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Gastric cancer (GC) is amalignancy with a high incidence andmortality, and the

emergence of immunotherapy has brought survival benefits to GC patients.

Compared with traditional therapy, immunotherapy has the advantages of

durable response, long-term survival benefits, and lower toxicity. Therefore,

targeted immune cells are the most promising therapeutic strategy in the field

of oncology. In this review, we introduce the role and significance of each

immune cell in the tumor microenvironment of GC and summarize the current

landscape of immunotherapy in GC, which includes immune checkpoint

inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction

of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated

neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector

regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor

microenvironment and reprogram TAMs and TANs into tumor killer cells. The

most widely used immunotherapy strategies are the immune checkpoint

inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1)

antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and

chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies

have significant anti-tumor efficacy in solid tumors and hematological tumors.

Targeting other immune cells provides a new direction for the immunotherapy

of GC despite the relatively weak clinical data, which have been confirmed to

restore or enhance anti-tumor immune function in preclinical studies and

some treatment strategies have entered the clinical trial stage, and it is

expected that more and more effective immune cell–based therapeutic

methods will be developed and applied.
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Introduction

Cancer is the leading cause of death, and the incidence of

gastric cancer (GC) remains high (1), most of which are

advanced or metastatic at the time of diagnosis since a lack of

reliable global screening strategies and specific symptoms (1);

the chemotherapy-based comprehensive treatment is mainly the

treatment method for this part of GC (2). In recent years,

immunotherapy has received extensive attention from

scholars, and some GC patients can benefit from this

treatment. Compared with traditional chemotherapy,

immunotherapy has the advantages of durable response, long-

term survival benefits, lower toxicity, and active against brain

metastases (3–6). At present, the widely used immunotherapy is

immune checkpoint inhibitors (ICI) including programmed cell

death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody,

cytotoxic T lymphocyte–associated protein 4 (CTLA-4)

antibody, and chimeric antigen receptor T (CAR-T) in

adoptive cell therapy (ACT). In addition, therapies targeting

other immune cells have also demonstrated effectiveness in

preclinical anti-tumor studies. Therefore, therapy targeting

immune cells will become the most promising therapeutic

strategy for GC.

Immune cells are the target cells of immunotherapy which as

part of the tumor microenvironment (TME) include dendritic

cells (DCs), natural killer (NK) cells, tumor-associated

macrophages (TAMs), tumor-associated neutrophils (TANs),

myeloid-derived suppressor cells (MDSCs), T cells, and B cells

(7). Initiating immune cells to kill tumors needs to go through 3

steps: 1. Neoantigens produced by the tumor are released and

captured by DCs for processing. 2. DCs present the captured

antigens on major histocompatibility complex (MHC) molecules

to T cells, resulting in the priming and activation of effector T

cells against the cancer-specific antigens. 3. Activated T cells

migrate and infiltrate tumor tissue to destroy their targeted

cancer cells (8). Tumor cells can evade recognition and

clearance by the immune system through various mechanisms

in the above three steps. Among them, M2 TAMs, N2 TANs,

MDSCs, effector regulatory T cells (eTregs), regulatory B cells

(Bregs), and inhibitory targets on various immune cells play an

important role in tumor immune escape, whereas the

tumor-infiltrating DCs, NK, M1 TAMs, and N1 TANs are

beneficial to anti-tumor immunity. In addition, anti-tumor

immunity can be restored by increasing the number or

enhancing the function of anti-tumor immune cells or by

reducing the number of weakening the function of

immunosuppressive cells (Figure 1). Based on this, a lot of

trials have been carried out for targeting immune cells to treat

tumors. This review introduces the impact of immune cells on

the occurrence and development of GC from the perspective of

immune cells in the tumor microenvironment of GC and

summarizes the current strategies for targeting immune cells

to treat GC.
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T cell–based immunotherapy

Targeted T-cell immunotherapy is the most studied and

promising therapeutic approach in the field of GC. Numerous

clinical trials have been conducted and some of these treatments

have achieved remarkable results. T cells are part of the adaptive

immune system, and cellular components are phagocytosed after

tumor cell lysis and expressed on antigen-presenting cells

(APCs) then exposing them to mature lymphocytes and

leading to tumor suppression (9). Different subsets of T cells

determine different tumor prognoses (10). Among which T-cell

subsets that are beneficial to the prognosis and survival of GC

include high levels of CD8+ and CD4+ T-cell infiltration (11),

high CD45ROmemory T cells (12, 13), and high T helper (TH)1/

TH2 ratio (14). While the T-cell subsets associated with GC

occurrence and progression are mainly tumor infiltrative

forkhead box P3-positive (FOXP3+) Tregs (15, 16), FOXP3 is a

transcription factor that is specifically expressed by natural Tregs

(17). It is well known that HP is the main pathogenic factor of

GC and studies have shown that the expression level of

FOXP3+ Tregs in HP-infected patients is significantly higher

than that in non-infected patients (18), and the number of

FOXP3+ Tregs is significantly elevated in gastritis and GC in

HP-infected patients (19). In addition, the expression level of

FOXP3 Tregs is closely related to the occurrence and

development of GC (20, 21). A significant increase in the

proportion of Tregs has been reported in tumor-draining

lymph nodes in patients with GC (22). In addition, highly

expressed FOXP3+ Tregs in sentinel lymph nodes in GC could

predict the metastasis to downstream lymph nodes (23).

However, the correlation between Tregs infiltration and GC

prognosis remains unclear, and there have been many

contradictory results because of different Tregs markers,

location distances, and intracellular interactions. As reported, a

high FOXP3/CD4 ratio has been associated with poor prognosis

in gastric cardia cancer (24). The intratumoral infiltration of

FOXP3+ Tregs suggests a poor prognosis in patients after radical

gastrectomy (21). Moreover, an increase of FOXP3+ Tregs

infiltration in GC tissues and a high proportion of

Tregs/CD8+ T cells both predict a poor prognosis (25).

However, there are some reports to the contrary, for example,

patients with high FOXP3 Tregs cells have a good prognosis in

the microsatellite unstable GC population (26). In gastric cardia

cancer, stromal infiltration of Tregs may inhibit GC progression

caused by chronic inflammation (27). The high expressions of

epithelial-infiltrating CD8+ T cells and FOXP3+ Tregs in the GC

microenvironment also predict a good prognosis; the authors

suggested that the spatial distance between Tregs and CD8+ T

cells determines their effect on prognosis, with an intervening

distance of 30–110 mm predicting a favorable prognosis (28). In

addition, the reason for these two contradictory reports may also

be related to different Tregs subsets; some subsets may specifically

mediate immunosuppression, such as ICOS Tregs cells that play a
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major suppressive role in the GC tumor microenvironment and

which are mainly found in advanced GC patients (29).

