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Background: There is a close relationship between radiotherapy and

autophagy in tumors, but the prognostic role of radiotherapy-related

autophagy genes (RRAGs) in lung adenocarcinoma (LUAD) remains unclear.

Methods: Data used in the current study were extracted from The Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

Weighted gene co-expression network analysis (WGCNA) was executed to

recognize module genes associated with radiotherapy. The differentially

expressed genes (DEGs) between different radiotherapy response groups

were filtered via edgeR package. The differentially expressed radiotherapy-

related autophagy genes (DERRAGs) were obtained by overlapping the module

genes, DEGs, and autophagy genes (ATGs). Then, prognostic autophagy genes

were selected by Cox analyses, and a risk model and nomogram were

subsequently built. Gene Set Enrichment Analysis (GSEA) and single-sample

Gene Set Enrichment Analysis (ssGSEA) were performed to investigate potential

mechanisms through which prognostic autophagy signatures regulate LUAD.

Radiotherapy-resistant cell lines (A549IR and PC9IR) were established after

exposure to hypo-fractionated irradiation. Ultimately, mRNA expression was

validated by quantitative real-time PCR (qRT-PCR), and relative protein levels

were measured in different cell lines by western blot.

Results: A total of 11 DERRAGs were identified in LUAD. After Cox analyses,

SHC1,NAPSA, and AURKAwere filtered as prognostic signatures in LUAD. Then,

the risk score model was constructed using the prognostic signatures, which

had a good performance in predicting the prognosis, as evidenced by receiver

operating characteristics curves. Furthermore, Cox regression analyses

demonstrated that risk score was deemed as an independent prognostic

factor in LUAD. Moreover, GSEA and ssGSEA results revealed that prognostic

RRAGs may regulate LUAD by modulating the immune microenvironment and

affecting cell proliferation. The colony formation assay showed that the
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radiosensitivity of radiation-resistant cell lines was lower than that of primary

cells. The western blot assay found that the levels of autophagy were

elevated in the radiotherapy-resistant cell lines. Moreover, the expression

of DERRAGs (SHC1, AURKA) was higher in the radiotherapy-resistant cells

than in primary cells.

Conclusion:Our study explored the role of RRAGs in the prognosis of LUAD

and identified three biomarkers. The findings enhanced the understanding

of the relationship between radiotherapy, autophagy, and prognosis in LUAD

and provided potential therapeutic targets for LUAD patients.
KEYWORDS

lung adenocarcinoma, radiotherapy, prognosis , autophagy, tumor
immune microenvironment
Introduction

Lung cancer is the second leading cause of cancer death after

breast cancer worldwide (1). Lung adenocarcinoma (LUAD) is

the most common histological subtype of lung cancer (2).

Although radiation therapy is the standard therapy for lung

cancer patients, the effect of radiation therapy varies, with

different responses in patients, especially in LUAD. Many

LUAD patients display increased radiation resistance.

Radiation resistance is a major cause of LUAD therapeutic

failure, resulting in tumor recurrence and metastasis (3).

Consequently, research on the mechanism of radiation

resistance and the discovery of related biological markers for

optimal lung cancer radiation therapy remains an urgent task.

Autophagy is one of the main metabolic pathways that

degrade long-lived proteins, senescent organelles, and parts of

the cytoplasm in cells (4). Autophagy can influence the effect of

radiation therapy by modulating the sensitivity of radiotherapy

and altering the immune microenvironment of tumors after

radiation. The intricate relationship that exists between cellular

autophagy and cell death can both enable cells to survive in

adverse environments and promote autophagic cell death.

However, new evidence suggests that autophagy is a

cytoprotective response that assists tumor cells to cope with

survival stress and thus causes resistance to radiotherapy (5, 6).

For instance, the upregulation of lncRNA KCNQ1OT1 induces

radiotherapy resistance, which is directly attributable to ATGs-

regulated autophagy in LUAD cells (7). Therefore, targeting the

autophagy-related genes (ARGs) provides new insights into the

mechanism of radiotherapy resistance in LUAD and is also

significant for boosting the efficacy of radiotherapy in LUAD

patients. However, so far, the effects of ARGs on radiotherapy in

LUAD patients remain to be further explored. In this study, we
02
sought to determine prognostic RRAGs and elucidate their

potential molecular mechanisms in LUAD.
Materials and methods

Study design

The flowchart of our study is depicted in Figure 1.
Data source

Gene expression profile and clinical data of LUAD cases

were extracted from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/) databases. In TCGA-

LUAD cohort, there were 497 LUAD and 54 control samples.

