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Objective: The aim of the current study was to investigate the contributing role

of gene variation and transcription levels among the m6A methyltransferases

METTL3, METTL14, and WTAP in pulmonary tuberculosis (PTB).

Methods: A case-control study including 461 PTB patients and 467 normal

controls was designed for genotyping. Three SNPs in METTL3 (rs1061027,

rs1139130, rs1061026), three SNPs in METTL14 (rs62328061, rs4834698,

rs1064034), and two SNPs in WTAP (rs1853259, rs11752345) were genotyped

via the SNPscan™ technique.METTL3,METTL14, andWTAP transcription levels

were determined in 78 PTB patients and 86 controls via quantitative real-time

reverse-transcription PCR.

Results: Frequencies of the METTL14 rs62328061 GG genotype, WTAP

rs11752345 CT genotype, and T allele were significantly increased in PTB

patients compared to controls. An increased risk of rs62328061 was detected

in a recessive model, and a decreased risk of rs11752345 was detected in a

dominant model in the PTB group. METTL3 gene variation was not associated

with PTB risk. The METTL3 rs1139130 GG genotype was significantly increased

with drug resistance, and the G allele was significantly decreased with drug-

induced liver injury in PTB patients. A reduced frequency of the METTL14

rs62328061 G allele was associated with leukopenia, a reduced frequency of

theWTAP rs11752345 T allele was associated with sputum smear positivity, and a

higher frequency of the METTL14 rs4834698 TC genotype was evident in PTB

patients with hypoproteinemia. Compared to controls, METTL3, METTL14, and

WTAP transcription levels in PTB patients were significantly decreased, and the

level of WTAP was increased in PTB patients with drug resistance. METTL3 level

was negatively associated with erythrocyte sedimentation rate and aspartate

aminotransferase, and METTL14 level was negatively correlated with alanine

aminotransferase and aspartate aminotransferase.
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Conclusion: METTL14 rs62328061 and WTAP rs11752345 variants were

associated with the genetic background of PTB, and METTL3, METTL14, and

WTAP levels were abnormally decreased, suggesting that these m6A

methyltransferases may play important roles in PTB.
KEYWORDS

m6A methyltransferase, single nucleotide polymorphisms, pulmonary tuberculosis,
METTL3, METTL14, WTAP
Introduction

Tuberculosis (TB) is a common infectious disease caused by

Mycobacterium tuberculosis (MTB), and it remains one of the

most serious public health problems worldwide (1). A World

Health Organization update reported that there was an

estimated 9.9 million new incident TB patients globally in

2021 (2). It is well known that people infected with MTB can

develop several possible outcomes, such as MTB clearance,

primary TB, latent TB infection, and active TB. Studies

indicate that approximately 10% of individuals infected with

MTB will eventually progress to active TB (3, 4). The occurrence

and development of TB is mainly influenced by complex

interactions between the MTB strain, the external

environment, and genetic factors (5, 6). Host genetics are the

essential factor determining disease susceptibility and outcomes

after MTB infection in many case-control studies, animal model

studies, and twin and family studies (7, 8). Continuing studies on

the roles of genetic variants in TB susceptibility would contribute

to the development of advantageous approaches to TB

prevention, diagnosis, and treatment, and many genetic

variations have been shown to be associated with susceptibility

to TB (9, 10).

N6-methyladenosine (m6A) is formed via methylation of

the sixth N atom on the adenine base, which is reportedly the

most abundant post-transcriptional modification of RNA in

eukaryotes, particularly messenger RNA (mRNA) (11). m6A

regulates post-transcriptional mRNA levels in a dynamic and

reversible manner (12). m6A modification is regulated by several

key regulators, including RNA methyltransferases (METTL3,

METTL14, and WTAP), demethylases, and m6A-binding

proteins (13). m6A modification is involved in many

important biological processes, and it is closely related to the

occurrence and development of many diseases.

Epigenetic modification, including DNA methylation and

noncoding RNAs, reportedly contributes to pulmonary TB

(PTB) progression (14, 15). In recent years m6A methylation

was also found in the MTB genome (16). Therefore, m6A

methylation may be involved in the pathogenesis of PTB.
02
Strong evidence indicates that abnormal expression of m6A

key regulators may result in abnormal RNA m6A

modification, leading to a variety of diseases (17, 18). In

addition, some functional single nucleotide polymorphisms

(SNPs) in specific regions of m6A key regulator genes may

influence m6A methylation, thereby affecting disease

development. For example, several SNPs in METTL3 and

METTL14 genes have been associated with neuroblastoma,

Wilms ’ tumor, acute lymphoblast ic leukemia, and

autoimmune thyroid disease (19–22). In a previous study,

genetic variations in m6A demethylases FTO could affect

susceptibility to PTB (23), but few studies have investigated

associations between variation in key m6A modification

regulatory genes and PTB risk. The current epidemiological

study was conducted to identify novel m6A methyltransferases

SNPs associated with susceptibility to PTB. The study assessed

associations between three m6A methyltransferase genes

(METTL3, METTL14, and WTAP) SNPs, as well as their

transcription levels, and PTB risk.
Materials and methods

Study subjects

In this case-control study, 461 PTB patients and 467 normal

controls were consecutively enrolled, and associations between

m6A methyltransferase gene polymorphisms and PTB

susceptibility were analyzed. Then, 78 PTB patients and 86

no rma l c on t r o l s w e r e e n r o l l e d t o d e t e c t m6A

methyltransferase transcription levels. All PTB patients were

recruited from the Department of Tuberculosis at Anhui Chest

Hospital, whereas normal controls were selected from a health

center in the same area. PTB patients were diagnosed by

specialists based on indicative clinical symptoms, chest

radiography, sputum and/or bronchoalveolar lavage fluid MTB

culture, microscopy for acid fast bacilli, and effects of anti-TB

treatment. The exclusion criteria included HIV positivity,

hepatitis, malignancy, and immunodeficiency. Individuals
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without a history of TB, malignant tumor, HIV or other

infectious diseases were included in the study as normal

controls. The control group was required to be asymptomatic

with negative sputum smears and cultures, and normal chest

radiographs. All subjects were of Chinese Han ethnicity.