Therefore, distinguishing Tregs subsets is also valuable for

predicting the prognosis of GC patients, and immunotherapies

targeting certain Tregs subsets may lead to better efficacy. T

cell–based immunotherapies include ICIs [PD-1/PD-L1,

CTLA-4, lymphocyte activation gene 3 (LAG-3), T-cell

immunoglobulin and mucin domain-3 (TIM-3), T-cell

immunoreceptor with immunoglobulin, and ITIM domain

(TIGIT)], ACTs [CAR-T, tumor-infiltrating lymphocyte (TIL),

and cytokine-induced killer (CIK)], and Tregs-targeted

therapy strategy.
PD-1/PD-L1

The anticancer activity of T cells depends on the detection

of antigenic peptides present on the MHC by the T-cell

receptor (TCR) (30) and the interaction between co-

stimulatory signals and CD80/CD86 (B7 molecule) expressed

on APCs and with cytokine interaction (31). Tumor cells can
Frontiers in Immunology 03
escape the killing of tumor cells by T cells through

downregulating MHC and upregulating the expression of

inhibitory receptors such as PD-L1, CTLA-4, LAG-3, TIM-3

and TIGIT (32–34), and blocking the binding of these

inhibitory receptors to ligands can restore T-cell anti-tumor

activity (35). PD-1/PD-L1 monoclonal antibodies (mAbs)

demonstrate significant anti-tumor effect and prolong overall

survival (OS) in various malignancies (36–38). PD-1 is an

immunosuppressive receptor that is highly expressed on TILs

(35), whereas PD-L1 as the main ligand of PD-1 is highly

expressed on the surface of tumor cells (39). Tumor cells

transmit negative regulatory signals to T cells through the

interaction of PD-1 and PD-L1 thus inhibiting T cells

activation and reducing cytokine secretion and promoting

lymphocyte apoptosis, which was considered to be the main

factors in promoting tumor immune escape (40), so antibodies

that block PD-1 or PD-L1 can restore anti-tumor activity (41).

More than 40% of GC patients express PD-L1 in gastric

carcinoma tissues, and the expression of PD-L1 is

significantly correlated to tumor size, invasion, lymph node

metastasis (LNM), and survival time of patients (42).
FIGURE 1

In the tumor microenvironment, the number of anti-tumor immune cells decreased and the function suppressed, such as DCs, NK, M1 TAMs,
and N1 TANs, while immunosuppressive cells M2 TAMs, MDSCs, N2 TANs, eTregs, and Bregs increased. Immune cell–targeted therapy can be
achieved by increasing the number or enhancing the function of anti-tumor immune cells or by reducing the number or weakening the
function of immunosuppressive cells.
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Anti–PD-1/PD-L1 mAbs have demonstrated good efficacy

in the treatment of GC. In the first-line treatment of GC,

pembrolizumab combined with chemotherapy has a higher

objective response rate (ORR) in people with a combined

positive score (CPS) of ≥10, and the survival benefit of

pembrolizumab monotherapy for GC was greater than that of

chemotherapy in patients with microsatellite instability-high

(MSI-H) (43). In the second-line treatment of gastric and

esophagogastric junction adenocarcinoma, pembrolizumab

improved OS compared with paclitaxel in patients with a CPS

of ≥ 10, and, in the MSI-H subgroup, the OS significantly benefit;

moreover, pembrolizumab had a better safety profile than

paclitaxel (44). In the third-line treatment of GC, the ORR of

pembrolizumab in the treatment of PD-L1–positive GC

(CPS ≥1) patients was 15.5% (45), and, based on this study,

the pembrolizumab was approved in the treatment of

PD-L1–positive advanced GC by FDA. Nivolumab is another

PD-1 inhibitor, which improved ORR, disease control rate

(DCR), progression-free survival (PFS), and OS when

compared with placebo in the third-line or later-line treatment

of GC (46). Currently, nivolumab has been approved in China

(47), Japan, South Korea, and other countries as a third- or later-

line therapeutic option in heavily pretreated patients with

unresectable advanced or recurrent gastric/gastroesophageal

junction cancer (G/GEJ) cancer (48). In addition, nivolumab

combined with chemotherapy [capecitabine plus oxaliplatin

(CapeOx) or leucovorin calcium plus fluorouracil plus

oxaliplatin (FOLFOX)] in the first-line treatment of metastatic

G/GEJ cancer was compared with chemotherapy alone,

combination therapy demonstrated PFS benefit in patients

with CPS ≥ 1 and in all randomized patients, and statistical

significance in patients with CPS ≥5 and the median OS (mOS)

of combination therapy was longer than chemotherapy alone in

this population. Thus, nivolumab combined with FOLFOX/

CapeOx is recommended for late-stage GC with PD-L1

CPS of ≥5 (49). Several phase II studies have shown that

combined therapy using anti-human epidermal growth factor

receptor 2 (HER2) drugs combined with PD-1 antibody or

antiangiogenic inhibitor combined with PD-1 antibody could

be a potential treatment strategy in HER2-positive GC patients

(50, 51). Such regimens are currently being investigated in stage

III clinical trials. Sintilimab (anti–PD-1 mAb) plus CapeOx

showed promising efficacy with encouraging pCR rate,

significant downstaging effect, and good safety profile in

neoadjuvant immunotherapy for GC. This combination

regimen might present a new option for patients with locally

advanced, resectable G/GEJ adenocarcinoma (52). In

addition, the KEYNOTE-585 study is an ongoing phase III

study conducted to evaluate the efficacy and safety of

pembrolizumab plus chemotherapy compared with placebo

plus chemotherapy as neoadjuvant/adjuvant treatment for

localized G/GEJ cancer (53). A phase III study investigating
Frontiers in Immunology 04
the efficacy and safety of neoadjuvant-adjuvant anti–PD-L1

antibody durvalumab and 5-fluorouracil-leucovorin-

oxaliplatin-docetaxel (FLOT) chemotherapy followed by

adjuvant durvalumab monotherapy in patients with resectable

G/GEJ cancer is also underway recruiting (54). Data from these

clinical trials may lay the foundation for the use of immunologic

drugs in neoadjuvant treatment of GC.

PD-1 and PD-L1 mAbs have an encouraging survival

advantage in GC. Unfortunately, PD-1 and PD-L1 antibodies

failed to improve OS and PFS in some trials. For example, the

KEYNOTE-061 study showed that second-line treatment with

pembrolizumab compared with paclitaxel did not significantly

prolong OS in patients with PD-L1 CPS ≥ 1 (44). In KEYNOTE-

062, pembrolizumab or pembrolizumab in combination with

chemotherapy in first-line treatment of advanced GC, ICI

monotherapy, or in combination with chemotherapy did not

demonstrate significantly improved survival rates compared to

chemotherapy (43). Although PD-1/PD-L1 mAbs have obtained

positive results in some clinical trials, most of the benefited

groups are only those with high PD-L1 CPS score, MSI-H, or

high tumor mutational burden (TMB) (44), and it has also been

reported that patients with Epstein–Barr virus (EBV)–positive

tumors can respond significantly to anti–PD-1 antibody (55).