Among the 497 LUAD samples, 115 samples from patients with

complete or partial response were defined as the radiosensitive

(RS) group, and 14 samples from patients with progressive

disease or stable disease were defined as the radioresistance

(RR) group. Moreover, 127 LUAD samples from the GSE50081

dataset were used as an external validation set, and 1,183

autophagy genes (ATGs) (Table S1) were downloaded from

the Autophagy database (http://www.tanpaku.org/autophagy/).
WGCNA analysis

The samples were initially clustered to check the overall

correlation of all the samples, and the outlier samples were

excluded to ensure the accuracy of the analysis. Based on the
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gene expressions in the RS and RR groups, WGCNA was

performed. Then, we determined the optimal soft threshold of the

data to ensure that the genes interaction conformed to the scale-free

distribution to a maximum extent. The adjacency and similarity

between genes were calculated, and the cluster dendrogram was

established. The modules were further segmented using the

dynamic tree-cutting algorithm, and similar modules were

merged. We evaluated the Pearson correlation between each

module and sample traits and screened out the module genes

with the highest absolute value for the downstream analysis.
Identification and function analysis of
DERRAGs involved in LUAD

DEGs between the RR and RS groups were identified using

“edgeR” package (version 3.34.1), with threshold of p < 0.05 and |

log2FC| > 0.5, and “ggplot2” package (version 3.3.5) was used to

generate the volcano plot to show the DEGs. The expressions of

the top 100 DEGs were displayed in the heatmap generated by

“pheatmap” package (version 1.0.12). Then, DERRAGs were

obtained by overlapping DEGs with module genes and ATGs.

“clusterprofiler” package (version 4.0.2) was applied to analyze

the function of DERRAGs. The pathways with p < 0.05 were

considered as markedly enriched GO terms and KEGG pathways.
Construction and validation of the risk
score model

The risk model was established using 381 LUAD samples

with survival information in TCGA-LUAD cohort. These
Frontiers in Immunology 03
samples were randomly split into training set (n = 267) and

internal validation set (n = 114) in a ratio of 7:3. We first

implemented univariate Cox regression to filter DERRAGs

markedly relevant to overall survival (OS) (p < 0.05) using

“survminer” package (version 0.4.8). Thereafter, multivariate

Cox regression was applied to build the risk score model, and

the risk score was calculated using the formula:

h0(t)*exp(b1X1 + b2X2 +…+bnXn)

In this formula, b refers to the coefficient, for which the

Hazard Ratio (HR) value can be obtained after taking the inverse

natural exp(b). LUAD cases in the TCGA training set were split

into low- and high-risk groups based on the median risk score.

Kaplan–Meiermethodwas used to assess the OS, and the receiver

operating characteristic (ROC) curves were plotted using the

“survivalROC” (version 1.0.3) package with survival time points

of 1-5 years. The risk model was examined in both the TCGA and

GEO validation sets. Subsequently, the independent prognostic

factors for LUAD were confirmed by univariate and multivariate

Cox analyses. The 1-, 3-, and 5-year survival in LUAD cases was

predicted through a nomogram, and the calibration curve was

utilized to assess the performance of the nomogram.
GSEA analysis

To further probe the related signaling pathways of the

prognostic gene, “clusterprofiler” package (version 3.18.1) and

org.Hs.eg.db (version 3.12.0) were used to perform GSEA

analysis. The reference gene sets “c2.cp.kegg.v7.4.entrez.gmt”

and “c5.go.v7.4.entrez.gmt” were extracted from MSigDB
FIGURE 1

Flowchart of the comprehensive analysis process in the present study.
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database (www.gesa-msigdb.org/gesa/msigdb/). GO terms and

KEGG pathways with |NES| > 1, NOM p < 0.05, and q < 0.25

were considered to be markedly enriched.
The relationship between immune
infiltration and autophagy

To characterize the relationship between immune

infiltration and autophagy in LUAD, we first performed

ssGSEA to analyze the infiltration of 24 immune cells in the

low- and high-risk groups. The Wilcoxon test was used to

identify differentially infiltrated immune cells between the low-

and high-risk groups with a p-value < 0.05. Furthermore, the

correlations between the expressions of prognostic ARGs and

the infiltration levels of 24 immune cells were calculated.
Cell culture and irradiation treatment

