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ICOS-Fc as innovative
immunomodulatory approach
to counteract inflammation and
organ injury in sepsis
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Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on

activated T cells and its unique ligand, ICOSL, which is expressed on antigen-

presenting cells and non-hematopoietic cells, have been extensively investigated in

the immune response. Recent findings showed that a soluble recombinant form of

ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both

antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell

migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly

investigated in the septic context, a few studies have reported that septic patients

have reduced ICOS expression in whole blood and increased serum levels of

osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the

pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential

protective effects of its immunomodulation by administering ICOS-Fc in a murine

model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture

(CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS-/-, ICOSL-/- and

OPN-/- mice. One hour after the surgical procedure, either CLP or Sham

(control) mice were randomly assigned to receive once ICOS-Fc, F119SICOS-Fc, a

mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and

plasma were collected 24 h after surgery for analyses. When compared to Sham

mice, WTmice that underwent CLP developed within 24 h a higher clinical severity

score, a reduced body temperature, an increase in plasma cytokines (TNF-a, IL-1b,
IL-6, IFN-g and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea)

dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these

abnormalities caused by sepsis. Similar beneficial effectswere not seen in CLP-mice
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.992614/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.992614/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.992614/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.992614/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.992614&domain=pdf&date_stamp=2022-09-02
mailto:massimo.collino@unito.it
https://doi.org/10.3389/fimmu.2022.992614
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.992614
https://www.frontiersin.org/journals/immunology


Alves et al. 10.3389/fimmu.2022.992614

Frontiers in Immunology
treated with F119SICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated

the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome.

ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the

protective effect was lost in septic knockout mice for the ICOS or ICOSL genes,

whereas it was maintained in OPN knockout mice. Collectively, our data show the

beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in

counteracting the sepsis-induced inflammation and organ dysfunction.
KEYWORDS

sepsis, inflammation, ICOS (inducible co-stimulatory molecule), cecal ligation and
puncture, osteopontin (OPN)
Introduction

Sepsis is a life-threatening medical emergency characterized

by a complex interplay of pro- and anti-inflammatory host

responses, resulting in multiple organ dysfunction that can

ultimately lead to death (1). Currently, deaths from sepsis

correspond to nearly 20% of all deaths worldwide, and there is

still no specific treatment available (2). The inducible T cell co-

stimulator (ICOS, also known as CD278) belongs to the CD28

family of co-stimulatory immunoreceptors. It is a type I

transmembrane glycoprotein whose expression is rapidly

upregulated upon T cells activation (3). ICOS binds to its

unique ligand (ICOSL, also known as CD275 or B7h), a

member of the B7 family highly expressed on antigen-

presenting cells (APCs) and non-hematopoietic cells under

inflammatory stimuli (4–5). Thus far, the role of ICOS-ICOSL

interaction has been poorly investigated in sepsis, although

recent findings report that ICOS expression is reduced in

whole blood of septic patients (6), and that reduced ICOS

levels are strongly associated with organ dysfunction (7). To

date, it is very well documented that the ICOS-ICOSL axis may

display bidirectional effects. On the one hand, ICOS triggering

modulates cytokine production in activated T cells and

contributes to T regulatory (Treg) cells differentiation and

survival (8–9). Given the fact that both animals and septic

patients have an increased percentage of circulating Treg cells

(10–12), it is suggestive that ICOS triggering may play a role in

the septic immunosuppressive status. On the other hand, ICOSL

triggering by ICOS may exert anti-inflammatory effects via

responses, such as modulating the maturation and migration

of macrophage and dendritic cells and the endothelial cell

adhesiveness (13).

Recently, another ligand for ICOSL has been identified,

osteopontin (OPN), an inflammatory mediator that binds to

ICOSL in an alternative binding domain to that used by ICOS.

Intriguingly, ICOS and OPN exert different and often opposite
02
effects upon ICOSL triggering since OPN stimulates, whereas

ICOS inhibits, migration of several cell types and tumor

angiogenesis (14–16). Conventionally, a soluble recombinant

form of ICOS (ICOS-Fc) has been designed by fusing a cloned

extracellular portion of human or mouse ICOS with an Fc IgG1

portion and this molecule has been shown to trigger ICOSL thus

promoting down-stream responses (17).