Unfortunately, the abovementioned benefit population does not

account for much of advanced GC (the clinical trial results

mentioned above are summarized in Table 1).
CTLA-4

CTLA-4 inhibits T-cell activity by binding to B7 on the

surface of APCs (62), whereas anti–CTLA-4 antibodies can

relieve the inhibition of T cells by specifically binding to

CTLA-4. These antibodies mainly include ipilimumab and

tremelimumab. Ipilimumab monotherapy showed 14% ORR in

chemotherapy-progressed advanced GC in a phase I/II clinical

trial (CheckMate-032) (63). However, ipilimumab did not have

significant survival benefits as maintenance therapy after first-

line chemotherapy in phase II clinical trial (64). Another anti–

CTLA-4 antibody drug tremetimumab acquired 1.7-month PFS

and 7.7-month OS in second-line treatment of G/GEJ cancer in

IB/II clinical trial (61). Although no exciting anti-tumor activity

was shown in all patients, some patients have observed durable

anti-tumor activity, ipilimumab suggests that some patients may

benefit from tremelimumab therapy (65). In addition, in the

treatment regimen of anti–PD-1 combined with anti–CTLA-4,

CheckMate-032 showed that the ORR of the combination

therapy group (nivolumab combined with ipilimumab) in the

treatment of esophagogastric cancer was higher than that of the

nivolumab monotherapy group, and the benefit of combination

therapy was more obvious in the PD-L1–positive and MSI-H

subgroups (60) (summary in Table 1).
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LAG-3

Antagonizing LAG-3 can restore the anti-tumor activity of T

cells (66). LAG-3 as an inhibitory receptor expressed on

activated T cells can downregulate T-cell function and

participate in T-cell exhaustion and tumor immune escape

thus promoting tumor progression (67, 68), and this

immunoglobulin superfamily gene was also expressed on NK,

DCs, and B cells (66, 69). Tregs cells expressing LAG-3 can

suppress tumor-specific T cells and produce high levels of the

immunoregulatory cytokines interleukin (IL)-10 and

transforming growth factor-beta (TGF-b) (70, 71). The LAG-3

inhibitor relatlimab has been shown to deplete leukemia cells

and restore NK and T cell–mediated anti-tumor activity in

chronic lymphocytic leukemia (72). So far, more than 10

LAG-3 blockers such as relatlimab (73), ieramilimab (74), and

HLX26 (68) have entered clinical trials. In addition,

multi-targeted ICI combination therapy targeting LAG-3 can
Frontiers in Immunology 05
improve anti-tumor efficacy because LAG-3 is frequently

co-expressed with PD-1 on TILs (73). Anti–LAG-3 plus

anti–PD-1 therapy prolonged PFS in patients with advanced

melanoma compared with anti–LAG-3 and anti–PD-1 alone in a

phase III melanoma trial (68). At present, several clinical trials

targeting LAG-3 in the treatment of GC are being carried out

(Table 2), which is expected to become the next immunotherapy

target for the treatment of GC.
TIM-3

Targeting TIM-3 is another strategy based on T-cell

immunotherapy. TIM-3 is an important tumor immune

checkpoint expressed on a variety of immune cells including

effector T cells, monocytes, NK, and DCs (75, 76), which can

inhibit innate and T-cell immune response (77, 78), participate

in immune escape (79), and promote immune tolerance (80).
TABLE 1 Results of major clinical trials of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in the treatment of gastric cancer.

NCT Trial
name

Conditions Interventions Therapy
Line

Key Outcome Phase References

CheckMate 649 HER2-negative G/GEJ/EA cancer Nivo + CapeOx/FOLFOX vs.
CapeOx/FOLFOX

First line OS: 13.1 m vs. 11.1 m;
PFS: 7.7 m vs. 6.05 m.

III (49)

KEYNOTE-062 PD-L1
(CPS≥1)
advanced G/GEJ cancer

Pem vs. Pem + FP/XP vs. FP/XP +
placebo

First line mOS: 10.6 m vs. 12.5 m vs.
11.1m;
mPFS: 2.0 m vs. 6.9 m vs. 6.4
m.

III (43)

KEYNOTE-061 Advanced G/GEJ cancer Pem vs. PTX Second
line

mOS: 9.1 m vs. 8.3 m;
mPFS: 1.5 m vs. 4.1 m.

III (44)

KEYNOTE-059 Advanced G/GEJ cancer Pem vs. Pem + FP/XP First line ORR: 25.8% vs. 60.0%. II (56)

KEYNOTE -063 (PD-L1)-positive (CPS≥1) G/GEJ
cancer

Pem vs. PTX Second
line

mOS: 8 m vs. 8 m;
mPFS: 2 m vs. 4 m;
ORR: 13% vs. 19%.

III (57)

KEYNOTE-811 HER2-
positive G/GEJ cancer

Pem + trastuzumab + FP/CapeOx vs.
trastuzumab + FP/CapeOx

First line ORR: 74.4% vs. 51.9% III (58)

ATTRACTION-
2

Unresectable advanced or recurrent G/
GEJ cancer

Nivo vs. placebo Third line
and above

mOS: 5.26 m vs. 4.14 m III (46)

ATTRACTION-
4

Unresectable, advanced, or recurrent
HER2-negative GC/GEJ cancer

Nivo + SOX/CapeOx First line The ORR of Nivo + SOX:
57.1%; mPFS: 9.7 m.
The ORR of Nivo + CapeOX:
76.5%, mPFS: 10.6 m.

II (59)

NCT04065282 Locally advanced, resectable G/GEJ
cancer

Sintilimab + CapeOx Neo
adjuvant

The R0 resection rate: 97.2%.
The 1-year DFS and OS rates:
90.3% and 94.1%

II (52)

CheckMate-032 Locally advanced or metastatic
chemotherapy
refractory G/GEJ/
esophageal cancer

Nivo vs. Nivo + ipi Third line
and above

ORR: 12% vs. 24% II (60)

NCT02658214 Advanced G/GEJ cancer Durv + trem vs. Durv vs. trem Second
line and
above

mOS: 9.2 m vs.
3.4 m vs. 7.7 m

Ib/II (61)
fr
G, Gastric; GEJ, gastroesophageal junction; EAC, esophageal adenocarcinoma; m, months; vs., versus; Nivo, nivolumab. Pem, pembrolizumab; CapeOx, capecitabine plus oxaliplatin;
FOLFOX, leucovorin plus fluorouracil plus oxaliplatin; FP, fluorouracil plus cisplatin; XP, oxaliplatin plus cisplatin; PTX, paclitaxel; SOX, S-1 plus oxaliplatin; ipi, ipilimumab; trem,
tremelimumab; Durv, durvalumab; OS, median overall survival; mPFS, median progression free survival.
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Blocking TIM-3 pathway can positively regulate innate and

adaptive immunity, alleviate T-cell depletion, and increase the

secretion of interferon-g (IFN-g) by NK and T cells (75, 81).