Human lung adenocarcinoma cell lines A549 and PC9 were

obtained from the Institute of Biochemistry and Cell Biology

(Shanghai, PR China). Cells were placed in T-75 flasks and

cultured in RPMI-1640 basal media (BASALMEDIA, PR

China) with 10% fetal bovine serum (CELLIGENT, New

Zealand) in an incubator with 5% CO2 and at 37°C. Cells were

irradiated with RS2000 Biological X-ray Biological Irradiator

(Georgia, USA) with an energy of 280 keV at a dose rate of 1.8

Gy/min at room temperature in the Radiation Therapy Center of

the Third Affiliated Hospital of Kunming Medical University. To

establish radiotherapy-resistant cell lines, A549 and PC9 cells

were exposed to a repeated fraction of 4 Gy X-irradiation at a

total dose of 56Gy. Two subconfluent 75-cm2
flasks of cells were

exposed to repeated fractions of 4 Gy X-irradiation. The total

number of cells present in the flasks at the time of the first

irradiation was approximately 1 × 107. A time interval of between

3 and 5 days was allowed to expose irradiated cells that had grown

to 80% density, so that the cells could survive. In this way, the cell

number present at each irradiation was kept roughly constant.

Fresh medium was added with each irradiation, and after every

five fractions, the contents of the two flasks were pooled, and a

small fraction was plated out separately. These cells were used for

clonogenic assays and to establish frozen stocks. The cell lines

that acquired resistance to radiotherapy by continuous low-dose

irradiation were named A549IR and PC9IR, respectively.
Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from the cell lines in each flask via

TRIzol, and reversed transcription into cDNA was performed

using the SYBR Green Master Mix kit. The b-Actin gene was

used as an endogenous control. The primer sequences were as
Frontiers in Immunology 04
follows: AURKA, Forward 5-GGTCAGTACATGCTCCATCTT

CCAG-3’, Reverse 5’ - AGAACTCCAAGGCTCCAGAGATCC-

3’; NAPSA, Forward 5’ -CTTCAGTGTGCCCTGCTGGTTAC-

3’, Reverse 5’ - CATCTACCCGCCCAGTTCCATATTG-3’; and

SHC1, Forward 5’ -TGAGGGTGTGGTTCGGACTAAGG-3’,

Reverse 5’ -CCGCAGA GATGATGGGCAAGTG-3’. Data

were analyzed using the comparative Ct method (2-△△Ct).
Western blot assay

The cell culture flasks were washed with ice-cold PBS, then

ice-cold lysis buffer (Solarbio, China) was added. Cell lysate was

collected at 12,500 rpm and 4°C, and boiled for 10 min in

loading buffer. Proteins were resolved on 12.5% SDS-PAGE gels,

transferred onto PVDF (0.2 µm) membranes, and blocked with

5% nonfat dry milk. The following primary antibodies were

used: 1:1000 for LC3B (#43566, CST), 1:1000 for SQSTM1/p62

(#8025, CST), and 1:5000 for GAPDH (#5174, CST). Primary

antibodies to LC3b and p62 were diluted following the

manufacturer’s instructions and incubated overnight at 4°C on

a shaker at a slow speed. Then, secondary antibodies were

incubated at room temperature for 2 h on a shaker at a slow

speed. The PVDF membranes were washed three times with

PBS, and the ECL Plus kit was used to visualize the

immunoreactive process. Relative protein levels were

normalized according to GAPDH concentration.
Colony formation assay

300 cells were cultured in 60-mm dishes according to the

pre-experiment, and after the cells fully adhered to the wall at

24 h after plate laying, the unadhered cells were removed by

discarding the old medium and replacing it with fresh complete

medium. Cells were allowed to continue to proliferate in vitro for

more than six generations. After approximately 12–14 days, the

cells were washed using PBS, fixed with 4% paraformaldehyde,

and finally stained with crystal violet. The number of clones with

> 50 cells was counted. Plating efficiency (PE)was measured for

each cell line, and Surviving fractions were calculated using the

equation SF = (number of colonies formed)/(number of cells

seeded × plating efficiency for sham irradiated group)×100%.
Statistical analysis

The data were displayed as the average ± standard deviation

(SD) from the three independent trials, and statistical analysis

was performed using SPSS 20.0 software. Graphics were created

using GraphPad Prism 8 software. One-way analysis of variance

analysis was carried out in multiple groups, and the matched

Student’s Test was used in two groups, respectively.
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Results