The study was approved by the Medical Ethics Committee of

Anhui Medical University (approval number 20200250). After

obtaining informed consent, peripheral blood samples and

relevant information were collected from each participant with

the help of professional physicians. The data collected included

basic demographic characteristics and some clinical data such as

fever, drug resistance, drug-induced liver injury (DILI),

pulmonary infection, leukopenia, sputum smears, total

bilirubin, aspartate aminotransferase (AST), alanine

aminotransferase (ALT), and erythrocyte sedimentation

rate (ESR).
SNP selection

The three m6A methyltransferases METTL3, METTL14,

and WTAP were included in the analyses, and the functional

SNPs in their corresponding genes were chosen based on

previous studies (24). Existing studies investigating

associations between METTL3, METTL14, and WTAP gene

polymorphisms and human diseases were systematically

reviewed, and the SNPs related to human diseases were

identified. Ensembl Genome Browser 85 and CHBS_1000g

software were then used to obtain genotype data on these

genes derived from Han Chinese people living in Beijing, and

the tag SNPs of these genes were selected via the pairwise option

of HaploView 4.0 software (Cambridge, MA, USA). The tag SNP

selection criteria were: (1) a minor allele frequency ≥ 5% in

CHB_1000g, and an r2 threshold > 0.8; (2) the common SNPs

located within the chromosome locus transcribed intoMETTL3,

METTL14, or WTAP and their flanking 2000 bp regions were

captured; (3) potentially functional SNPs located within the 5’

untranslated region, 3’ untranslated region, and exon were

preferentially selected. Lastly, three SNPs in the METTL3 gene

(rs1061027, rs1139130, rs1061026), three SNPs in theMETTL14

gene (rs62328061, rs4834698, rs1064034), and two SNPs in the

WTAP gene (rs1853259, rs11752345) were selected.
DNA extraction and genotyping

Samples of approximately 5 mL of peripheral early morning

fasting blood were collected from all subjects, and genomic DNA

was extracted via a Flexi Gene-DNA Kit (Qiagen, Valencia, CA)

for genotyping. Genotyping of all DNA samples for the selected

SNPs was conducted via the Three SNPs in METTL3

(rs1061027, rs1139130, rs1061026), three SNPs in METTL14

(rs62328061, rs4834698, rs1064034), and two SNPs in WTAP
Frontiers in Immunology 03
(rs1853259, rs11752345) were genotyped via the SNPscan™

technique, with technical support from the Center for Genetic

and Genomic Analysis, Genesky Biotechnologies Inc.

(Shanghai). Only participants with 100% genotyping success

for the selected SNPs were included in the final analysis.
Quantitative real-time reverse-
transcription PCR

Peripheral blood mononuclear cells (PBMCs) were isolated

from 3 mL anticoagulant peripheral blood, and total RNA was

extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA,

USA). A NanoDrop 2000 spectrophotometer (Thermo

Scientific, USA) was used to determine total RNA

concentrations. Total RNA was then reverse transcribed into

cDNA by the PrimeScript™ RT Reagent Kit (Takara Bio Inc.,

Japan). In this experiment a 20-mL reverse transcription reaction

system with a maximum of 1 mg total RNA was used, and the

amount of total RNA needed in the reaction system was

determined based on the RNA concentration.

METTL3, METTL14, and WTAP mRNA levels in PBMCs

were detected via quantitative real-time reverse transcription

(qRT) PCR with SYBR Green (SYBR Premix Ex Taq II, Takara

Bio Inc., Japan). qRT-PCRs were conducted using a QuantStudio

12K Flex Real-Time PCR System (Applied Biosystems, Foster

City, CA, USA), and the cycle conditions of reactions were 95°C

for 1 min, followed by 42 cycles at 95°C for 10 sec, 60°C for 30

sec, and 72°C for 1 min. Relative transcription levels of METTL3,

METTL14, andWTAP were calculated via comparisons with the

housekeeping gene (internal control) b-actin in the same sample,

and the 2-△△Ct method was used to express levels (25).
Statistical analysis

Whether the genotypes distribution of all SNPs in normal

controls were in Hardy-Weinberg equilibrium was assessed via the

Chi-square test. Associations between m6A methyltransferase gene

polymorphisms and PTB susceptibility were estimated via odds

ratios (OR) and 95% confidence intervals (CI) with logistic

regression analyses. Two genetic models (dominant and recessive)

were used to analyze associations between these SNPs and PTB risk,

and haplotype analysis was conducted via SHEsis software (26).

Transcription levels of METTL3, METTL14, and WTAP are

expressed as median and quartile intervals, and the Mann-

Whitney U test and the Kruskal-Wallis H test were respectively

used to evaluate differences in these m6A methyltransferase levels

between two groups and among three groups. Correlations between

these m6A methyltransferase levels and experimental indexes in

PTB patients were analyzed via the Spearman rank correlation

coefficient test. All statistical analyses were conducted with SPSS
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23.0 (SPSS Inc., IL, USA), and two-sided p values of < 0.05 were

deemed to indicate statistical significance.
Results

Associations between m6A
methyltransferase gene polymorphisms
and PTB susceptibility

The PTB group genotyped included 194 females and 267

males, with a mean age of 45.56 ± 17.75 years. The normal

control group genotyped included 265 females and 202 males,

with a mean age of 43.38 ± 13.86 years. The genotype

distributions of all SNPs in normal controls were in Hardy-

Weinberg equilibrium, and the allele and genotype frequencies

of these SNPs are shown in Table 1.

In the METTL14 gene, the frequency of the rs62328061 GG

genotype was significantly higher in PTB patients than in normal

controls, and the genotype was associated with PTB

susceptibility in the recessive model (GG versus AA p = 0.043;

GG versus AG+AA p = 0.024). There was no significant

association between the rs1064034 variant and PTB risk. In

comparisons of WTAP rs11752345 variant genotype and allele

frequencies between the PTB group and control group, the CT

genotype and T allele frequencies were significantly increased in

PTB patients (CT versus CC p = 0.004; T versus C p = 0.025).