In vitro, ICOS-Fc inhibits adhesiveness of endothelial cells

toward polymorphonuclear cells and tumor cells and migration of

endothelial cells and tumor cells (15). These ICOS-Fc effects can also

be recorded in dendritic cells (DC), along with modulated cytokine

release and antigen cross-presentation in class I major

histocompatibility complex molecules (13), while in osteoclasts,

ICOS-Fc inhibits differentiation and function (18). In vivo, ICOS-

Fc inhibits tumor growth and metastasis, development of

osteoporosis, liver damage induced by acute inflammation

following treatment with CCl4, and it favors skin wound healing

(18–21). Nevertheless, little is known about the molecular

mechanism(s) involved in ICOSL-mediated inflammatory

response. The p38 MAPK, a well-known mediator that drives

inflammation through upregulation of several pro-inflammatory

cytokines such as TNF-a and IL-6 (22), and the NOD-like

receptor protein 3 (NLRP3) inflammasome, able to induce the

release of IL-1b and IL-18 and promote cell death by pyroptosis

(23), are two of the most well characterized signaling pathways

involved in the activation of the cytokine storm that contributes to

organ dysfunction during sepsis. Furthermore, their

pharmacological or genetic inhibition has been shown to reduce

sepsis-related mortality (22–24). Finally, a non-receptor protein

kinase namely Focal adhesion kinase (FAK) has been recently

reported to signal inflammation downstream of the Toll-like

receptor 4 upon lipopolysaccharide (LPS) challenge in

macrophages and lung tissues (25). Therefore, here we

investigated, for the first time, the pathological role of ICOS-

ICOSL axis in the context of sepsis, its impact on selective

inflammatory pathways and the potential protective effects of its
frontiersin.org
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immunomodulation by administering ICOS-Fc in an experimental

model of sepsis.
Material and methods

Animals and ethical statement

Inbred wild-type (WT, C57BL/6) mice, ICOSL knockout

mice (ICOSL-/-, B6.129P2-Icosltm1Mak/J), ICOS knockout mice

(ICOS-/-, B6.129P2-Icostm1Mak/J) and OPN knockout mice

(OPN-/-, B6.129S6(Cg)-Spp1tm1Blh/J) were purchased from

Envigo laboratories, (IT) and The Jackson Laboratory (Bar

Harbor, ME, USA). Mice were housed under standard

laboratory conditions, such as room temperature (25 ± 2°C)

and light-controlled with free access to water and rodent chow

for four weeks prior starting the experimental procedures. All

animal protocols reported in this study followed the ARRIVE

guidelines (26) and the recommendations for preclinical studies

of sepsis provided by the MQTiPSS (27) The procedures were

approved by the University’s Institutional Ethics Committee as

well as the National Authorities (Protocol number: 855/2021).
Cecal ligation and puncture (CLP)-
induced sepsis model

Polymicrobial sepsis was carried out by CLP surgery in male,

five-month-old mice. Mice were initially placed in an anesthetisia

chamber (3% isoflurane -IsoFlo, Abbott Laboratories – delivered in

oxygen 0.4 L/min), then kept under anaesthesia throughout surgery

with 2% isoflurane delivered in oxygen 0.4 L/min via a nosecone.

The body temperature was maintained at 37 °C through a

homoeothermic blanket and constantly monitored by a rectal

thermometer. Briefly, a mid-line laparotomy (~1.0 cm) was

performed in the abdomen, exposing the cecum. The cecum was

then totally ligated just below the ileocecal valve and a G-21 needle

was used to puncture the ligated cecum in a single through-and-

through manner. A small amount (droplet, ~3mm) of fecal content

was released from the cecum which was carefully relocated into the

peritoneum. Shammice underwent the same surgical procedure, but

without CLP. All animals received Carprofen (5 mg/kg, s.c.) as an

analgesic agent and resuscitation fluid (0.9% NaCl, 50 mL/kg, s.c.) at

37°C. Mice were constantly monitored post-surgical and then placed

back into fresh clean cages.

At 24 h, body temperature and a clinical score to assess

symptoms consistent with murine sepsis were recorded blindly.