Identification of key genes involved in
LUAD radiotherapy

To identify the genes associated with radiotherapy, we

performed WGCNA. The sample clustering result revealed no

outlier samples, and the sample dendrogram and trait heatmap

are shown in Figure 2A. The optimal soft threshold value was 3,

in which R2 was approximately 0.85 (Figure 2B). We finally

identified 11 modules after merging similar modules

(Figure 2C), and the brown4 module was most relevant to

radiotherapy (cor = -0.3, p-value < 0.01) (Figure 2D). Thus,

1,900 genes in the brown4 module were used for the

downstream analysis.
Identification of DERRAGs in LUAD

A total of 1121 DEGs were identified between the RS and RR

groups (Table S2 and Figure 3A). The expressions of the top 100

DEGs are displayed in the heatmap (Figure 3B). After

intersecting 1121 DEGs with 1900 module genes and 1183
Frontiers in Immunology 05
ATGs, AURKA, CTSV, DAPK1, FGFR3, NAPSA, PLCH1,

RGL1, SESN3, SHC1, SLC7A5, and SMPD1 were identified as

DERRAGs in LUAD (Figure 3C). The DERRAGs were

significantly enriched in 13 cellular components, including

lamellar body, lysosomal lumen, vacuolar lumen, meiotic

spindle, TORC2 complex, pronucleus, GATOR2 complex,

spindle pole centrosome, TOR complex, Seh1-associated

complex, germ cell nucleus, endolysosome and microvillus

membrane (Figure 3D), and pathways of lysosome, Ras

signaling, and bladder cancer (Figure 3E).
Construction and validation of the
autophagy-related risk score model

We investigated the prognostic value of DERRAGs. By

univariate Cox regression analysis, NAPSA, SHC1, AURKA,

CTSV, and SLC7A5 were closely related with OS of LUAD

(Figure 4A). Then, five genes were input into multivariate Cox

regression, and SHC1, NAPSA, and AURKA were further

selected to establish the autophagy-related risk model

(Figure 4B). According to the coefficients and expressions of

SHC1, NAPSA, and AURKA, the risk scores were calculated, and
A B

DC

FIGURE 2

Identification of key genes in the radiotherapy of LUAD. (A) Sample Clustering Chart. (B) Selection of the optimal soft threshold power. (C) Module
clustering dendrogram. (D) Heat map of the relationship between gene modules and traits, using the type of radiotherapy effect as the phenotype.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.992626
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2022.992626
the cases were divided into two risk groups (Figure 4C). The

expressions of SHC1 and AURKA were significantly higher,

while the expression of NAPSA was lower in the high-risk

group (Figure 4D). Furthermore, a remarkable difference in

survival was also identified between both risk groups

(Figure 4E). The predictive efficiency of the risk model was

investigated by ROC curves, and the risk model showed

moderate accuracy with areas under the curves (AUC) > 0.6

(Figure 4F). The consensus results were also obtained in
Frontiers in Immunology 06
the internal TCGA (Figure 5) and external GSE50081

datasets (Figure 6).
The autophagy-related nomogram was
established in LUAD

Next, the independent prognostic factors were investigated

by univariate analysis. We discovered that risk score, neoplasm
A B

D

E

C

FIGURE 3

Identification of DERRAGs in LUAD. (A) Volcano map of RS vs. RR differentially expressed genes (DEGs) in LUAD. (B) Heat map of RS vs. RR DEGs
in LUAD (Top 100). (C) The Venn diagram of DEGs, ATGs, and key module genes (brown4). (D) GO enrichment analysis of DERRAGs. (E) KEGG
enrichment analysis of DERRAGs.
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disease stage, patient smoking history category, diagnosis age,

and sex were significantly related to prognosis (Figure 7A).

These factors were then subjected to multivariate analysis, and

risk score and neoplasm disease stage were still significantly

related with prognosis (Figure 7B), indicating that they were

independent prognostic factors of LUAD. Furthermore, we used

risk score and neoplasm disease stage to construct a nomogram

to predict survival (Figure 7C). The calibration curves showed

that the predicted 1- and 3- year OS were close to the actually

observed OS (Figure 7D).
The risk score had a close relationship
with cell proliferation

To elucidate the relevant pathways of these prognostic

signatures in LUAD, the GSEA analysis was performed. The

genes in the high-risk group were enriched in biological

processes related to cell proliferation, including cell cycle G2/
Frontiers in Immunology 07
M phase transition, DNA conformation change, chromatin

assembly or disassembly, DNA-dependent DNA replication,

chromosome segregation, DNA packaging, DNA replication,

meiosis I cell cycle process, double strand break repair, and

meiotic cell cycle (Figure 8A). Consistent with the GO results,

cell proliferation-related pathways were also enriched in the

high-risk group when KEGG was applied (Figure 8B).
The immune microenvironment was
different between the low- and
high-risk groups

Cons i d e r i n g th e impo r t an c e o f t h e immune

microenvironment in LUAD progression, we examined the

immune infiltration landscape of patients in both risk groups.