There was a decreased risk of the rs11752345 variant in the

dominant model (CC versus CT+TT p = 0.008). PTB risk was

not significantly associated with the WTAP rs1853259 variant,

or with the METTL3 rs1139130, rs1061026, or rs1061027

variants (all p > 0.05).

A case-only analysis was performed to analyze associations

between METTL3, METTL14, and WTAP gene variants and

common clinical features of PTB (Table 2). METTL3 gene

rs1139130 GG genotype frequency was significantly positively

associated with drug resistance (p = 0.017), whereas rs1139130 G

allele frequency was significantly negatively associated with DILI

(p = 0.041) in PTB patients. The METTL14 gene G allele

frequency of the rs62328061 variant was significantly

associated with a decreased risk of leukopenia (p = 0.016), and

a higher frequency of the rs4834698 TC genotype was observed

in PTB patients with hypoproteinemia (p = 0.042). A decreased

frequency of the WTAP rs11752345 T allele was significantly

associated with sputum smear positivity (p = 0.041). There were

no significant associations between other SNPs and the clinical

features of PTB.
Haplotype analysis

The main haplotypes of METTL3, METTL14, and WTAP

genes were detected via SHEsis software, and the frequency
Frontiers in Immunology 04
distributions of these haplotypes, including five for METTL3

(AGC, ATC, GGC, GTA, GTC), four forMETTL14 (ATA, ATG,

TCA, TTA), and three for WTAP (CA, CG, TA) are shown in

Table 3. Compared with normal controls, the frequency of the

METTL3 AGC haplotype was significantly lower in PTB patients

(p = 0.046), and the frequency of the WTAP TA haplotype was

significantly higher (p = 0.035).
m6A methyltransferase transcription
levels in the PTB group and the
control group

The transcription levels of METTL3, METTL14, and WTAP

in PBMCs were significantly lower in PTB patients than in

normal controls (all p < 0.001) (Figure 1). Associations between

METTL3, METTL14, and WTAP mRNA levels and multiple

clinical features were investigated in PTB patients. WTAP

transcription level was significantly greater in PTB patients

with drug resistance than in PTB patients without drug

resistance (p = 0.030) (Table 4). METTL3 transcription level

was negatively associated with ESR (p = 0.035) and AST (p =

0.022) in PTB patients, and METTL14 transcription level was

negatively associated with ALT (p = 0.049) and AST (p =

0.004) (Table 5).
Associations between m6A
methyltransferase gene polymorphisms
and their transcription levels in
PTB patients

The Associations between genes variation in m6A

methyltransferase METTL3, METTL14, and WTAP and their

transcription levels were assessed in 64 PTB patients, and no

significant differences were detected (all p > 0.05) (Table 6).
Discussion

Many novel genetic variants associated with susceptibility to

PTB have been identified via genome-wide association studies

and candidate gene studies, but unearthing the full range of PTB

susceptibility variations remains a challenge. Given the

important role of m6A modification in the development of

multiple diseases, potential associations between genetic

variation of m6A-modified genes and disease susceptibility

have also attracted increased attention in recent years (27, 28).

The classic m6A methyltransferase complex mainly consists of

METTL3, METTL14, and WTAP, which mediate m6A

methylation of mRNA. METTL3 is a vital methyltransferase as

an S-adenosylmethionine-binding subunit, whereas METTL14

is an RNA-binding scaffold for substrate recognition. WTAP
frontiersin.org

https://doi.org/10.3389/fimmu.2022.992628
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.992628
TABLE 1 Association between METTL3, METTL14, and WTAP genes polymorphism and PTB risk.

SNP Analyze model PTB patients Controls P value OR (95% CI)

METTL3

rs1139130 Genotype GG 52 (11.28) 65 (13.92) 0.327 1.065 (0.808,1.403)

AG 217 (47.07) 207 (44.33) 0.656 0.813 (0.536,1.231)

AA 192 (41.65) 195 (41.76) Reference

Allele G 321 (34.82) 337 (36.08) 0.599 1.020 (0.953,1.091)

A 601 (65.18) 597 (63.92) Reference

Dominant model AA 192 (41.65) 195 (41.76) 0.974 0.997 (0.857,1.161)

AG+GG 269 (58.35) 272 (58.24) Reference

Recessive model GG 52 (11.28) 65 (13.92) 0.226 1.031 (0.981,1.082)

AG+AA 409 (88.72) 402 (86.08) Reference

rs1061026 Genotype GG 4 (0.87) 3 (0.64) 0.723 1.313 (0.292,5.905)

TG 68 (14.75) 81 (17.34) 0.289 0.829 (0.581,1.175)

TT 389 (84.38) 383 (82.01) Reference

Allele G 76 (8.24) 87 (9.31) 0.415 1.012 (0.984,1.041)

T 846 (91.76) 847 (90.69) Reference

Dominant model TT 389 (84.38) 383 (82.01) 0.335 0.868 (0.651,1.157)

TG+GG 72 (15.62) 84 (17.99) Reference

Recessive model GG 4 (0.87) 3 (0.64) 0.692 1.351 (0.304,6.002)

TG+TT 457 (99.13) 464 (99.36) Reference

rs1061027 Genotype AA 15 (3.25) 21 (4.50) 0.328 0.712 (0.360,1.407)

CA 142 (30.80) 143 (30.62) 0.943 0.990 (0.747,1.311)

CC 304 (65.94) 303 (64.88) Reference

Allele C 172 (18.66) 185 (19.81) 0.529 1.014 (0.970,1.060)

A 750 (81.34) 749 (80.19) Reference

Dominant model CC 304 (65.94) 303 (64.88) 0.734 1.016 (0.926,1.116)

CA+AA 157 (34.06) 164 (35.12) Reference

Recessive model AA 15 (3.25) 21 (4.50) 0.327 0.724 (0.378,1.386)

CA+CC 446 (96.75) 446 (95.50) Reference

METTL14

rs1064034 Genotype AA 41 (8.89) 37 (7.92) 0.858 1.045 (0.645,1.692)