The following 6 criteria were used for the clinical score: lethargy,

piloerection, tremors, periorbital exudates, respiratory distress

and diarrhea. An observed clinical score >3 was considered as
Frontiers in Immunology 03
severe sepsis, while a score between 3 and 1 was considered as

moderate sepsis (28).
Study design

Seventy-two mice were randomized into eight groups (9 mice

per group): Sham + Vehicle, CLP + Vehicle, CLP + ICOS-Fc, CLP +
F119SICOS-Fc, CLP ICOSL-/- + Vehicle, CLP ICOS-/- + Vehicle, CLP

ICOS-/- + ICOS-Fc and OPN-/- + Vehicle. Treatment was given once

one hour after surgery, where mice received either ICOS-Fc (100 µg

each), F119SICOS-Fc (100 µg each) or Vehicle (PBS, pH 7.4, 100 µl

each) by intravenous injection (Figure 1).
Blood collection and organ harvesting

Twenty-four h after surgery all mice were anesthetized with

isoflurane (3%) delivered in oxygen (0.4 L/min) and euthanized

by cardiac exsanguination. Whole blood was withdrawn from

each mouse in vials (EDTA 17.1 µM/mL) and plasma content

was obtained after centrifugation (13,000 g, 10 min at R.T.).

Organ samples (liver and kidney) were harvested and placed in

cryotubes which were snap frozen in liquid nitrogen for storage

at freezer -80°C. The samples were then analyzed in a blinded

fashion (Figure 1).
Biomarkers of organ injury and
systemic inflammation

Plasma samples were used to measure systemic levels of

aspartate aminotransferase (AST) (#7036) and alanine

aminotransferase (ALT) (#7018) (as markers of hepatocellular

injury), creatinine (#7075) and urea (#7144) (as markers of renal

dysfunction) using colorimetric clinical assay kits (FAR

Diagnostics, Verona, Italy) according to the manufacturer’s

instructions. Systemic cytokine levels were determined in

plasma using the Luminex suspension bead-based multiplexed

Bio-Plex Pro™ Mouse Cytokine Th17 Panel A 6-Plex

(#M6000007NY) assay (Bio-Rad, Kabelsketal, Germany). The

cytokines (IL-1b, IL-6, TNF-a, IFN-g, IL-17 and IL-10) were

measured following the manufacturer’s instructions.
Myeloperoxidase (MPO) activity analysis

MPO activity analysis was carried out in liver and kidney

samples as previously described (29). Tissue samples (~100 mg)

were homogenized (1:5 w-v) in 20 mM PBS (pH 7.4) and then

centrifuged at 4°C (13,000 g, 10 min). Pellets were resuspended in
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500 mL of hexadecyltrimethylammonium bromide buffer (0.5%

HTAB in 50 mM PBS, pH 6.0). A second centrifugation at 4°C

(13,000 g, 10 min was performed and the supernatants (30 mL) were
assessed forMPO activity by measuring spectrophotometrically (650

nm) the H2O2-dependent ox ida t ion o f 3 ,3 ′ , 5 ,5 ′ -
tetramethylbenzidine (TMB). Bicinchoninic acid (BCA) protein

assay (Pierce Biotechnology Inc., Rockford, IL, USA) was used to

quantify the protein content in the final supernatant. MPO activity

was expressed as optical density (O.D.) at 650 nm per mg of protein.
Western blot analysis

Semi-quantitative immunoblot technique was carried out in

hepatic and renal tissue samples as previously described (30).

Total proteins were extracted from 50 mg of each tissue and the

total content was quantified using BCA protein method

following the manufacturer’s instructions. Briefly, total

proteins (50 µg/well) were separated by 8 and 10% sodium

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred to a polyvinylidene difluoride (PVDF)

membrane, which was then blocked with 5% non-fat dry milk

prepared in TBS-T buffer for 1 h at RT, followed by incubation

with primary antibodies at the dilution 1:1000., rabbit anti-

Thr180/anti-Tyr182 p38 (Cell Signaling #9211); rabbit anti-total

p38 (Cell Signaling #9212); mouse anti-NRLP3 (Adipogen- AG-

20B-0014-C100); rabbit anti-Caspase-1 (Cell Signaling #24232);

rabbit anti-Tyr397 FAK (Cell Signaling #3283); rabbit anti-total

FAK (Cell Signaling #3285). The membranes were then

incubated with a secondary antibody conjugated with
Frontiers in Immunology 04
horseradish peroxidase (HRP) at the dilution 1:10000 for 1 h

at RT (anti-mouse or anti-rabbit, Cell Signaling #7076 and

#7074, respectively). Afterwards, the membranes were stripped

and incubated with rabbit anti-b-actin (Cell Signaling #4970).