We observed that there were moderate or strong correlations

between CD8 T cells and cytotoxic cells, iDC and DC,

macrophages and DC, macrophages and iDC, NK CD56dim
A B

D

E

F

C

FIGURE 4

Construction of the autophagy-related risk score model. (A) Univariate forest plot of the correlation between the expression of DERRAGs and
the overall survival of LUAD patients. (B) Multifactorial forest plot of the correlation between expression of DERRAGs and overall survival of
LUAD patients. (C) The validation set high and low-risk group curves. (D) Heat map of model gene expression in the high and low-risk groups in
the training set. (E) Training set survival ROC curve. (F) KM survival curves for the high and low-risk groups in the training set.
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cells and cytotoxic cells, T cells and B cells, T cells and cytotoxic

cells, Th1 cells and cytotoxic cells, Th1 cells and DC, Th1 cells

and macrophages, Th1 cells and T cells, Treg and T cells, and

Treg and Th1 cells in LUAD (Figures 9A, B). Moreover, the

infiltration of aDC, macrophages, B cells, NK CD56dim cells,

DC, Tcm, iDC, Treg, T cells, neutrophils, Th1 cells, and Th2 cells

were significantly different in both risk groups (Figure 9C).

AURKA expression had a significantly positive correlation

with Th2 cells abundance (Figure 9D), NAPSA expression had

a significantly positive or negative correlation with Th2 cells and

DC infiltration (Figure 9E). Although SHC1 expression had

significantly positive or negative correlations with multiple

differentially infiltrated immune cells, their correlations were

very weak (|cor| < 0.3, Figure 9F).
Validation of the relationship between
SHC1, NAPSA, and AURKA genes,
radiotherapy sensitivity, and autophagy
by constructing resistant cell lines
compared with primary cells

Radioresistant cells were constructed by interval irradiation

of cells. In this study, we found that the radiation-resistant cell
Frontiers in Immunology 08
lines were resistant to radiation in clone formation experiments,

and their cell survival rate after IR was obviously above the

survival rate of primary cells. (Figure 10A).

Elevated levels of autophagy in radioresistant cells were found by

western blot assay (Figure 10B). The expression of RRAGs (SHC1,

AURKA) was higher in radioresistant cells than in primary cells as

verified by qRT-PCR (Figures 10C, D). However, no significant

difference in NAPSA gene expression was observed between

radioresistant cells and primary cells. The NAPSA gene is highly

expressedmainly in LUADand kidney cancer; therefore, theNAPSA

genemaybe closely related to tissue typing. The primary cells thatwe

used to construct radioresistant cells were all LUAD cells; therefore,

there was no significant difference in NAPSA gene expression

between the radioresistant and primary cells.
Discussion

In recent years, many large-scale clinical studies involving

patients with LUAD have confirmed improvements in survival

time and quality of life associated with radiotherapy, and these

results have helped to set radiotherapy as the standard of care for

LUAD (8, 9). Radiotherapy not only reduces tumor burden

but also triggers anti-tumor immunity and reprograms the
A B

D

C

FIGURE 5

Validation of the autophagy-related risk score model (in the internal TCGA). (A) The test set high and low-risk group curves. (B) Heat map of
model gene expression in the high and low-risk groups of the test set. (C) The test set high and low-risk group KM survival curves. (D) Test Set
Survival ROC Curve.
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tumor microenvironment (10, 11). However, radiation

resistance remains a critical limiting factor in the efficacy of

LUAD therapy. Previous research has shown that targeting

autophagy-related genes can improve tumor radiotherapy

efficacy while reducing cancer toxicity (12). Autophagy and

radiotherapy resistance are thus closely linked. In this study,

we obtained three autophagy-related genes that affect LUAD

radiotherapy and prognosis. The survival of LUAD patients was

predicted by constructing a risk model and nomogram.