AT 192 (41.65) 215 (46.04) 0.211 0.842 (0.643,1.102)

TT 228 (49.46) 215 (46.04) Reference

Allele A 274 (29.72) 289 (30.94) 0.566 1.018 (0.958,1.081)

T 648 (70.28) 645 (69.06) Reference

Dominant model TT 228 (49.46) 215 (46.04) 0.297 0.937 (0.828,1.059)

AT+AA 233 (50.54) 252 (53.96) Reference

Recessive model AA 41 (8.89) 37 (7.92) 0.594 1.123 (0.734,1.718)

AT+TT 420 (91.11) 430 (92.08) Reference

rs62328061 Genotype GG 18 (3.90) 7 (1.50) 0.043 2.501 (1.031,6.069)

AG 114 (24.73) 140 (29.98) 0.117 0.792 (0.592,1.060)

AA 329 (71.37) 320 (68.52) Reference

Allele G 150 (16.27) 154 (16.49) 0.898 1.003 (0.963,1.044)

A 772 (83.73) 780 (83.51) Reference

Dominant model AA 329 (71.37) 320 (68.52) 0.345 0.910 (0.747,1.107)

AG+GG 132 (28.63) 147 (31.48) Reference

Recessive model GG 18 (3.90) 7 (1.50) 0.024 2.605 (1.098,6.177)

AG+AA 443 (96.10) 460 (98.50) Reference

rs4834698 Genotype CC 108 (23.43) 97 (20.77) 0.786 1.053 (0.727,1.524)

(Continued)
Frontiers in Immuno
logy
 05
 frontiersin.org

https://doi.org/10.3389/fimmu.2022.992628
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.992628
interacts with METTL3 and METTL14, then localizes them into

nuclear speckles (29, 30). Notably the SNPs located in these m6A

methyltransferases are reportedly associated with disease

susceptibility via m6A methylation and related biological

processes (19, 20, 31). To the best of our knowledge, the

current study is the first to investigate associations between

polymorphic variants of the m6A methyltransferase genes

METTL3, METTL14, and WTAP and PTB susceptibility. The

study provides strong evidence that the METTL14 gene variant

rs62328061 and the WTAP gene variant rs11752345 are

associated with the risk of PTB, and that METTL3, METTL14,

and WTAP levels are decreased in PTB patients.

To date, studies on genetic variation ofMETTL3 and disease

susceptibility have mainly focused on cancers. Lin et al. (32)

suggested that the combination of rs1139130, rs1263801,

rs1061026, and rs1061027 variants in the METTL3 gene could

reduce the risk of Wilms’ tumor in children. Another study

reported that these four SNPs were also related to higher

susceptibility to neuroblastoma (19). In contrast with these

findings, rs1061027, rs1139130, and rs1061026 variants were
Frontiers in Immunology 06
not significantly associated with PTB susceptibility in the present

study. Compared with single SNPs, association studies based on

haplotypes of multiple markers can significantly enhance the

mapping and characterization of disease susceptibility genes

(33). In this study, we assessed whether the main haplotypes

consisting of the aforementioned three polymorphisms were

associated with PTB, and the AGC haplotype was significantly

associated with a lower risk of PTB. These results suggest that

there may be weak associations betweenMETTL3 gene variation

of and PTB susceptibility, and these variants may interact with

each other to modify the PTB risk. This should be confirmed in

future studies with larger sample sizes. In addition, rs1139130

polymorphism was also significantly associated with drug

resistance and DILI in PTB patients. This further proved that

METTL3 gene variation was involved in the pathogenesis of

PTB, and indicated that this SNP could be used to predict

adverse reactions in patients, thus contributing to the

formulation of more appropriate treatment measures.

In previous studies, METTL14 gene rs62328061

polymorphism was significantly associated with reduced
TABLE 1 Continued

SNP Analyze model PTB patients Controls P value OR (95% CI)

TC 225 (48.81) 249 (53.32) 0.314 0.854 (0.628,1.161)

TT 128 (27.77) 121 (25.91) Reference

Allele C 441 (47.83) 443 (47.43) 0.863 1.008 (0.917,1.109)

T 481 (52.17) 491 (52.57) Reference

Dominant model TT 128 (27.77) 121 (25.91) 0.524 0.975 (0.902,1.054)

TC +CC 333 (72.23) 346 (74.09) Reference

Recessive model CC 108 (23.43) 97 (20.77) 0.329 1.128 (0.885,1.437)

TC +TT 353 (76.57) 370 (79.23) Reference

WTAP

rs11752345 Genotype TT 1 (0.22) 4 (0.86) 0.246 0.273 (0.030,2.449)

CT 83 (18.00) 52 (11.13) 0.004 1.740 (1.120,2.529)

CC 377 (81.78) 411 (88.01) Reference

Allele T 85 (9.22) 60 (6.42) 0.025 0.970 (0.945,0.996)

C 837 (90.78) 874 (93.58) Reference

Dominant model CC 377 (81.78) 411 (88.01) 0.008 1.520 (1.112,2.077)

CT+TT 84 (18.22) 56 (11.99) Reference

Recessive model TT 1 (0.22) 4 (0.86) 0.183 0.253 (0.028,2.257)

CT+CC 460 (99.78) 463 (99.14) Reference

rs1853259 Genotype GG 63 (13.67) 74 (15.85) 0.497 0.872 (0.586,1.297)

AG 229 (49.67) 220 (47.11) 0.658 1.066 (0.804,1.412)

AA 169 (36.66) 173 (37.04) Reference

Allele G 355 (38.5) 368 (39.4) 0.692 0.977 (0.799,1.161)

A 567 (61.5) 566 (60.6) Reference

Dominant model AA 169 (36.66) 173 (37.04) 0.903 1.006 (0.912,1.110)

AG+GG 292 (63.34) 294 (62.96) Reference

Recessive model GG 292 (13.67) 294 (15.85) 0.858 0.989 (0.875,1.118)

AG+GG 398 (86.33) 393 (84.15) Reference
Bold value means P < 0.05.
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TABLE 2 Associations between METTL3, METTL14, and WTAP genes polymorphisms and clinical features of PTB patients.