Immune complexes were visualized by chemiluminescence and

the densitometric analysis was performed using Bio-Rad Image

Lab Software 6.0.1. Results were normalized to sham bands.
Statistical analysis and data presentation

Sample size was determined on the basis of prior power

calculations using G-Power 3.1™ software (31). Data are

expressed as dot plots (for each mouse) and as mean ± S.E.M

of 9 mice per group. Shapiro-Wilk and Bartlett tests were used to

verify data distribution and the homogeneity of variances,

respectively. The statistical analysis was performed by one-way

ANOVA, followed by Bonferroni’s post-hoc test. Data not

normally distributed, a non-parametric statistical analysis was

applied through Kruskal-Wallis followed by Dunn’s post hoc-test

as indicated in the figure legends. Statistical significance was set

at P < 0.05. Statistical analysis was performed using GraphPad

Prism® software version 7.05 (San Diego, California, USA).
Materials

Unless otherwise stated, all reagents were purchased from

the Sigma-Aldrich Company Ltd. (St. Louis, Missouri, USA).
FIGURE 1

Timeline of the experimental design to investigate the role of ICOS-Fc in sepsis. Wild-type mice and/or ICOSL, ICOS and OPN knockout mice were
randomly selected to undergo either Sham or CLP surgery. One hour later, mice received once either Vehicle (PBS, 100 µL), ICOS-Fc (100 µg) or
F119SICOS-Fc (100 µg) intravenously. At 24 h all parameters were analyzed.
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Results

ICOS-Fc-mediated immunomodulation
attenuates clinical status and organ
injury/dysfunction triggered by sepsis

Sepsis was induced by CLP in WT mice treated with vehicle,

ICOS-Fc or F119SICOS-Fc (unable to bind ICOSL) and clinical

scores and body temperature were recorded after 24 h.

Moreover, sepsis was induced in mice deficient for ICOS,

ICOSL, or OPN to assess the role the endogenous molecules of

the ICOS/ICOSL/OPN system. Finally, a group of ICOS-

deficient mice received ICOS-Fc treatment to evaluate the

effect of the drug in the absence of the endogenous ICOS.

Results showed that, as expected, CLP-induced sepsis in WT

mice led to a higher clinical severity score (Figure 2A) when

compared to Sham WT mice, which was also associated with

lower body temperature (Figure 2B). Intriguingly, treatment

with ICOS-Fc improved both clinical score and hyphotermia

in WT septic mice, whereas treatment with F119SICOS-Fc had no

effect (Figures 2A, B). Analysis of CLP knockout mice showed

that ICOS-/- and ICOSL-/- mice showed similar clinical scores

and decreased body temperatures as WT mice, whereas OPN-/-

mice developed milder sepsis, with lower clinical scores and

higher body temperature than WT mice. In ICOS-/- mice,

treatment with ICOS-Fc induced similar positive effects as in

WT mice (Figures 2A, B).

To investigate organ injury or dysfunction, plasma levels of

ALT, AST, creatinine and urea were evaluated in these mice.

Figure 3 shows that results mirrored those shown in Fig.2: CLP-
Frontiers in Immunology 05
induced sepsis caused striking increase of ALT, AST, creatinine

and urea levels in WT type mice, and these levels were decreased

by treatment with ICOS-Fc, but not F119SICOS-Fc. Levels of

these markers were increased also in CLP ICOS-/- and ICOSL-/-

mice and urea levels were even higher in ICOS-/- than in WT

mice. In CLP ICOS-/- mice, treatment with ICOS-Fc significantly

decreased all these markers. In CLP OPN-/- mice, levels of these

markers were significantly lower than in CLP WT mice.
ICOS-Fc administration modulates
experimental sepsis-induced
cytokine storm

The 6 cytokines were measured systemically in plasma

samples by using a multiplex array. Figure 4 shows that, in

WT mice, CLP-induced sepsis led to a cytokine storm with

significant increase of levels of IL-1b, IL-6, IL-10, TNF-a, IFN-g
and a slight not significant increase of IL-17 compared to Sham

mice. Administration of ICOS-Fc to WT CLP mice induced a

significant decrease of IL-1b and TNF-a, whereas F119SICOS-Fc

had no effect. Levels of IL-1b, IL-6, IL-10, TNF-a, and IFN-g
were also increased in CLP ICOS-/- and ICOSL-/- mice at levels

similar to those observed in CLP WT mice. Moreover, CLP

ICOSL-/- mice showed higher levels of IL-17 than Sham mice,

and CLP ICOS-/- mice displayed higher levels of TNF-a and,

especially, IL-10 than CLP WT mice. The CLP ICOS-/- mice

treated with ICOS-Fc significantly decreased levels of IL-1b, IL-6
and IL-10 compared to the untreated counterparts. In CLP