TIM-3 and its ligands are highly expressed in various solid

tumors such as GC, and its overexpression was associated with

the aggressiveness, late stage, and poor prognosis of malignant

tumors (75, 82–84). Therefore, TIM-3 can be used as a

prognostic biomarker for various solid tumors. Three

polymorphisms (−574G/T, −882C/T, and −1516G/T) within

the TIM-3 gene were found to be significantly associated with

GC in evaluating the association between TIM-3 gene variants

and GC development, among which the −1516 polymorphism

genotype was associated with distant metastasis of GC (85). The

limited clinical efficacy of anti–TIM-3 antibody (LY3321367) led

to the early termination of the study despite which has good

pharmacokinetics/pharmacodynamics in the treatment of

advanced solid tumors (86). However, it did not block the

exploration of this target. Currently, there are two clinical

studies on anti–TIM-3 treatment of GC, and we look forward

to the announcement of positive clinical data. At the same time,

the strategy of multi-target–combined blockade was also being

explored in therapy. Dual blockade of TIM-3 and PD-1 seems to

improve the anti-tumor ability of T cells because blocking PD-1

can upregulate the expression of TIM-3 (87). Facts also proved

this point of view, a clinical trial of TIM-3 antibody

(sabatolimab) combined with PD-1 antibody (spartalizumab)

showed anti-tumor activity and well tolerated in the treatment of

advanced solid tumors (88). However, there are also studies that

reported a bispecific antibody (bsAb) against TIM-3 and PD-L1

resulting in early study termination in the treatment of advanced

solid tumors because all patients developed anti-drug antibodies

(89). Therefore, strategies for targeting TIM-3 and in

combination with other treatments require further research

and improvement.
Frontiers in Immunology 06
TIGIT

TIGIT is an emerging immune checkpoint expressed on

tumor-infiltrating CD8+ T cells, TH, Tregs, and NK cells in

various solid tumors including GC (90), which is associated

with poor prognosis in various malignancies (91). Binding of

TIGIT to CD155 ligand overexpressed on tumor cells led to

immune escape while also suppressing innate and adaptive

immunity, including inhibition of NK-mediated cytotoxicity

and IFN-g production, inhibition of DCs produces IL-12,

inhibition of CD4+ T, CD8+ T cells proliferation, and

induction of IL-10 production (92). Based on the negative

regulatory effect of TIGIT on tumor immunity, currently,

there are a variety of anti-TIGIT mAbs as monotherapy or

combined with PD-1/PD-L1 antibody or combined with

chemotherapy to treat tumors. Clinical data showed that anti-

TIGIT antibody tiragolumab plus anti–PD-L1 antibody

atezolizumab improved overall response and PFS and was well

tolerated compared with anti–PD-L1 monotherapy in patients

with PD-L1–positive metastatic NSCLC (93, 94). A phase II

clinical trial (NCT04933227) in GC is underway to explore the

efficacy and safety of atezolizumab in combination with

tiragolumab and chemotherapy in the first-line treatment of

HER2-negative recurrent or metastatic G/GEJ cancer.
CAR-T

The ACT is T lymphocytes in peripheral blood or tumor-

infiltrating is isolated and activated, expanded or genetically

modified in vitro, and then infused back into the patient’s body.

These treated T lymphocytes have potent anticancer activity

(95). A meta-analysis showed that ACT treatment of GC could

significantly improve PFS and prolong OS (96). ACT includes
TABLE 2 Clinical trials of targeting LAG-3 in gastric cancer.

Serial number ClinicalTrials.gov
Identifier

Conditions Interventions Phase Status

1 NCT03662659 Gastric Cancer et
al

Relatlimab/Nivolumab/Chemotherapy II Active, not
recruiting

2 NCT03044613 Gastric Cancer et
al

Nivolumab/Relatlimab/Carboplatin/Paclitaxel I Active, not
recruiting

3 NCT04082364 Gastric Cancer Margetuximab/retifanlimab/tebotelimab/trastuzumab/
chemotherapy

II/III Active, not
recruiting

4 NCT04178460 Gastric Cancer et
al

Niraparib combined with MGD013 I Recruiting

5 NCT05144698 Gastric Cancer et
al

RAPA-201 II Recruiting

6 NCT03538028 Gastric Cancer et
al

INCAGN02385 I Completed

7 NCT03849469 Gastric Cancer et
al

XmAb®22841/Pembrolizumab I Recruiting
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CAR-T (97), TIL ACT (98), and CIK ACT (97). CAR-T therapy

is a promising therapeutic strategy in the field of cancer because

it can cause target cell death and does not require activation of

APCs (99, 100), which has an obvious curative effect in the

treatment of hematological tumors (101). In the strategy of

CAR-T treatment of GC, multiple targets have been proved to

be effective in the treatment of xenograft mouse GC model, such

as mesothelin (MSLN), prostate stem cell antigen (PSCA), B7

homology 3 (B7H3) protein, and NK group 2 member D

(NKG2D) (102–105). In addition, CAR-T targeting

carcinoembryonic antigen (CEA), HER2, CLDN18.2, FOLR1,

c-Met, CD133, and CDH17 had a significant anti-tumor effect in

the corresponding target-positive GC mouse model and the

tumor appeared partially or even complete regression (106–

112). CAR-T cells targeting ICAM-1 can effectively eliminate

tumors developing in the lungs in animal models of GC (113).