SNP Allele Clinical features Group Genotype n (%) P value Allele n (%) P value

(M/m) MM Mm mm M m

METTL3

rs1139130 A/G fever + 37 (51.39) 27 (37.5) 8 (11.11) 0.165 101 (70.14) 43 (29.86) 0.174

– 155 (39.85) 190 (48.84) 44 (11.31) 500 (64.27) 278 (35.73)

drug resistance + 32 (40.51) 30 (37.97) 17 (21.52) 0.017 94 (59.49) 64 (40.51) 0.114

– 195 (42.39) 217 (47.17) 48 (10.43) 607 (65.98) 313 (34.02)

DILI + 39 (51.32) 32 (42.11) 5 (6.58) 0.119 110 (72.37) 42 (27.63) 0.041

– 188 (40.6) 215 (46.44) 60 (12.96) 591 (63.82) 335 (36.18)

pulmonary infection + 45 (48.39) 37 (39.78) 11 (11.83) 0.377 127 (68.28) 59 (31.72) 0.307

– 182 (40.81) 210 (47.09) 54 (12.11) 574 (64.35) 318 (35.65)

hypoproteinemia + 30 (53.57) 20 (35.71) 6 (10.71) 0.179 80 (71.43) 32 (28.57) 0.133

– 197 (40.79) 227 (47) 59 (12.22) 621 (64.29) 345 (35.71)

leukopenia + 15 (41.67) 18 (50.00) 3 (8.33) 0.744 48 (66.67) 24 (33.33) 0.763

– 212 (42.15) 229 (45.53) 62 (12.33) 653 (64.91) 353 (35.09)

sputum smear-positive + 60 (39.22) 72 (47.06) 21 (13.73) 0.69 192 (62.75) 114 (37.25) 0.390

– 149 (42.94) 157 (45.24) 41 (11.82) 455 (65.56) 239 (34.44)

rs1061026 T/G fever + 61 (84.72) 10 (13.89) 1 (1.39) 0.856 132 (91.67) 12 (8.33) 0.966

– 328 (84.32) 58 (14.91) 3 (0.77) 714 (91.77) 64 (8.23)

drug resistance + 67 (84.81) 11 (13.92) 1 (1.27) 0.786 145 (91.77) 13 (8.23) 0.917

– 385 (83.7) 72 (15.65) 3 (0.65) 842 (91.52) 78 (8.48)

DILI + 69 (90.79) 7 (9.21) 0 (0) 0.186 145 (95.39) 7 (4.61) 0.066

– 383 (82.72) 76 (16.41) 4 (0.86) 842 (90.93) 84 (9.07)

pulmonary infection + 83 (89.25) 10 (10.75) 0 (0) 0.247 176 (94.62) 10 (5.38) 0.098

– 369 (82.74) 73 (16.37) 4 (0.90) 811 (90.92) 81 (9.08)

hypoproteinemia + 46 (82.14) 10 (17.86) 0 (0) 0.694 102 (91.07) 10 (8.93) 0.845

– 406 (84.06) 73 (15.11) 4 (0.83) 885 (91.61) 81 (8.39)

leukopenia + 32 (88.89) 4 (11.11) 0 (0) 0.649 68 (94.44) 4 (5.56) 0.362

– 420 (83.50) 79 (15.71) 4 (0.80) 919 (91.35) 87 (8.65)

sputum smear-positive + 131 (85.62) 21 (13.73) 1 (0.65) 0.743 283 (92.48) 23 (7.52) 0.504

– 288 (83.00) 57 (16.43) 2 (0.58) 633 (91.21) 61 (8.79)

rs1061027 C/A fever + 46 (63.89) 23 (31.94) 3 (4.17) 0.857 115 (79.86) 29 (20.14) 0.619

– 258 (66.32) 119 (30.59) 12 (3.08) 635 (81.62) 143 (18.38)

drug resistance + 48 (60.76) 25 (31.65) 6 (7.59) 0.066 121 (76.58) 37 (23.42) 0.095

– 308 (66.96) 140 (30.43) 12 (2.61) 756 (82.17) 164 (17.83)

DILI + 47 (61.84) 27 (35.53) 2 (2.63) 0.586 121 (79.61) 31 (20.39) 0.550

– 309 (66.74) 138 (29.81) 16 (3.46) 756 (81.64) 170 (18.36)

pulmonary infection + 61 (65.59) 27 (29.03) 5 (5.38) 0.474 149 (80.11) 37 (19.89) 0.631

– 295 (66.14) 138 (30.94) 13 (2.91) 728 (81.61) 164 (18.39)

hypoproteinemia + 41 (73.21) 14 (25.00) 1 (1.79) 0.454 96 (85.71) 16 (14.29) 0.211

– 315 (65.22) 151 (31.26) 17 (3.52) 781 (80.85) 185 (19.15)

leukopenia + 22 (61.11) 13 (36.11) 1 (2.78) 0.756 57 (79.17) 15 (20.83) 0.622

– 334 (66.4) 152 (30.22) 17 (3.38) 820 (81.51) 186 (18.49)

sputum smear-positive + 95 (62.09) 52 (33.99) 6 (3.92) 0.548 242 (79.08) 64 (20.92) 0.305

– 233 (67.15) 102 (29.39) 12 (3.46) 568 (81.84) 126 (18.16)

METTL14

rs1064034 T/A fever + 37 (51.39) 33 (45.83) 2 (2.78) 0.135 107 (74.31) 37 (25.69) 0.250

– 191 (49.10) 159 (40.87) 39 (10.03) 541 (69.54) 237 (30.46)

drug resistance + 46 (58.23) 26 (32.91) 7 (8.86) 0.295 118 (74.68) 40 (25.32) 0.301

(Continued)
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TABLE 2 Continued

SNP Allele Clinical features Group Genotype n (%) P value Allele n (%) P value

(M/m) MM Mm mm M m

– 228 (49.57) 194 (42.17) 38 (8.26) 650 (70.65) 270 (29.35)