OPN-/- mice, the increase of these cytokines was in general
A B

FIGURE 2

Role of the ICOS-ICOSL axis in the clinical status of experimental sepsis. Wild-type mice and/or ICOSL, ICOS and OPN knockout mice were
randomly selected to undergo either Sham or CLP surgery. One hour later, mice received once either Vehicle (PBS, 100 µL), ICOS-Fc (100 µg)
or F119SICOS-Fc (100 µg) intravenously. At 24 h, severity score (A) and body temperature (B) were recorded. Data are expressed as dot plots (for
each animal) and as mean ± S.E.M of 9 mice per group. Severity score was analyzed by a non-parametric test (Kruskal-Wallis) followed by
Dunn’s post hoc-test, whereas a parametric test (one-way ANOVA) followed by Bonferroni’s post hoc-test was used for body temperature.
*p<0.05 vs Sham + Vehicle; #p<0.05 vs CLP + Vehicle; &p<0.05 vs ICOS-/- + Vehicle.
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moderate, with levels of IL-6, IL-10, TNF-a and IFN-g higher

than in Sham mice, and levels of IL-1b and IL-6 lower than in

CLP WT mice.
ICOS-Fc treatment reduces sepsis-
induced increase in MPO activity
in the kidney

MPO activity was assessed in the liver and kidney, as an indirect

biomarker of leukocyte tissue infiltration (Figure 5). When

compared to Sham mice, CLP WT mice had increased MPO

activity in both liver and kidney samples, and MPO activity was

significanly decreased by ICOS-Fc (but not F119SICOS-Fc

treatment) in the kidney, but not in the liver. In the liver, MPO

activity was similarly increased also in CLP ICOS-/-, ICOSL-/-, and

OPN-/- mice, and it was not modified by ICOS-Fc treatment in CLP

ICOS-/- mice. In the kidney, MPO activity was increased in CLP

ICOS-/- and ICOSL-/- mice, and treatment with ICOS-Fc decreased

MPO activity in CLP ICOS-/- mice. By contrast, CLP OPN-/- mice

showed lower MPO levels in the kidney than CLP WT mice.
Frontiers in Immunology 06
ICOS-Fc treatment reduces local FAK/
p38 signalling and NLRP3 inflammasome
activation in septic mice

In order to better elucidate the molecular mechanism

underlying the beneficial effects evoked by ICOS-Fc

administration, we focused on WT mice investigating the

changes in some signaling cascades, previously documented to

be affected by the ICOS-ICOSL axis and, at the same time,

known to exert key role in sepsis pathogenesis. Western blot

analysis showed that CLP mice showed significant increase of

the phosphorylation of FAK at Tyr397 and p38 MAPK at Thr180/

Tyr182 in both hepatic (Figures 6A, C) and renal (Figures 6B, D)

tissues, when compared to Sham mice. Interestingly, mice

treatment with ICOS-Fc significantly attenuated the degree of

phosphorylation of FAK/p38 axis in both tissues, thus suggesting

reduced activation of these signaling pathways (Figures 6A–D).
We then assessed the activation of the inflammasome, by

evaluating the expression of NLRP3 and cleaved caspase-1 in

both liver and kidney samples (Figures 6E–H). Results showed

that, in both tissues, CLP-induced sepsis significantly increased both
A B

DC

FIGURE 3

Effect of ICOS-ICOSL axis immunomodulation on sepsis-induced organ damage biomarkers. Wild-type mice and/or ICOSL, ICOS and OPN knockout
mice were randomly selected to undergo either Sham or CLP surgery. One hour later, mice received once either Vehicle (PBS, 100 µL), ICOS-Fc (100 µg)
or F119SICOS-Fc (100 µg) intravenously. At 24 h, blood samples were withdrawn from each mouse and plasma levels of alanine transaminase (ALT) (A),
aspartate transaminase (AST) (B), creatinine (C) and urea (D) were determined. Data are expressed as dot plots (for each animal) and as mean ± S.E.M of 9
mice per group. Statistical analysis was performed by one-way ANOVA followed by Bonferroni’s post hoc test. *p<0.05 vs Sham + Vehicle; #p<0.05 vs
CLP + Vehicle; &p<0.05 vs ICOS-/- + Vehicle.
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molecules, and the increase was inhibited by mice treatment with

ICOS-Fc (Figures 6E–H).