Modified CAR-T on the basis of the original target can play a

role in increasing the efficacy, such as EGFR-CAR-T that

secretes PD-1 scFv, c-Met CAR-T that adds PD-1/CD28

chimeric switch receptor (CSR), and bispecific human

trophoblast cell surface antigen 2/PD-L1 CAR-T, which all

have been proven to increase the efficacy of the original

CAR-T therapy in mouse GC models (114–116). Up to now,

there are as many as 30 clinical trials of CAR-T in the treatment

of GC. Among them, the interim results of the phase I clinical

trial of CLDN18.2-targeted CAR-T cells (CT041) in GC showed

that CT041 treatment of CLDN18.2-positive GC patients had

57.1% ORR and 75.0% DCR; the 6-month OS rate was 81.2%

and the safety was acceptable (117).
TIL ACT

TIL ACT is usually isolated from the fresh tumor tissue of

the patient and then returned to the patient after activation and

expansion in vitro. GC TILs can be obtained from primary

tumors (PTs), metastatic lymph nodes, and malignant ascites in

GC patients, and TILs from different sites can recognize tumor

cells in corresponding sites (118). TIL ACT has seen good

efficacy in the treatment of GC. A clinical study showed that

the survival time of the TIL treatment group was 50% longer

than that of the chemotherapy group (119). Another report

showed that intravenous injection of autologous TIL combined

with recombinant IL -2 resulted in 13.0% tumor elimination

(complete remission) and 21.7% tumor growth inhibition

(partial response) of advanced GC patients (120). It has seen

significant anti-tumor effects and good safety not only in the

treatment of GC but also in various solid tumors (98). Therefore,

it is a promising immunotherapy for the treatment of solid

tumors. However, the wide clinical application of TIL ACT may

be limited due to the high preparation cost, long production

time, and the need for specialized facilities and personnel to

produce TIL.
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CIK ACT

CIK has strong anti-tumor activity, MHC-independent, and

antibody-dependent cytotoxicity (121). CIK can be produced by

peripheral blood mononuclear cells (PBMCs) under the action

of IFN-g, IL-2, and anti-CD3 antibodies (122) and finally

differentiate into CD3 CD56 CD8 NK-T cells. The cytotoxicity

of CIK depends on the interaction of NKG2D receptors with

NKG2D ligands and is mediated by perforin and can also

regulate and enhance host cellular immune function by

secreting cytokines and chemokines (123). In addition, CIK

therapy can improve the survival rate of GC patients and can

significantly improve the OS and disease-free survival (DFS) of

patients with stage III GC when combined with chemotherapy

(124). The 5-year OS and DFS were significantly prolonged after

CIK treatment compared with the control group in patients with

locally advanced GC (125). In addition, chemotherapy

combined with CIK/DC-cytokine induced killer cell (DC-CIK)

can significantly improve the OS rate, DFS rate, and T

lymphocyte response in the treatment of postoperative patients

with GC (105), and the survival was beneficial compared to

chemotherapy alone (126).
Therapies targeting Tregs

Tregs in TME can be classified into three types according to

the expression of FOXP3 and CD45RA: non-Tregs

(FOXP3lowCD45RA−), naive Tregs (FOXP3lowCD45RA+), and

effector Tregs (eTregs) (FOXP3
highCD45RA−). Non-Tregs cannot

exert an inhibitory effect but can secrete pro-inflammatory

cytokines. Naive Tregs are only weakly suppressive, whereas

eTregs, which differentiate from naive Tregs after antigenic

stimulation, possess the strong suppressive activity and stable

function (127). Tregs express CTLA-4, PD-1, inducible T-cell

costimulator (ICOS), glucocorticoid-induced TNFR-related

protein (GITR), tumor necrosis factor receptor 4 (OX40),

vascular endothelial growth factor receptor-2 (VEGFR2),

chemokine receptor 4 (CCR4) and CCR8 receptors, which can

mediate tumor immunosuppression (128); and participate in co-

stimulatory receptors on the surface of APCs to modulate APC

activity, leading to weaken or abrogated signals from APC to

naive/effector cells. It can secrete immunosuppressive cytokines

(IL-10, TGF-b, and IL-35) and immunosuppressive metabolites

(tryptophan and adenosine), deplete the cytokine IL-2, and

inhibit APC maturation (such as DCs) and tumor

antigen-specific T-cell responses (128). eTregs may also cause

metabolic disruption to prevent naive/effector cell proliferation.

Under certain circumstances, eTregs could have a direct cytotoxic

effect through the production of perforin/granzyme and induce

apoptosis in effector cells. Dead Tregs can also rapidly convert

ATP into adenosine in tumors, which then binds to receptors on
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the T-cell surface and affects T-cell function (129, 130),

which in turn leads to the occurrence and progression of

cancer (Figure 2).

Eliminating the immunosuppressive effect of Tregs is beneficial

to restoring the tumor immune response, and the strategies can be

achieved by reducing Tregs, including direct strategies acting on Tregs
surface molecules and indirect strategies to reduce Tregs through

other ways. Direct strategies can be achieved by blocking surface

molecules such as CD25, CTLA-4, PD-1, ICOS, GITR, OX40, and

VEGFR2 on Tregs. The CD25-blocking mAb daclizumab can result

in the Tregs of patients significantly and a long-term decrease in the

treatment of metastatic breast cancer patients (132). Loss or

inhibition of CTLA-4 resulted in decreased Tregs function, and

anti–CTLA-4 antibodies promoted anti-tumor activity by

selectively reducing intratumoral Tregs (133). In addition, ICOS

antibody KY1044, anti-GITR antibody TRX518, anti-VEGFR2

antibody ramucirumab (RAM), and chemotherapy drugs, such as

low-dose cyclophosphamide, cyclosporine A, and tacrolimus, all

can reduce Tregs in tumor patients (131, 134–136), while anti-OX40

antibody produced anti-tumor activity by blocking the inhibitory

effect of Tregs (137). The strategies to indirectly reduce Tregs can be

achieved by blocking the chemokine and/or cytokine axis,

intracellular signaling pathways, and metabolites of Tregs. Tregs can
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migrate to TME under the action of chemokines such as

CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and

CXCR3-CCL9/10/11 (128), so blocking chemokines and

chemokine receptors can inhibit Tregs migration thus indirectly

reduce Tregs in the TME. Anti-CCR4 mAb and anti-CCR8 mAb

have been shown to selectively deplete tumor-infiltrating Tregs (138,

139). In addition, the tyrosine kinase inhibitor imatinib can

selectively induce Tregs apoptosis by reducing the intensity of

TCR signaling through the inhibition of lymphocyte-specific

protein tyrosine kinase (LCK) (140). Specific inhibitors of

phosphoinositide 3-kinase (PI3K) d can also improve cancer

immunotherapy by reducing the number of Tregs in the tumor

microenvironment (141). At the same time, adjustingmetabolites in

the TME also affects Tregs numbers, such as targeting fatty acid

uptake (e.g., inhibition of fatty acid transporter CD36 and lactate

transporter monocarboxylate transporter 1), blocking fatty acid

oxidation (carnitine palmitoyltransferase 1a inhibitor), and

blocking fatty acid synthase (acetyl-CoA carboxylase inhibitor

(5-(tetradecyloxy)-2-furoic acid)) all can inhibit Tregs proliferation

and reduce Tregs in TME (131).

Strategies to reduce Tregs either directly or indirectly both

can weaken the immunosuppressive effect of Tregs. However,

reducing Tregs in the TME may also reduce systemic Tregs and
FIGURE 2

The immunosuppressive mechanisms of eTregs: The co-inhibitory receptor CTLA-4 in Tregs binds to CD80 and inhibits co-stimulatory signaling
from APCs; Tregs can secrete inhibitory cytokines, including IL-10, TGF-b, and IL-35; Tregs can kill effector cells by granzyme and perforin and
bind to the Fc fragment of IgG receptor IIB (FcgRIIB) in CD8+ T cells by secreting Fgl2, leading to their apoptosis. Tregs influence effector cell
function: Tregs contain higher affinity receptor CD25 of IL-2, which compete with effector T cells to deplete IL-2, thereby inhibiting the growth
of effector T cells; CD39 and CD73 expressed on the cell surface of Tregs act as ectonucleotidases that hydrolyze ATP or ADP to AMP and AMP
to adenosine, respectively, thereby inhibiting effector T cells (131).
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thereby increase the risk of immune-related adverse events

(irAEs), such as autoimmune-related toxicities. Therefore,

strategies should be used that selectively deplete eTregs in the

TME with little effect on systemic Tregs and other Tregs subtypes

in order to ensure the safety and efficacy of Tregs cell–targeted

therapy. Therefore, the Tregs-targeted therapy strategy needs to

be further improved.

