardized risk score distribution plot in FMAC. (E) ROC for the risk
score predicting prognosis in FMAC. (F) Comparison of the standardized risk score between tumor progression and tumor progression-free
patients in the GSE26253 dataset. (G) The Kaplan-Meier progression-free survival (PFS) curves between high-risk and low-risk patients in
GSE26253 dataset. (H) Standardized risk score distribution plot in GSE26253 dataset. (I) ROC for the risk score predicting prognosis in GSE26253
dataset. (J) Comparison of the standardized risk score between patients with immunotherapy response and patients without immunotherapy
response in the Kim cohort. (K) Standardized risk score distribution plot in the Kim cohort. (L) ROC for the risk score predicting immunotherapy
response in the Kim cohort. (M) Comparison of the standardized risk score between patients with immunotherapy response and patients
without immunotherapy response in the IMvigor210 cohort. (N) Standardized risk score distribution plot in the IMvigor210 cohort. (O) ROC for
the risk score predicting immunotherapy response in the IMvigor210 cohort. (P) The Kaplan-Meier survival curves between the high-risk and
low-risk patients in the IMvigor210 cohort.
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FIGURE 6

TAPBP was related to the immunotherapy response and the tumor immune microenvironment. (A) Comparison of nine predictive model genes
between CR/PR group and SD/PD group in the Kim cohort. (B) ROCs for nine genes predicting immunotherapy response in the Kim cohort.
(C) The Kaplan-Meier survival curves between the Kim cohort’s high-TAPBP expression group and the low-TAPBP expression group. (D) HE and
IHC staining results in tumor and normal tissues in GC. The expression of TAPBP in between tumor tissues and normal tissues (E) or adjacent
normal tissues (F) from the TCGA-STAD cohort. (G) The multi-color fluorescence staining detected the spatial distribution of TAPBP and CD8 in
the immune-inflamed subtype, immune-excluded subtype, and immune-deserted subtype of GC. The distributions of nine predictive model
genes somatic alterations from TCGA-STAD cohort (H) and pan-cancer TCGA cohort (I). Asterisks denote significant differences (*p< 0.05;
**p< 0.01; ***p< 0.001).
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outcomes for more patients is likely increased by the addition of

more clinical characteristics to our model, or it may be facilitated

by the inclusion of more samples and a longer period of follow-

up in our study. Calibration curves showed that the predicted 5-

year survival probability and actual 5-year survival probability

were hovering near the 45-degree diagonal line, implying that

the nomogram model has a superior ability to predict GC

prognosis (Figure 7E). Moreover, decision curve analysis

showed that the curves of the nomogram model and risk score

of nine prediction model genes were isolated from angles of

treatment for all and treatment for none, highlighting the clinical

potential of the nomogram model in the prognosis of

aGC (Figure 7F).
Discussion

The antigen processing and presentation plays a crucial role

in effector T cells recognition of tumor cells, influencing the

identification of patients susceptible to immunotherapy (11).

This study identified a novel biomarker of genes related to

antigen processing and presentation, predicting response to

ICIs for aGC patients. Currently, most studies use TCGA or

GEO datasets to build models for predicting prognosis rather

than response to ICIs for aGC patients due to the lack of ICIs

treatment results. Therefore, we explored the response to ICIs

for aGC patients in the Kim cohort treated by ICIs to make the

results have direct clinical translational significance.

In this study, we built a scoring system to evaluate the efficacy

of immunotherapy for aGC patients. We validated the results—

the APscore distinguished patients with or without response to

ICIs in the Kim cohort. Moreover, patients with response to ICIs

had higher APscore than those without response to ICIs. Several

subtypes of GC, such as high MSI subtype, positive EBV subtype,

high TMB subtype and high immune signature subtype, benefited

from ICIs treatment (5). These subtypes also had high Apscore in

the Kim cohort, further revealing that APscore might effectively

predict immunotherapy efficacy. Thus, the critical biomarkers

involved in the mechanism of immunotherapy need to be

identified and assessed.