Discussion

Currently, most research on sepsis is focused on blocking

the initial hyperinflammation, which in turn has resulted in

promising outcomes. However, recent reports showed that
Frontiers in Immunology 07
both pro- and ant i - inflammatory responses occur

immediately and simultaneously after the onset of sepsis and

most patients who survive this initial hyperinflammatory phase

develop an immunosuppressive phase that can progress to late

deaths (1, 32 and 33). Among the main causes of death in this

immunosuppressive phase, the failure to control a primary

infection and/or secondary hospital-acquired infections stands

out (34). In the present study we report for the first time
A B

D

E F

C

FIGURE 4

Effect of ICOS-ICOSL axis immunomodulation on systemic cytokines during experimental sepsis. Wild-type mice and/or ICOSL, ICOS and OPN
knockout mice were randomly selected to undergo either Sham or CLP surgery. One hour later, mice received once either Vehicle (PBS, 100 µL), ICOS-
Fc (100 µg) or F119SICOS-Fc (100 µg) intravenously. At 24 h, blood samples were withdrawn from each mouse and plasma levels of IL-1b (A), IL-6 (B),
TNF-a (C), IFN-g (D), IL-17 (E) and IL-10 (F) were determined. Data are expressed as dot plots (for each animal) and as mean ± S.E.M of 9 mice per
group. Statistical analysis was performed by one-way ANOVA followed by Bonferroni’s post hoc test. *p<0.05 vs Sham + Vehicle; #p<0.05 vs CLP +
Vehicle; &p<0.05 vs ICOS-/- + Vehicle.
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that ICOS-ICOSL axis may play a role in regulation of

uncontrolled inflammation and organ injury induced by

sepsis and that treatment of septic mice with ICOS-Fc may

represent a novel immunomodulatory pharmacological

approach that can simultaneously counteract both sepsis-

induced hyperinflammation and immunosuppression.

These findings were obtained by evoking polymicrobial sepsis in

either WT mice and knockout mice for ICOS, ICOSL and OPN

genes. As expected, severe sepsis (score ≥3) was observed in vehicle-

treated septic mice, suggesting potential late deaths, since the clinical

scoring system is used as a surrogate marker of mortality. This

detrimental effect was also associated with low body temperature

(~27°C), as similarly, hypothermia is another surrogate marker of

mortality, as a 5°C decrease over time or <30°C has also been shown

to predict death in CLP-induced septic mice (35). Moreover, septic

mice showed liver and kidney damage, displayed by increase of

plasma AST/ALT and creatinine/urea levels, respectively, which is in

line with the notion that sepsis can cause multiple organ failure

including hepatocellular injury and renal dysfunction.

Intriguingly, treatment with ICOS-Fc substantially

ameliorated the clinical picture by significantly decreasing all

these parameters of sepsis. The effect was specific since no

protection was detected following administration of F119SICOS-

Fc (a mutated form of ICOS-Fc carrying a phenylalanine-to-

serine substitution at position 119).

Theoretically, the protective activity of ICOS-Fc might be

ascribed to a twofold mechanism, i.e. on the one hand to the

inhibition of the endogenous ICOS activity and, on the other

hand, to triggering of the endogenous ICOSL. However, the

effectiveness of ICOS-Fc not only inWTmice but also in ICOS-/-
Frontiers in Immunology 08
mice, lacking the endogenous ICOS, strongly suggest that the

main protective effect on sepsis is due to triggering of ICOSL,

which is in line with previous works showing that ICOSL

triggering by ICOS-Fc elicits several anti-inflammatory

activities both in vitro and in vivo (13, 15, 16, 19).

These results are in keeping also with recent findings

showing that ICOS-Fc protects against liver damage through a

shift of pro-inflammatory monocyte-derived macrophages to an

anti-inflammatory phenotype (20). In parallel, the direct

renoprotective effect triggered by ICOS-Fc treatment is

supported by a recent study showing a key role of ICOSL in

preventing early kidney disease, possibly through a selective

binding to podocyte avb3 integrin, in which ICOSL serves as an

avb3-selective antagonist that maintains adequate glomerular

filtration (36).