The most widely used and the most complete data are PD-1/

PD-L1 mAbs and CTLA-4 mAbs in ICIs despite having various

strategies for T cell–based immunotherapy in the treatment of

GC. Particularly, PD-1 mAbs have clinical data on the first,

second, and third lines. Many studies have shown that PD-1 and

PD-L1 mAbs have an encouraging survival advantage in GC,

which have been approved in several countries for the treatment

of advanced GC. Unfortunately, PD-1 and PD-L1 antibodies

failed to improve OS and PFS in some trials, and the benefit

population in positive clinical trial results is only those with high

PD-L1 CPS score, MSH-H, or high TMB, but this group of

people is not many. Multi-target blockade therapy may be the

future treatment direction as the discovery of successive multiple

immune checkpoint receptors. In addition to ICIs recommended

by guidelines, CAR-T therapy in ACT has also seen high ORR

and DCR in clinical trials and other ACTs also have good

prospects. However, the wide clinical application of ACT is

limited because the preparation process is cumbersome and its

high cost of ACT. At the same time, selective removal of eTregs

cells in the TME is also the future direction because most current

Tregs-targeted therapies lack selectivity.
DCs-based immunotherapy

The application of DCs in anti-tumor therapy mainly

includes cancer vaccines and DC-CIK. Studies have been

conducted combining DCs vaccination with chemotherapy

(142), radiotherapy (143), targeted therapy (144), and other

immunotherapies (145). DCs are used in cancer vaccines

related to the anti-tumor mechanism of DCs. DCs are

professional APCs that capture antigens released by tumor
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cells and present them to T cells in tumor-draining lymph

nodes thus resulting in the generation of tumor-specific

cytotoxic T lymphocytes (CTLs) (146). DCs can also stimulate

NK and B cells to activate humoral immunity (146, 147). Studies

showed that tumor-infiltrating DCs were associated with clinical

stage, invasion, metastasis, and better prognosis in GC patients

(148, 149). GC patients with many DCs invasion had lower LNM

and lymphatic invasion, and also 5-year survival (78%) and OS

higher than patients with little DC invasion (150, 151).

DC vaccines have shown OS benefits in solid tumors such as

prostate cancer (152), melanoma (153), glioblastoma (154), and

ovarian cancer (155). The studies showed that inactivated tumor

cells (156), tumor lysates (153), tumor vesicles (157), synthetic

tumor peptides (158), or synthetic tumor antigen mRNA (159)

all can be used as DC vaccine–loaded antigens. Antigens that can

be used as GC vaccines include melanoma-associated antigen

(MAGE) A3, HER2 (p369) peptide, gastin-17 diphtheria toxoid

(g17DT), URLC10 or VEGFR1 epitope, and heat shock protein

GP96 (160). Up to now, there are five clinical trials of DC

vaccines in the treatment of GC (Table 3).

Unfortunately, up to now, there are not many positive

results of DC vaccines in the treatment of GC. Although phase

I/II clinical trial has shown that Wilms tumor 1 (WT1)–targeted

DC vaccine was a potential treatment in advanced cancer

including GC, only three GC patients were included in the

enrolled patients and only one GC patient was effective (161).

Therefore, strategies to target multiple antigens have been

explored in order to improve the efficacy of GC vaccines. For

example, OTSGC-A24 achieved an impressive OS (5.7 months)

in the treatment of advanced GC, which is a HLA-A*24:02

peptide-conjugated vaccine targeting FOXM1, DEPDC1,

KIF20A, URLC10, and VEGFR1 (162). In addition, whole GC

cells can also be fused with DCs to generate DC tumor hybrids,

which have the advantage of combining the powerful antigen-

presenting capacity of DCs with all antigens expressed by tumor

cells (163, 164). At the same time, DC vaccines can also be

combined with chemotherapy, radiotherapy, and ICIs to

increase efficacy. Moreover, DC vaccines combined with

neoadjuvant chemotherapy (NAC) showed that the combined
TABLE 3 Clinical trials of DC vaccine in the treatment of gastric cancer.

Serial number ClinicalTrials.gov
Identifier

Conditions Interventions Phase Status

1 NCT00004604 Gastric cancer et al. solid
tumor

CEA RNA-pulsed
DCs cancer vaccine

I Completed

2 NCT00027534 Gastric cancer et al. solid
tumor

Dendritic cells loaded with TRICOM-CEA
(6D)

I Completed

3 NCT04567069 Gastric cancer DC vaccine I/II Recruiting

4 NCT04147078 Gastric cancer et al. solid
tumor

DC vaccine I Recruiting

5 NCT03185429 Gastrointestinal solid tumor TSA-DC vaccine Not
applicable

Unknown
fron
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treatment was safe and increased pathological complete

remission (tpCR) in the treatment of HER2-negative breast

cancer (165). DC vaccines combined with chemotherapy

(carboplatin/pemetrexed) also had good efficacy and

tolerability as the first-line drug therapy for patients with

advanced non-squamous non–small cell lung cancer without

oncogenic drivers (166). In addition, DC vaccines combined

with radiotherapy can significantly inhibit tumor growth and

improve survival rate, which has been confirmed in many tumor

types such as melanoma and esophageal cancer (156, 167). DC

vaccines combined with ICIs are also an effective treatment

strategy, and preclinical studies had shown that DC vaccines

combined with PD-1 inhibitors led to smaller tumor volume and

better OS in the treatment of hepatocellular carcinoma (HCC)

(145). In terms of toxic and side effects, the side effects of DC

vaccines mainly include influenza-like symptoms, fever, and

local reactions at the injection site, so it is safe for cancer

patients. At present, more than 200 clinical trials have shown

high immunogenicity and safety of DC vaccines (158).

Another method of DCs treatment of tumors is DC-CIK.

Studies had shown that DC-CIK combined with chemotherapy

was effective and tolerable in the treatment of non–small cell

lung cancer, breast cancer, colorectal cancer, GC, and other solid

tumors. DC-CIK combined with chemotherapy can enhance

cellular immune function and inhibit tumor invasion and

metastasis in the treatment of advanced non–small cell lung

cancer (168). DC-CIK combined with capecitabine prolonged

PFS in the treatment of patients with recurrent and metastatic

triple-negative breast cancer (169). In addition, DC-CIK

combined with adjuvant chemotherapy can significantly

prolong the DFS of patients with postoperative colorectal

cancer (170). In the treatment of GC, a meta-analysis showed

that DC-CIK combined with chemotherapy can significantly

improve the OS rate, DFS rate, and T lymphocyte reaction in

patients after GC surgery (171). In addition, DC-CIK combined

with S-1 and cisplatin had good PFS and OS in the treatment of

advanced GC, and the combination therapy was safe and the

toxicity was tolerable (172).