DILI + 40 (52.63) 31 (40.79) 5 (6.58) 0.824 111 (73.03) 41 (26.97) 0.600

– 234 (50.54) 189 (40.82) 40 (8.64) 657 (70.95) 269 (29.05)

pulmonary infection + 45 (48.39) 42 (45.16) 6 (6.45) 0.566 132 (70.97) 54 (29.030) 0.927

– 229 (51.35) 178 (39.91) 39 (8.74) 636 (71.30) 256 (28.70)

hypoproteinemia + 32 (57.14) 21 (37.50) 3 (5.36) 0.515 95 (71.97) 37 (28.03) 0.764

– 242 (50.10) 199 (41.20) 42 (8.70) 683 (70.70) 283 (29.30)

leukopenia + 23 (63.89) 12 (33.33) 1 (2.78) 0.196 58 (80.56) 14 (19.44) 0.071

– 251 (49.90) 208 (41.35) 44 (8.75) 710 (70.58) 296 (29.42)

sputum smear-positive + 82 (53.59) 55 (35.95) 16 (10.46) 0.301 219 (71.57) 87 (28.43) 0.828

– 172 (49.57) 148 (42.65) 27 (7.78) 492 (70.89) 202 (29.11)

rs62328061 A/G fever + 51 (70.83) 20 (27.78) 1 (1.39) 0.426 122 (84.72) 22 (15.28) 0.726

– 278 (71.47) 94 (24.16) 17 (4.37) 650 (83.55) 128 (16.45)

drug resistance + 58 (73.42) 19 (24.05) 2 (2.53) 0.906 135 (85.44) 23 (14.56) 0.725

– 332 (72.17) 112 (24.35) 16 (3.48) 776 (84.35) 144 (15.65)

DILI + 55 (72.37) 19 (25.00) 2 (2.63) 0.928 129 (84.87) 23 (15.13) 0.895

– 335 (72.35) 112 (24.19) 16 (3.46) 782 (84.45) 144 (15.55)

pulmonary infection + 68 (73.12) 23 (24.73) 2 (2.15) 0.781 159 (85.48) 27 (14.52) 0.686

– 322 (72.2) 108 (24.22) 16 (3.59) 752 (84.03) 140 (15.7)

hypoproteinemia + 38 (67.86) 16 (28.57) 2 (3.57) 0.721 92 (82.14) 20 (17.86) 0.465

– 352 (72.88) 115 (23.81) 16 (3.31) 819 (84.78) 147 (15.22)

leukopenia + 32 (88.89) 4 (11.11) 0 (0) 0.064 68 (94.44) 4 (5.56) 0.016

– 358 (71.17) 127 (25.25) 18 (3.58) 843 (83.80) 163 (16.20)

sputum smear-positive + 109 (71.24) 37 (24.18) 7 (4.58) 0.731 255 (83.33) 51 (16.67) 0.537

– 253 (72.91) 83 (23.92) 11 (3.17) 589 (84.87) 105 (15.13)

rs4834698 T/C fever + 15 (20.83) 40 (55.56) 17 (23.61) 0.321 70 (48.61) 74 (51.39) 0.352

– 113 (29.05) 185 (47.56) 91 (23.39) 411 (52.83) 367 (47.17)

drug resistance + 19 (25.68) 35 (47.30) 20 (27.03) 0.716 73 (49.32) 75 (50.68) 0.450

– 109 (28.17) 190 (49.10) 88 (22.74) 408 (52.71) 366 (47.29)

DILI + 20 (29.41) 36 (52.94) 12 (17.65) 0.474 76 (55.88) 60 (44.12) 0.348

– 108 (27.48) 189 (48.09) 96 (24.43) 405 (51.53) 381 (48.47)

pulmonary infection + 18 (21.95) 43 (52.44) 21 (25.61) 0.430 79 (48.17) 85 (51.83) 0.258

– 110 (29.02) 182 (48.02) 87 (22.96) 402 (53.03) 356 (46.97)

hypoproteinemia + 6 (15.00) 27 (67.50) 7 (17.50) 0.042 39 (48.75) 41 (51.25) 0.522

– 122 (28.98) 198 (47.03) 101 (23.99) 442 (52.49) 400 (47.51)

leukopenia + 6 (20.00) 13 (43.33) 11 (36.67) 0.193 25 (41.67) 35 (58.33) 0.092

– 122 (28.31) 212 (49.19) 97 (22.51) 456 (52.90) 406 (47.10)

sputum smear-positive + 34 (26.98) 65 (51.59) 27 (21.43) 0.933 133 (52.78) 119 (47.22) 0.948

– 82 (27.70) 147 (49.66) 67 (22.64) 311 (52.53) 281 (47.47)

WTAP

rs11752345 C/T fever + 55 (76.39) 17 (23.61) 0 (0) 0.372 127 (88.19) 17 (11.81) 0.243

– 322 (82.78) 66 (16.97) 1 (0.26) 710 (91.26) 68 (8.74)

drug resistance + 65 (82.28) 14 (17.72) 0 (0) 0.832 144 (91.14) 14 (8.86) 0.983

– 380 (82.61) 78 (16.96) 2 (0.43) 838 (91.09) 82 (8.91)