SHC1 can encode three major isoforms (p46SHC, p52SHC,

and p66SHC), all of which have highly conserved structural

domains unique to the Shc family (13, 14). One of the functions

of SHC1 proteins, notably p66SHC, is tomodulate redox signaling,

and it has long been known to have a role in oxidative stress-

induced apoptosis and mammalian lifespan. In A549 cells under

nutrient-restricted settings, p66SHC might be significant in

coordinating the regulation of the autophagic process with the

anti-apoptotic process, leading to therapeutic resistance (15).

Moreover, p66SHC can affect energy metabolism by disrupting

mitochondrial function and reducing ATP production, which

subsequently activates the AMPK/mTOR signaling pathway-

mediated increase in autophagic flux (16). In vivo, UV irradiation

can induce oxidative stress in mice by activating the JNKs signaling
Frontiers in Immunology 09
pathway through phosphorylation of the p66SHC serine 36 site,

and mice lacking p66SHC are thus less susceptible to this effect,

resulting in a longer lifespan (17). An increased expression of SHC1

strongly relates to worse outcomes and treatment resistance

in LUAD. According to studies, SHC1 expression was

upregulated in LUAD tissues, correlated with poorer OS, and

associated with LUAD stages (18). Therefore, p66SHC may

increase resistance to radiotherapy and other treatments by

inducing ROS and autophagy, thereby affecting therapeutic

efficacy. Similar results were obtained in our study with enhanced

autophagy and SHC1 expression in radiotherapy-resistant cell lines

(A549IR and PC9IR). Therefore, radiotherapy-resistant cell lines

may overexpress SHC1 to mediate elevated levels of autophagy and

thus contribute to the survival of tumor cells after irradiation by

affecting radiotherapy sensitivity, resulting in radiotherapy

resistance. Thus, targeting SHC1 may be a novel approach to

improve the efficacy of LUAD radiation therapy.

AURKA belongs to the serine/threonine kinase family, and its

activation is necessary to modulate cell mitosis (19). A growing

number of studies suggest that when AURKA is aberrantly

expressed, it may be an oncogene involved in tumorigenesis.

Overexpression of AURKAhas been detected inmany tumor cells

and tissues, including LUAD (20). Moreover, AURKA expression
A B

D

C

FIGURE 6

Validation of the autophagy-related risk score model (external GSE50081 dataset). (A) The validation set high and low-risk group curves. (B)
Heat map of model gene expression in the high and low-risk groups in the validation set. (C) KM survival curves for the high and low-risk
groups in the validation set. (D) Validation set survival ROC curve.
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varies among NSCLC subtypes, and it was found to be primarily

upregulated in moderately and poorly differentiated lung tumors

(21). AURKA is significantly upregulated in awide range of tumor

tissues, and increased expression in LUAD is associated with

worse treatment outcomes, with individuals with this

characteristic having a lower OS rate (22). In the treatment of

LUAD, there is increasing evidence that AURKA inhibitors can

improve the response to radiation therapy (23–25). Activation of

the AURKA-PLK1 signaling pathway can bypass the ATM-
Frontiers in Immunology 10
dependent G2 checkpoint and cause impaired cellular damage

repair and genomic instability, thereby triggering tumorigenesis

(26). In contrast, interference with the AURKA-CXCL5 signaling

pathway can mediate autophagic cell death in LUAD,

thereby enhancing radiosensitivity (27). Our study showed

that A549IR and PC9IR showed increased autophagy flux

and AURKA expression. Therefore, we speculate that high

expression of AURKA may increase radiotherapy resistance by

increasing autophagy.
A B

D

C

FIGURE 7

The autophagy-related nomogram was established in LUAD. (A) Independent prognosis-univariate Cox Forest plot. (B) Independent prognosis-
multifactorial Cox Forest plot. (C) Risk model and disease staging constructs column line graphs. (D) 1-, 3-, and 5-year calibration curve.
A B

FIGURE 8

The risk score had a close relationship with cell proliferation. (A) GSEA enrichment analysis for high and low-risk groups—GO enrichment
analysis. (B) CSEA enrichment analysis for high and low-risk groups–KEGG pathway analysis.
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Napsin A is encoded by the NAPSA gene, which is a sensitive

and specific marker for LUAD (28, 29). In different studies, the

positive rate of Napsin A in LUAD ranged from 58% to 91% in

different studies (30, 31). In lung cancer, Napsin A was

specifically and highly expressed in LUAD, but not in

squamous lung cancer (32), small cell lung cancer (33), or

carcinoid tumors (34). It was found that NAPSA was

negatively correlated with the degree of transformation in a

tumor (31). A recent study showed that overexpression of

NAPSA inhibits integrin signaling to reverse EMT, thus

reversing the susceptibility of gefitinib-resistant A549 cell lines

to regain drug treatment (35). Further studies found that LUAD

patients who had elevated Napsin A expression had a better

survival rate (36). In addition, Napsin A deficiency is also a risk
Frontiers in Immunology 11
indicator for worse postoperative prognosis in LUAD patients