Tumor-infiltrating DCs are associated with a better

prognosis in GC, but only a few mature DCs in the tumor

microenvironment. DC-based immunotherapies such as cancer

vaccines and DC-CIK have limited efficacy as a single treatment

for cancer. Therefore, in order to increase the anti-tumor effect,

it is very necessary to find the reasons for the low efficacy or

combine it with other treatments to treat tumors.
Immunotherapy targeting NK cells

NK cells are responsible for destroying tumor cells and

preventing tumor initiation and progression. Activated NK

cells can exert direct cytotoxicity through death receptor

signaling, perforin, or release granzymes, which can also
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modulate other parts of the immune response by producing

cytokines and chemokines (173). However, tumor cells can

escape NK cell destruction by binding to inhibitory receptors

expressed on the surface of NK cells. At the same time, the

overproduction of TGF-b and other anti-inflammatory

cytokines and chemokines in the tumor microenvironment

can inhibit NK cell activation (174, 175); downregulate NK

cell–activating receptors NKp30, NKp44, NKG2D, and CD16

and co-receptors NKp80 and DNAM-1; upregulate checkpoint

receptors TIGIT, TIM-3, LAG-3, and PD-1; impair the

expression and secretion of CD107; and secrete a variety of

immunosuppressive factors (175, 176). Studies have shown that

NK cell inhibitory receptor antibodies can restore NK cell

activity. The widely used anti–PD-1 and anti–PD-L1 can

enhance NK cell–mediated anti-tumor effects. The expression

of PD-1 on NK cells interacting with PD-L1 on cancer cells can

decrease the responses of NK cells, whereas blocking PD-1 and

PD-L1 can increase NK cells in vivo and trigger strong NK cell

responses and cytotoxicity in mouse tumor models (177, 178).

The treatment strategies based on NK cells for GC include

NK cell adoptive therapy (such as autologous NK cell infusion,

allogeneic NK cell infusion, and CAR-NK), blocking the

inhibitory receptors expressed on NK cells, and increasing the

activity of NK cells (such as increased activating receptors

expression on NK cells, activation of NK cells by cytokines,

and increased immune clearance of tumors by NK cells).

At present, NK cell adoptive therapies for GC have been

carried out in more than 20 clinical trials. Five of 19 patients

achieved complete hematologic remission in the clinical trial of

haploidentical NK cell therapy for acute myeloid leukemia

(AML) (179). However, no objective clinical response was

observed in patients with melanoma treated with autologous

NK cells activated in vitro (180), which suggests that it is more

effective in donors with mismatched killer immunoglobulin

receptor (KIR) ligand in NK cell adoptive therapy. In addition,

NK cells can also be modified into CAR-NK, which is similar to

CAR-T cell activity in vivo and safer than CAR-T cells (181,

182), and no strict HLA-matching requirements (183).

Preclinical studies in the treatment of GC have shown that

mesothelin-targeted CAR-NK cells can effectively eliminate GC

cells in both subcutaneous and intraperitoneal tumors and

significantly prolong the survival time of the mouse (184). In

addition, studies on CAR-NK therapy targeting HER2, Mucin-1,

EpCAM, or PMSA for GC are being carried out (184). CAR-NK

therapy is becoming a promising treatment strategy in cancer

immunotherapy based on the existing research data and less

toxic side effects.

Increasing the anti-tumor activity of NK cells can be achieved

by increasing the expression of activating receptors on the surface of

NK cells, activating NK cells with cytokines, and increasing the

immune clearance of tumors by NK cells. Retroviral transduction

with DTCR (PD1-DAP10/NKG2D) can significantly increase the

expression of NKG2D (an activating receptor on the surface of NK
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cells) on the surface of NK92 cells, thus enhancing cytotoxicity

against GC cells SGC-7901, and DTCR-NK92 cells showed strong

anti-tumor activity in the GC mouse model (185). In addition, the

cytokines can activate NK cells and promote their proliferation to

enhance anti-tumor activity, such as IL-2, IL-12, IL-15, and IL-18

(186–188). NK cells activated by IL-2 which combined with anti–

PD-1 can inhibit tumor growth in xenograft GC models (189). In

addition, IL-15 can increase the infiltration of NK cells in the tumor

(190) and improve the survival rate in the treatment of GC liver

metastasis–bearing mice (191). Primer of blood NK cells with

recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18)

can lead to memory-like NK cell differentiation and enhance tumor

response (192). At the same time, increasing the immune clearance

of NK cells against tumors can also play an anti-tumor effect. NK

cells carry out immune clearance of tumors by releasing cytotoxic

particles, antibody-dependent cell-mediated cytotoxicity (ADCC),

and protein-activated target cell apoptotic systems synthesized on

the cell surface [FasL and tumor necrosis factor-a (TNF-a)]. The
mAbs trastuzumab (193), pertuzumab (194), cetuximab (195),

rituximab (196), and anti-CD3 × anticancer bsAbs (197) all can

play anti-tumor effect by enhancing ADCC ability and NK

cell activity.

Blocking the expression of inhibitory receptors on NK cells

can restore NK cell function, reverse NK cell depletion, increase

NK cell cytotoxicity against tumors, and inhibit tumor growth.

The efficacy increased when combined with other targeted drugs

or ICIs (195, 198). The inhibitory receptors expressed on NK

cells include KIR, leukocyte immunoglobulin-like receptor

(LILR), killer lectin-like receptor (KLR) (173), inhibitory

receptor composed of NKG2A and CD94, B7H3 protein

receptor, sialic acid–binding immunoglobulin-like lectin

(Siglecs), TIM-3, LAG-3, TIGIT, CD-47, etc. (199–207).

Blocking these inhibitory receptors can restore the activity of

NK cells. In addition, immunoglobulin-like transcript 2 (also

known as LILRB1) can also inhibit the proliferation and

cytotoxic activity of infiltrating NK cells in GC tumor tissues

(208), so blocking this receptor can enhance the activation and

proliferation of NK cells. The elimination of leukemia cells

increased by activating NK cell cytotoxicity when combined

with lenalidomide in chronic lymphocytic leukemia patients

(209). Currently, several clinical trials are underway to block

NK cell inhibitory receptors (210). In addition, blocking TGF-b1
signaling can prevent dysfunction of NK cells and thus restore

their activity (211), and gene silencing of the PI3K catalytic

subunit PI3KCB can enhance the lytic activity of NK cells against

tumors (212).