DILI + 65 (85.53) 11 (14.47) 0 (0) 0.680 141 (92.76) 11 (7.24) 0.436

– 380 (82.07) 81 (17.49) 2 (0.43) 841 (90.82) 85 (9.18)

pulmonary infection + 75 (80.65) 18 (19.35) 0 (0) 0.667 168 (90.32) 18 (9.68) 0.684
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susceptibility to neuroblastoma (34), and rs1064034, rs298982

polymorphisms were significantly associated with reduced

susceptibility to Wilms’ tumor (21). In the current study, the

rs62328061 GG genotype was associated with an increased risk
Frontiers in Immunology 09
of PTB, but there was no significant association between the

rs1064034 variant and PTB susceptibility. These results provided

key indications of an association between METTL14 gene

variation and PTB susceptibility. In PTB patients, a decreased
TABLE 2 Continued

SNP Allele Clinical features Group Genotype n (%) P value Allele n (%) P value

(M/m) MM Mm mm M m

– 370 (82.96) 74 (16.59) 2 (0.45) 814 (91.26) 78 (8.74)

hypoproteinemia + 50 (89.29) 6 (10.71) 0 (0) 0.358 106 (94.64) 6 (5.36) 0.164

– 395 (81.78) 86 (17.81) 2 (0.41) 876 (90.68) 90 (9.32)

leukopenia + 28 (77.78) 8 (22.22) 0 (0) 0.654 64 (88.89) 8 (11.11) 0.496

– 417 (82.90) 84 (16.70) 2 (0.40) 918 (91.25) 88 (8.75)

sputum smear-positive + 134 (87.58) 19 (12.42) 0 (0) 0.101 287 (93.79) 19 (6.21) 0.041

– 277 (79.83) 69 (19.88) 1 (0.29) 623 (89.77) 71 (10.23)

rs1853259 A/G fever + 24 (33.33) 37 (51.39) 11 (15.28) 0.790 85 (59.03) 59 (40.97) 0.507

– 145 (37.28) 192 (49.36) 52 (13.37) 482 (61.95) 296 (38.05)

drug resistance + 26 (35.14) 38 (51.35) 10 (13.51) 0.948 90 (60.81) 58 (39.19) 0.852

– 143 (36.95) 191 (49.35) 53 (13.70) 477 (61.63) 297 (38.37)

DILI + 24 (35.29) 36 (52.94) 8 (11.76) 0.809 84 (61.76) 52 (38.24) 0.945

– 145 (36.9) 193 (49.11) 55 (13.99) 483 (61.45) 303 (38.55)

pulmonary infection + 29 (35.37) 40 (48.78) 13 (15.85) 0.814 98 (59.76) 66 (40.24) 0.613

– 140 (36.94) 189 (49.87) 50 (13.19) 469 (61.87) 289 (38.13)

hypoproteinemia + 15 (37.50) 21 (52.50) 4 (10.00) 0.775 51 (63.75) 29 (36.25) 0.665

– 154 (36.58) 208 (49.41) 59 (14.01) 516 (61.28) 326 (38.72)

leukopenia + 11 (36.67) 12 (40.00) 7 (23.33) 0.247 34 (56.67) 26 (43.33) 0.427

– 158 (36.66) 217 (50.35) 56 (12.99) 533 (61.83) 329 (38.17)

sputum smear-positive + 45 (35.71) 67 (53.17) 14 (11.11) 0.233 157 (62.30) 95 (37.70) 0.753

– 114 (38.51) 134 (45.27) 48 (16.22) 362 (61.15) 230 (38.85)
front
Bold value means P < 0.05.
TABLE 3 Haplotype analysis of METTL3, METTL14, and WTAP genes in PTB patients and controls.

Haplotype PTB [n (%)] Controls [n (%)] P value OR (95% CI)

METTL3 rs1139130-rs1061026-rs1061027

AGC 27.94 (3.0) 45.14 (4.8) 0.046 0.615 (0.380,0.995)

ATC 573.06 (62.2) 551.86 (59.1) 0.177 1.137 (0.944,1.370)

GGC 47.91 (5.2) 41.62 (4.5) 0.457 1.175 (0.768,1.799)

GTA 171.85 (18.6) 184.76 (19.8) 0.531 0.929 (0.737,1.170)

GTC 101.09 (11.0) 110.38 (11.8) 0.562 0.919 (0.690,1.224)

METTL14 rs1064034-rs4834698-rs62328061

ATA 124.00 (13.4) 136.67 (14.6) 0.476 0.909 (0.699,1.181)

ATG 150.00 (16.3) 152.82 (16.4) 0.947 0.992 (0.775,1.182)

TCA 441.00 (47.8) 442.96 (47.4) 0.882 1.014 (0.845,1.217)

TTA 207.00 (22.5) 200.86 (21.5) 0.633 1.055 (0.847,1.314)

WTAP rs11752345- rs1853259

CA 483.83 (52.5) 506.05 (54.2) 0.489 0.938 (0.781,1.125)

CG 353.17 (38.3) 367.95 (39.4) 0.454 0.958 (0.758,1.155)

TA 83.17 (9.0) 59.95 (6.4) 0.035 1.449 (1.026,2.046)
frequency < 0.03 in both controls & PTB patients has been dropped.
Bold value means P < 0.05.
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FIGURE 1

The transcription levels of METTL3, METTL14 and WTAP in PTB patients and controls.
TABLE 4 Association between METTL3, METTL14, and WTAP transcription levels and several clinical features in PTB patients.

Group +/- N METTL3 level P value METTL14 level P value WTAP level P value

fever + 15 0.361 (0.256,0.835) 0.644 0.400 (0.221,0.819) 0.490 0.158 (0.091,0.258) 0.226

– 63 0.491 (0.307,0.682) 0.432 (0.292,0.936) 0.225 (0.125,0.344)

drug resistance + 5 0.639 (0.241,1.344) 0.333 0.936 (0.203,2.613) 0.364 0.384 (0.232,0.945) 0.030

– 73 0.454 (0.307,0.674) 0.430 (0.280,0.831) 0.192 (0.102,0.309)

DILI + 8 0.371 (0.267,0.717) 0.521 0.648 (0.326,0.902) 0.489 0.237 (0.040,0.385) 0.895

– 70 0.481 (0.307,0.686) 0.428 (0.271,0.865) 0.199 (0.120,0.336)

pulmonary infection + 11 0.342 (0.307,0.639) 0.651 0.363 (0.264,0.921) 0.937 0.170 (0.077,0.242) 0.220

– 67 0.491 (0.306,0.700) 0.432 (0.287,0.845) 0.209 (0.125,0.374)

hypoproteinemia + 16 0.333 (0.271,0.609) 0.173 0.422 (0.255,1.014) 0.853 0.179 (0.048,0.278) 0.282