Ten hub genes, STAT1, IRF1, ISG15, IRF9, BST2, PSMB8,

STAT2, IFI35, IFIT3 and OAS2 from 366 antigen processing and

presentation-related genes were further analyzed. The Metascape

shows that ten hub genes are enriched in interferon-alpha/beta

signaling, which has been reported to influence APM gene

expression (56, 57). This result suggests that we can enhance

antigen presentation efficiency of initially unresponsive patients

with ICIs by stimulating interferon signal transduction to improve

immunotherapy efficacy, especially in aGC patients with low

APscore, which has potential transformation significance. A

large body of evidence has been provided about STAT1

inhibiting proliferation and promoting apoptosis of tumor cells,

and it is considered a potential tumor inhibitor (58, 59). STAT can
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induce tumor cell apoptosis by interfering with the MARK

signaling pathway or down-regulating interleukin (IL-6)

expression and STAT3 of interferon-alpha/beta signaling (60,

61). Furthermore, new studies show that down-regulated

STAT1 expression in peripheral blood of GC patients results in

immune escape from gastric epithelial cancer caused by decreased

anti-tumor immune function (62, 63). However, there are few

experimental studies on the interaction between immune

microenvironment and tumor antigenicity and antigen

presentation in GC immunotherapy. This study used multi-

color immunofluorescence staining to accurately locate positive

spatial associations of IFIT3 and STAT1 expression with PD-L1

and CD8 expression, representative immunotherapy targets in

different immunotypes of aGC tissues. Hub genes selected to share

a common pathway enrichment of interferon signaling pathway,

and the relationship between specific genes and immunotherapy

may provide new insight into the ICB therapy for GC.

According to nine genes (B2M, CTSB, HLA-A, HLA-C, HLA-

DRA, HLA-F, HSPA2, KLRD1 and TAPBP) enriched in antigen

processing and presentation, we built a predictive survival model

for aGC patients with high accuracy and sensitivity. In addition, a

nomogram based on the risk score and several signatures of

critical signaling pathways was plotted and showed that the risk

score had robust survival prediction ability. Currently, the

relationships between nine genes and the survival of various

tumors may be easily explored using TCGA or GEO data.

However, how they affect the immunotherapy efficiency of GC

has rarely been studied.We found that the prediction model of the

above nine genes predicted response to ICIs in aGC patients with

a value of AUC 0.97. These results suggest that the nine genes are

valuable for further study in the immunotherapy mechanism of

GC. In addition, several other genes have already been linked to

cancer-specific immune responses. For example, mutation of B2M

gene resulted in defective expression of MHC-1 molecular

antigen, which could not deliver antigen to CD8+T cells through

TCR and disturbed the positive selection of CD8 cells in the

thymus to affect the development of CD8 T cells (64, 65). Several

studies showed that HLA-I, including HLA-A, HLA-B and HLA-

C positive tumors may bemore susceptible to immune checkpoint

inhibitors (66, 67).

In contrast, HLA-I negative tumors might be associated with

acquired drug resistance to PD-1 blockade in cancer patients. It

was found that the increased cell apoptosis in gastric cancer leads

to the release and degradation of CTSB protein from the lysosome,

resulting in gastric cancer cell death (68). The cleavage of Caspase-

1 by CTSB activates caspase-1, which promotes the secretion of

interleukin-1b (IL-1b), leading to an inflammatory response (69,

70). Compared with atezolizumab monotherapy for biliary tract

cancer, TAPBP expression was higher in the combined treatment

group (71). Compared with attezolzumabmonotherapy for biliary

tract cancer, TAPBP expression was higher in the combined

treatment group (atezolizumab + MEK inhibitor). As an

important biomarker, TAPBP from TIGS is an effective intrinsic
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FIGURE 7