The use of knockout mice highlighted that, in sepsis, a key

role may be played by OPN as all the above septic parameters

were significantly decreased in OPN-/- mice, so that OPN

deficiency mirrored the effect of ICOS-Fc in WT mice. This

finding is in line with data showing that, in humans, OPN

levels are increased in sepsis (37) and OPN might be involved

in the sepsis pathogenesis, possibly by supporting IL-6

secretion (38). Moreover, several reports showed that ICOS-

Fc inhibits several proinflammatory activities of OPN in vitro

and in vivo (16, 37, 39 and 40). Our findings are in keeping

also with recent data showing that macrophage-derived OPN

promotes glomerular injury in an experimental model of

inflammatory and progressive kidney disease (41). OPN is

an heavily phosphorylated extracellular protein, expressed

and secreted by several cell types, including macrophages,
A B

FIGURE 5

Effect of ICOS-ICOSL axis immunomodulation on sepsis-induced neutrophil (MPO activity) infiltration. Wild-type mice and/or ICOSL, ICOS and
OPN knockout mice were randomly selected to undergo either Sham or CLP surgery. One hour later, mice received once either Vehicle (PBS,
100 µL), ICOS-Fc (100 µg) or F119SICOS-Fc (100 µg) intravenously. At 24 h, liver and kidney samples were harvested. Through an in vitro assay,
myeloperoxidase (MPO) activity was measured in liver (A) and kidney (B). Data are expressed as dot plots (for each animal) and as mean ± S.E.M
of 6 mice per group. Statistical analysis was performed by one-way ANOVA followed by Bonferroni’s post hoc test. *p<0.05 vs Sham + Vehicle;
#p<0.05 vs CLP + Vehicle; &p<0.05 vs ICOS-/- + Vehicle.
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FIGURE 6

Effect of ICOS-ICOSL axis immunomodulation on tissue inflammatory pathways during experimental sepsis. Wild-type mice and/or ICOSL, ICOS
and OPN knockout mice were randomly selected to undergo either Sham or CLP surgery. One hour later, mice received once either Vehicle
(PBS, 100 µL), ICOS-Fc (100 µg) or F119SICOS-Fc (100 µg) intravenously. At 24 h, liver and kidney samples were harvested, and total proteins
were extracted from them. Western blotting analysis for phosphorylation of Tyr397 on FAK in the liver (A) and kidney (B) were normalized to total
FAK; Phosphorylation of Thr180/Tyr182 on p38 in the liver (C) and kidney (D) were normalized to total p38; NLRP3 expression in the liver (E) and
kidney (F) were corrected against b-actin and normalized using the Sham related bands; Cleaved caspase-1 expression in the liver (G) and
kidney (H) were corrected against b-actin and normalized using the Sham related bands. Densitometric analysis of the bands are expressed as
relative optical density (O.D.). Data are expressed as dot plots (for each animal) and as mean ± S.E.M of 4-5 mice per group. Statistical analysis
was performed by one-way ANOVA followed by Bonferroni’s post hoc test. *p<0.05 vs Sham + Vehicle; #p<0.05 vs CLP + Vehicle.
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endothelial cells, dendritic cells and T-cells. It can act as a

cytokine mediating several biological functions, including cell

migration, adhesion, activation of inflammatory cells, and

modulation of T cell activation supporting differentiation of

proinflammatory type 1 (Th1) and type 17 (Th17) Th

cells (42).

Analysis of plasmatic cytokines showed that, in all mouse

strains, sepsis was accompanied by increase of IL-1b, IL-6, IL-
10, TNF-a and IFN-g. Moreover, increase of TNF-a and,

especially, IL-10 was particularly striking in ICOS-/- mice,

which may point out that ICOS deficiency causes a

dysregulation of activation of M1 and M2 macrophages.

However, treatment with ICOS-Fc significantly decreased IL-

1b and TNF-a in WT mice and IL-1b, IL-6 and IL-10 in

ICOS-/- mice indicating that ICOS-Fc substantial ly

downmodulates the cytokine storm in sepsis. In OPN-/- mice,

increase of these cytokines was in general moderate, with a

significant decrease of IL-1b and IL-6, in line with the mild

sepsis developed by these mice.