– 62 0.495 (0.312,0.747) 0.431 (0.293,0.827) 0.217 (0.048,0.278)

leukopenia + 6 0.420 (0.150,0.847) 0.666 0.474 (0.166,1.251) 0.680 0.308 (0.141,0.565) 0.277

– 72 0.462 (0.309,0.678) 0.431 (0.288,0.844) 0.199 (0.103,0.313)

sputum smear-positive + 27 0.437 (0.307,0.656) 0.781 0.515 (.264,0.937) 0.498 0.170 (0.097,0.284) 0.498

– 51 0.495 (0.306,0.760) 0.430 (0.287,0.842) 0.209 (0.149,0.369)
Frontiers in Immunology
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frequency of the rs62328061 G allele was associated with

leukopenia, and an increased frequency of the rs4834698 TC

genotype was associated with hypoproteinemia. This confirmed

the important role of METTL14 gene variation in the

development of PTB, and further functional studies are needed

to investigate the molecular mechanisms involved in the effects
Frontiers in Immunology 11
of rs62328061 on PTB risk. The present study also investigated

associations betweenWTAP gene polymorphisms and the risk of

PTB, and the WTAP rs11752345 CT genotype and T allele

frequencies were significantly increased in PTB patients.

Moreover, the rs11752345 T allele was closely related to

sputum smear in PTB patients. These results suggested that
TABLE 5 The correlation between METTL3, METTL14, and WTAP transcription levels and ESR, TBIL, ALT, AST of PTB patients.

Clinical parameters METTL3 level METTL14 level WTAP level

rs P value rs P value rs P value

ESR -0.243 0.035 -0.054 0.642 -0.034 0.772

TBIL 0.131 0.260 0.057 0.626 -0.018 0.878

ALT -0.079 0.499 -0.227 0.049 -0.083 0.476

AST -0.264 0.022 -0.331 0.004 -0.113 0.336
front
rs:Spearman’s rank correlation coefficient.
Bold value means P < 0.05.
TABLE 6 Association between METTL3, METTL14, and WTAP genes polymorphisms with their transcription levels in PTB patients.

METTL3 SNP Genotype number METTL3 level P value

rs1139130 AA 32 0.554 (0.279,0.678) 0.325

AG 27 0.409 (0.306,0.529)

GG 5 0.559 (0.431,0.760)

rs1061026 TT 55 0.470 (0.312,0.665) 0.412

TG 9 0.495 (0.165,0.642)

GG 0 –

rs1061027 CC 42 0.474 (0.307,0.669) 0.981

CA 20 0.490 (0.303,0.684)

AA 2 0.436 (0.314,0.559)

METTL14 SNP Genotype number METTL14 level P value

rs1064034 TT 32 0.423 (0.261,1.137) 0.917

AT 26 0.422 (0.249,0.826)

AA 6 0.404 (0.253,1.879)

rs62328061 AA 47 0.364 (0.255,0.819) 0.153

AG 14 0.660 (0.359,1.162)

GG 3 0.489 (0.319,1.625)

rs4834698 TT 16 0.449 (0.330, 0.811) 0.690

TC 37 0.400 (0.256, 0.831)

CC 11 0.343 (0.111,1.397)

WTAP SNP Genotype number WTAP level P value

rs11752345 CC 52 0.207 (0.103,0.329) 0.618

CT 12 0.178 (0.082,0.315)

TT 0 –

rs1853259 AA 27 0.225 (0.068,0.344) 0.635

AG 29 0.185 (0.099,0.328)

GG 8 0.246 (0.165,0.307)
Median (interquartile range).
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the CT genotype/T allele of rs11752345 may increase the risk of

PTB, and the T allele may be useful for distinguishing different

phenotypes in PTB patients.

Increasing studies indicate that transcription levels of m6A

methyltransferases are closely related to the pathogenesis and

progression of many diseases. Dysregulation of METTL3 is

considered an important factor affecting the progression of

various malignant tumors such as endometrial cancer (35) and

bladder cancer (36). Another study detected lower METTL14

expression in colorectal cancer (37). Functional m6A

methyltransferase SNPs may affect m6A methyltransferase

expression and thus modify disease susceptibility. Hence, we

designed a case-control study to determine METTL3, METTL14,

andWTAP transcription levels in PTB patients to investigate the

possible mechanism of SNP-mediated PTB susceptibility.

Transcription levels of METTL3, METTL14, and WTAP were

significantly decreased in PTB patients compared to controls.

This suggested that METTL3, METTL14, and WTAP may be

involved in PTB occurrence, and their levels may be used as

auxiliary indicators for PTB diagnosis. This must be verified in

the future by well-designed studies. WTAP level was also

significantly associated with drug resistance, ALT, and AST,

and METTL3 level was negatively associated with ESR and AST

in PTB patients. These findings contribute to improving our

understanding of the role of m6A methyltransferases in PTB

development. Lastly, we analyzed potential associations between

m6A methyltransferase gene variants and their transcription

levels in PTB patients. No significant associations were detected,

possibly due to the small sample size.

Themajor strengths of this study include its novelty and rational

design, but the study also had several limitations. It was focused on

the analysis of genetic factors in PTB, but it did not assess the effects

of environmental factors on PTB, or interactions between

environmental factors and genetic variation. Second, associations

between gene variation and the prognosis of PTBwere not analyzed.

Lastly, the study lacked a functional investigation into the effects of

m6A methyltransferase on PTB pathogenesis.

In summary, the current study indicates that polymorphisms

ofMETTL14 rs62328061 andWTAP rs11752345 may contribute

to increased PTB susceptibility, and several SNPs in METTL3,

METTL14, and WTAP genes were associated with the clinical

features including drug resistance, DILI, and leukopenia in PTB

patients. The study demonstrated the important roles of

alterations in METTL3, METTL14, and WTAP in PTB, and

these m6A methyltransferases in the development of PTB. In

order to further validate these findings and determine the

underlying biological mechanisms involving these m6A
Frontiers in Immunology 12
methyltransferases in PTB, more studies incorporating larger

sample sizes and different ethnic populations are warranted.
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