(37). Therefore, NAPSA may be an effective therapeutic target

for lung adenocarcinoma. To our knowledge, the sensitivity of

NAPSA to radiotherapy for lung adenocarcinoma has not been

reported. Our study found that NAPSA expression decreased

obviously in the radiotherapy-resistant group of patients.

Combining previous studies with our results, we hypothesize

that NAPSA may influence the effect of radiotherapy in LUAD

patients through the EMT-regulated cell proliferation process.

To resolve the molecular mechanism of the three genes

regulating LUAD, we performed GSEA analysis and found that

the risk score was closely related to cell proliferation. The GO

and KEGG enrichment of DERRAGs is mainly related to

lysosomes, cell cycle transition, DNA replication, double-
A B

D

E F

C

FIGURE 9

The immune microenvironment was different between the low and high-risk groups. (A) Heat map of immune cell correlation analysis in the
high and low-risk groups. (B) Immunocellular correlation analysis Net plot of the high and low-risk groups. (C) Immune cell infiltration in the
high and low-risk groups - Violin diagram. (D–F) AURKA, NAPSA, and SHC1 prognostic biomarker genes, and immune cell correlation. *p < 0.05,
**p < 0.01, and ***p < 0.001. "ns" indicates P value ≥ 0.05, not statistically significant.
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strand break repair, and Ras signaling pathway. Autophagy is a

multi-phased dynamic process regulated by various ARGs, and

recent studies have found that autophagy may influence the

effectiveness of radiation therapy (38). Cellular damage caused

by radiation includes DNA single-strand breaks and double-

strand breaks that activate DNA damage response (DDR) and

thus affect the level of autophagic fluxes (39). The DDR pathway
Frontiers in Immunology 12
activates cell cycle checkpoints causing cell cycle arrest, thus

facilitating damage repair. Meaningfully, chaperone-mediated

autophagy has been reported to regulate Chk1 degradation

during DNA damage in response to DDR (40). The cell cycle

checkpoint is a key factor that can influence radiosensitivity by

affecting cell cycle arrest and damage repair. Like cell cycle

checkpoints, autophagy can be considered a highly conserved
A

B

D

C

FIGURE 10

Validation of the relationship between AURKA, SHC1, and NAPSA genes and radiotherapy sensitivity, and autophagy by constructing resistant cell
lines compared with primary cells. (A) Colony formation assay reveal constructed resistance cells with enhanced radioresistance. (B) The
western blotting assay showed increased levels of resistant cell autophagy. (C, D) Quantitative Real-time PCR verified significant differences in
radiotherapy autophagy-related genes (AURKA, SHC1) between radiotherapy-resistant and primary cells. *p < 0.05, **p < 0.01, and ***p < 0.001.
"ns" indicates P value ≥ 0.05, not statistically significant.
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cytoprotective mechanism in most cases. A new study found that

resistance to radiotherapy due to radiation-induced autophagy

in human pancreatic cancer cell lines is considerably dependent

on G2 checkpoint activation (41). Thus, there is a crosstalk

between G2 checkpoint activation and radiation-induced

autophagic processes. Therefore, when DNA is damaged and

repaired after radiotherapy, the autophagy and cell cycle

checkpoint pathways may regulate the cell proliferation

process by cross-talking between them.