Among the main inflammatory pathways activated during

sepsis, we report a local (liver and kidney) overactivation of

the FAK and p38 MAPK pathways in CLP mice. Previously,

we have shown that the FAK pathway mediates inflammation

through p38 MAPK and that this inflammatory axis plays a

role in exacerbating inflammation (28). Activation of this axis

promotes increased expression/secretion of pro-inflammatory

cytokines such as TNF-a, IL-6, IL-1b and IL-17, which in turn

contribute to the cytokine storm and multiple organ failure

(MOF) associated with sepsis (43). Intriguingly, treatment of

septic mice with ICOS-Fc significantly attenuated FAK and

p38 MAPK phosphorylation, thus reducing their activation

during septic insult, with a following impact on the

development of the above-mentioned cytokine storm. These

findings are in accordance with previous studies focused on

tumor cell migration, whose treatment with ICOS-Fc reduces

FAK and p38 MAPK activation both in vitro and in vivo (15,

19). As we and other have recently shown, FAK activation may

also affect the overexpression and activation of another

peculiar inflammatory pathway, NLRP3 inflammasome

complex (28, 44). Thus, we wondered here whether ICOS-Fc

could also infer with this cross-talk mechanism linking FAK to

NLRP3 activation within the septic context. We report here

that experimental sepsis led to an overactivation of the NLRP3

complex and consequent activation of its downstream

mediator caspase-1, which were significantly reduced by

treatment with ICOS-Fc, thus leading to reduced systemic

release of IL-1b . In addition to the impact on the

a forement ioned inflammatory pathways , ICOS-Fc

administration seems to directly affect leukocyte migration

in CLP mice, as documented by the changes in MPO activity, a

well-known biomarker of neutrophil infiltration, in both liver
Frontiers in Immunology 10
and kidney homogenates (45). Specifically, we documented

that the sepsis-induced increase in MPO activity in renal

tissues, was significantly counteracted by ICOS-Fc treatment.

This effect, on the other hand, was absent when CLP mice were

treated with F119SICOS-Fc. Intriguingly, increased MPO

activity was recorded in liver homogenates from septic mice,

regardless of drug treatment or genetic intervention, when

compared to Sham mice. Despite ICOS-Fc has been shown to

reduce the migration of polymorphonuclear cells into

inflamed tissues (15), these discrepant events observed in

liver and kidney tissue may be the result of different levels of

ICOSL expression. This finding corroborates a previous study

reporting that hepatocytes did not express ICOSL, when

compare to other organs, such as the kidney (46). Thus,

suggesting that the hepatic protection induced by ICOS-Fc

in septic mice is mainly due to a local and systemic resolution

of inflammation rather than a reduction in leukocyte

infiltration. A schematic representation summarizing the

role of ICOS-ICOSL axis in the pathogenesis of sepsis and

the protective effects of ICOS-Fc following sepsis-induced

multiple organ failure is shown in Figure 7.

Despite the originality of our findings, we are aware of

several limitations of our study, including the lack of extension

of these findings to other important functional organs related

to MOF during sepsis, such as the lungs and the cardiac tissue,

along with the lack of analysis suggestive of the direct effect of

ICOS-Fc treatment in preventing immunosuppression. Albeit

the in vivo protocol described here is in accordance with the

main recommendations provided by MQTiPSS consensus

guidelines (27), we are not authorized to perform a survival

study to assess the long-term effect of ICOS-Fc due to ethical

reasons. Thus, further studies are needed to extend the clinical

relevance of our findings as well as to gain a better insight into

the safety profile of the proposed drug treatment.
Conclusions

In conclusion, we demonstrate here, for the first time, that

the ICOS-ICOSL axis plays a crucial role in the development of

systemic inflammation and organ damage induced by a

clinically relevant sepsis model. These findings were

confirmed by an exacerbation of septic injury in mice

knockout for the ICOS and ICOSL genes. Interestingly, we

also documented its draggability by showing protection when

ICOS-Fc, a recombinant protein which act as an antagonist

of ICOS and an agonist of ICOSL, was administered during

sepsis. The beneficial effects of this innovative pharmacological

approach are likely due to a potential cross-talk mechanisms

involving the FAK-p38-NLRP3 inflammasome axis. A greater
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understanding of the molecular basis of ICOS-Fc-mediated

effects is needed to harness its actions as a potentially powerful

immunomodulatory tool for counteracting inflammation and

organ injury in sepsis.
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FIGURE 7

Schematic representation on the role of ICOS-ICOSL axis in the pathogenesis of sepsis. Septic insult results in an imbalance in the ICOS-ICOSL
axis, leading to bidirectional harmful effects, where, on the one hand, the triggering of ICOS can induce immunosuppression, while, on the
other hand, the signaling pathway downstream of the ICOSL protein leads to overactivation of FAK-p38-NLRP3 axis, promoting the transcription
of pro-inflammatory genes, as well as the cleavage of pro IL-1b into IL-1b and subsequent production of pro-inflammatory cytokines. Leukocyte
recruitment is also stimulated by the release of cytokines. Systemic hyperinflammation (cytokine storm), along with polymorphonuclear cell
recruitment, contributes to the onset of multiple organ failure. Treatment with ICOS-Fc can attenuate sepsis-induced hyperinflammation and
therefore MOF to improve clinical outcomes.
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