Construction of a nomogram for prognosis in FMAC. (A) The univariate and (B) multivariable Cox regression for the risk score and essential
signaling pathways in FMAC. (C) The nomogram constructed by six variables. The red dot represents the risk score corresponding to the value
of the independent variable. According to the total scores of the nomogram, the three-year, five-year and eight-year death probability in
randomly selected the 400th patient being 0.901, 0.958 and 0.977, respectively. (D) ROCs for three-year, five-year and eight-year death
probability of the nomogram. (E) Calibration curves of the predicted five-year survival probability and actual five-year survival probability. The
gray line indicates ideal fit; the circle indicates the predicted five-year survival probability of nomogram; the stars indicate bootstrap correction
estimates, and the error bars indicate the 95% CI of these estimates. (F) Decision curves for the nomogram, the risk score of nine prediction
model genes and other four factors.
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tumor biomarker and can predict ICIs response in pan-cancers

(10). The TAPBP effectively predicted immunotherapy response

in aGC patients and stratified patients into groups with

significantly different survival in this study. In addition,

the positive correlation between TAPBP expression and

tumor microenvironment was confirmed by multi-color

immunofluorescence staining, providing a clue for further study

on the effect of TAPBP on ICB therapy.

There are some limitations to this study. First, we did not

conduct external validation because it was challenging to gather

clinical patient data for ICIs treatment in aGC patients.

Nonetheless, 467 patients from TCGA and GEO datasets were

used to validate our results by estimating immunotherapy response

by TIDE. Second, even though IHC and fluorescence experiments

were carried out to validate the model results, large-scale protein

sequencing analysis would be a better choice. Third, we analyzed the

effects of APscore on the immune microenvironment, SNV, TMB

and signaling pathways, but the underlying mechanism remained

unclear. Therefore, to better understand the significance of APscore

in predicting GC immunotherapy response, further in vivo and in

vitro experimental research are required.

In summary, our work presents for the first time a novel

signature based on genes associated with antigen processing and

presentation, that can help identify response to immunotherapy,

allow identification of high-risk patients and predict prognosis

in aGC patients. Further studies using gene expression profiles

may represent a powerful approach to explore the biological

mechanism of tumor immunotherapy escape, and may provide

new targets for transforming anti-PD-1 resistant tumors into a

responsive state.
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GC gastric cancer

ICI immune checkpoint inhibitor

CTLA-4 cytotoxic T-lymphocyte-associated protein 4

PD-1 programmed cell death 1

PD-L1 programmed cell death-ligand 1

TMB tumor mutation burden

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus;

FMAC final merged aGC cohort

MSI microsatellite instability

EBV Epstein‐Barr virus

SNV single nucleotide variant

BC bladder cancer

PR Partial response

CR complete response

PD progressive disease

SD stable disease

WGCNA Weighted Gene Co-expression Network Analysis

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

PCA principal component analysis

EMT epithelial-mesenchymal transition;

DEGs Differentially expressed genes

TIDE Tumor immune dysfunction and exclusion

ROC receiver operating characteristic curve

FFPE Formalin fixation and paraffin embedding

HE Hematoxylin-eosin staining

IHC Immuno-histochemistry

MHC major histocompatibility complex

ICB Immune checkpoint blockade

AUC area under curve

HR Hazard ratio;

CI confidence interval

Tregs regulatory T cells

BRCA breast invasive carcinoma

HNSC head and neck squamous cell carcinoma

LGG brain lower grade glioma

SKCM skin cutaneous melanoma

PFS progression-free survival

CNV copy number variation

UCS uterine carcinosarcoma

ESCA esophageal carcinoma

ACC adrenocortical carcinoma

TGCT testicular germ cell tumors

OV ovarian serous cystadenocarcinoma

BRCA breast invasive carcinoma

KIRP kidney renal papillary cell carcinoma

KIRC kidney renal clear cell carcinoma
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UVM uveal melanoma

THYM thymoma

LUAD lung adenocarcinoma

GBM glioblastoma multiforme;

LUSC lung squamous cell carcinoma

GSVA Gene Set Variation Analysis;

AJCC American Joint Committee on Cancer

Tfh cells T follicular helper cells

GSEA Gene set enrichment analysis

MSS/TP53+ intact TP53 activity;

MSS/TP53− TP53 functional loss

TME Tumor microenvironment.
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