With the advancement in the understanding of radiobiology,

the pursuit of radiotherapy efficacy has changed from “radiation

damage” to “radiation effect” and from simply causing tumor

damage to improving the immune microenvironment after

radiation. Radiation therapy can reshape the tumor’s

immunological microenvironment and change the proportion of

immune cells infiltration. Moreover, cumulative evidence

indicates that autophagic activity can regulate immune cell

infiltration through the regulation of the innate and adaptive

immune systems. Therefore, it is possible to use autophagy as a

new immunomodulatory strategy to improve the efficacy of

radiotherapy in LUAD patients. We examined the immune

infiltration of the patients and found that aDC, B cells, DC,

iDC, macrophages, neutrophils, NK CD56dim cells, T cells, Tcm,

Th1 cells, Th2 cells, and Treg infiltration were markedly different

between the RS and RR groups. DCs are the most functional

antigen-presenting cells (APC), mature DCs can effectively

activate the initial T cells and are at the center of initiating,

regulating, and maintaining the immune response (40). DC cell

subsets induce different specific T cell responses and

thus determine whether they cause immune activation or

immunosuppression (42). Several studies have suggested that

the mechanisms of immunosuppression may be caused by

dysregulation of the Th1/Th2 balance. Although Th1 cells

generate cytokines that act as a suppressor against a

microenvironment that promotes tumor growth (43), conversely

Th2 cells release cytokines that cause immunosuppression, which

can lead to the immune escape of tumor cells (44). Experimental

animal studies have found that IR triggers a sustained Th2

immune response, thereby altering the Th1/Th2 balance,

resulting in immune-suppression (45). Our study also found

that SHC1 and AURKA expression was elevated in the RR

group, positively correlated with Th2, and negatively correlated

with Th1, while NAPSA expression was elevated in the RS group,

positively correlated with Th1, and negatively correlated with Th2.

Therefore, we presume that these three prognostic signature genes

are associated with the immunological modulation of the Th1/

Th2 shift after radiotherapy.

With the advent of immunotherapy, it is becoming

increasingly important to study how autophagy changes the

tumor immune microenvironment, thereby influencing the

therapeutic outcome of cancer. Both Th1 and Th2 cells are

induced by autophagy, but autophagy induces more effector

Th2 cells than Th1 cells, thereby reducing the ratio of Th1/Th2
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cells and inducing suppression of the tumor immune

microenvironment (46). Recent evidence indicates that

radiation-induced immunosuppression may be caused by a

reduction in tumor-infiltrating CD8+ DCs and a decrease in

the Th1/Th2 ratio (47). Therefore, IR-induced autophagy

may cause a Th1/Th2 imbalance and thus create an

immunosuppressive environment. Macrophages are recruited at

the site of irradiation after IR (48). Recent studies have shown

that high-dose radiation promotes anti-inflammatory activation

via macrophages (49), and low-dose radiation with

immunotherapy induces pro-inflammatory activation of

macrophages (50). Therefore, IR can activate macrophages and

thus affect the efficacy of radiotherapy. Our study observed that

macrophages were significantly different in the two risk

groups. However, T cells may also suppress the tumor

microenvironment in LUAD. A subpopulation of CD4+ T

cells, the regulatory T cells (Tregs), is a key player in

suppressing anti-tumor immunity (51). Radiotherapy

can increase Tregs cell infiltration, thereby triggering

immunosuppression and contributing to a pro-tumorigenic

phenotype (52). One of the current strategies for enhancing

radiation-mediated anti-tumor immunity is Treg depletion

(53). However, recent studies have found that deletion of two

important genes in autophagy, Atg7 or Atg5, leads to loss of Treg

cells in an inflammation-activated environment. As a result,

autophagy interacts with environmental signaling and

metabolic homeostasis to protect Treg cells in an

inflammation-activated environment (54). Thus, autophagy

may affect the antitumor effect by increasing Treg cell

infiltration after radiotherapy.

In conclusion, this study identified for the first time three

autophagy genes associated with LUAD radiotherapy and

prognosis, discussed the underlying molecular mechanisms,

and developed a predictive model that can effectively predict

the prognosis of LUAD. SHC1, NAPSA, and AURKA, which

are strongly linked to immune cell infiltration and are relevant

biomarkers that may have great predictive power, are

potentially significant for the efficacy and prognostic

improvement of radiotherapy in patients with LUAD.

Furthermore, we confirmed that radiotherapy resistance in

LUAD is partially due to elevated levels of autophagy by

comparing control and IR-resistant cells. However, the

sample data of this study were obtained from the TCGA

and GEO databases, and different radiation doses and

radiotherapy fractionation schedules mediating autophagy

and remodeling of the immune microenvironment may have

different effects. Currently, no optimal radiation doses and

segmentation scheme have been identified for combining

immunotherapy. Next, we will investigate the relationship

between autophagy and immunotherapy in LUAD with

different radiation doses and fractionation schemes.

Furthermore, since there are very few LUAD patients treated

with postoperative radiotherapy, tissue samples are difficult to
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collect; thus, this study can only be verified by constructing a

radiotherapy-resistant cell line.
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