NK cells are more cytotoxic to tumors, less immunogenic,

have faster response, and do not need additional connections to

activate receptors when compared with effector T cells. For

example, the current hot spot treatment strategy CAR-NK is a

promising treatment strategy for GC due to its unique

recognition mechanism, strong cytotoxicity, clinical safety, and

the ability to reduce the risk of allogeneic reactions. However,
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the application of CAR-NK cells is limited because the complex

preparation and expensive and solid tumors have no immune-

specific target antigen, a loss of tumor antigens, low persistence,

and other factors. Another method of targeting NK cells to treat

tumors is to restore and increase the anti-tumor activity of NK

cells, and some effects have been seen in related studies but the

efficacy is limited when used alone; combination therapy may be

a strategy to solve this problem.
TAMs-targeted therapy

TAMs are one of the most important components of the

tumor microenvironment and are potential targets for cancer

therapy. At present, the most studied is the “reprogramming” of

TAMs from tumor support cells to tumor killer cells, that is, the

reconversion of M2 TAMs to M1 TAMs. In addition, treatment

strategies based on TAMs also include limiting monocyte

recruitment and localization and CAR macrophage (CAR-M)

therapy. Macrophages are divided into two subtypes: M1 or

classically activated macrophages and M2 or alternatively

activated macrophages. M1 TAMs have the inhibition effects

of tumor and anti-angiogenic (213), whereas M2 TAMs can

promote the occurrence and metastasis of tumor cells, inhibit the

anti-tumor response mediated by T cells, and promote tumor

progression and tumor angiogenesis (214, 215). In tumors, M2

macrophages are dominating in the tumor microenvironment as

the tumor progresses (216). Chronic inflammation is a feature in

GC tumor microenvironment, which is derived from infections

such as Helicobacter pylori. These pathogens can impair the

response of M1 TAMs, induce the state of M2-like, increase

macrophage apoptosis, and promote disease progression (217).

In addition, TAMs are related to the occurrence, development,

and prognosis of GC, and CD204-positive (an M2-polarized

macrophage receptor) TAMs are an important risk factor for a

gastric adenoma to develop into adenocarcinoma (218). At the

same time, the number of TAMs can predict the size and stage of

GC in the GC tumor microenvironment (219) and involved in

tumor invasion and metastasis (220). Furthermore, M2 TAMs

were associated with poor prognosis and were an independent

prognostic factor for GC (221).

The effect of phagocytosing tumor cells can increase by

“Reprogramming” TAMs from tumor-supporting cells to

tumor-killer cells, including the use of targeted antibodies (for

example, targeting MФ surface receptors involved in immune

response regulation and targeting the circulation cytokines/

growth factors), gene therapy, small-molecule inhibitors,

episomal vector delivery of nucleic acids, etc. Among them,

the most studied therapeutic strategy is targeted antibodies, and

the targets include colony-stimulating factor 1 (CSF-1)/CSF 1

receptor (CSF-1R), Toll-like receptors (TLR7, TLR8, and TLR9),

histone deacetylase (HDAC), PI3Kg, CD40, and CD47 (222).

Neutralizing antibodies or small-molecule inhibitors of CSF-1/
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CSF-1R, CD40 antibodies, and TGF-b blockers all have been

shown to reprogram M2 TAMs to M1 TAMs (222–224).

Furthermore, TLR agonists can induce M1 polarization by

increasing the release of pro-inflammatory mediators (225),

and this therapy has shown promise in preclinical solid tumor

models and in the clinic (226–228). The inhibition of HDAC or

PI3Kg exerted anti-tumor effects by downregulating M2 and

upregulating M1 molecules (222). CD47 also affects TAMs

polarization, and the anti-CD47 antibody increased the ability

of macrophages to phagocytose tumor cells by blocking the

interaction of CD47 with SIRPa on macrophages, which has

been demonstrated in various preclinical models of solid tumors

(229, 230). In addition, the suppression effect of macrophages

can be abolished by inhibiting monocyte recruitment and

localization to tumor tissue by targeting macrophage

chemokines or their receptors (e.g., chemokine 2, chemokine

5, and CSF-1R). For example, blocking the CCL2/CCR2 axis can

inhibit monocyte recruitment, TAM infiltration, and M2

polarization. Knocking down CCR2 or blocking CCL2/CCR2

signaling with CCR2 antagonists can inhibit tumor growth and

metastasis, reduce postoperative recurrence, and improve

survival (231). CCL5-CCR5 and CXCL12/CXCR4 also mediate

TAMs recruitment and polarization, so blocking their mediated

signaling was also a potential therapeutic strategy (232, 233).

Macrophage recruitment was also promoted when CSF-1R binds

to its ligand CSF-1 (234, 235), whereas the CSF-1R antagonists

PLX 3397 or pexidartinib prevented the recruitment of

monocytes from the circulation to cancerous tissues (236). In

addition, drugs such as bisphosphonates also affect TAM

infiltration and polarization. For example, zoledronic acid has

been shown to modulate the tumor microenvironment by

reducing TAM infiltration and polarization state (237, 238),

which can also reduce angiogenesis by macrophage (239). At the

same time, the efficacy of some chemotherapy drugs (such as

trabetidine) may be related to the ability to kill TAMs (240). In

addition, radiation therapy also affects TAMs as low-dose

radiation therapy can reprogram TAMs to an anti-tumor

phenotype (241).

CAR-M has also been developed and applied based on the

good efficacy of CAR-T cells in hematological tumors (242). The

CAR based on CD3z was highly active in human macrophages,

which can drive phagocytosis and kill target tumor cells in a

Syk-dependent manner (243). Studies have shown that CAR-M

can transform M2 TAMs into M1 TAMs, upregulate the antigen

presentation mechanism, recruit antigens and present them to T

cells, express pro-inflammatory cytokines and chemokines, and

resist the effects of immunosuppressive cytokines. CAR-M

exhibited the effects of antigen-specific phagocytosis and

tumor clearance in vitro. The tumor burden is reduced and OS

is prolonged after infusion of CAR-M of human in mouse

xenograft tumor models (243). At present, the treatment of

CAR-M has entered the clinical trial stage and one of them is a

study of CAR-M in the treatment of HER2-overexpressing solid
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tumors, including HER2-positive GC and other solid tumors.

Another is a study of CAR-M in breast cancer. In addition,

studies on the combination of CAR-M and T-cell checkpoint

inhibitors are also ongoing based on the interaction between

CAR-M and the adaptive immune system (243).

TAMs are the most abundant immune cells in the tumor

microenvironment. Many strategies targeting TAMs to treat

tumors have been carried out in preclinical studies and were

proved effective, looking forward to the data of these therapeutic

methods in clinical studies.
Therapeutic strategies
targeting MDSCs

MDSCs are a highly heterogeneous group of myeloid-derived

cells whose most important function is immunosuppression

(244). Inhibiting DC function and anti-tumor T-cell response,

inducing NK cell apoptosis, promoting M2 TAMs differentiation,

and increasing the number of Tregs (244, 245) (Figure 3) can

promote the growth and metastasis of PTs (246, 247). Expansion

of MDSCs was associated with resistance to treatment and poor

prognosis in malignant tumors (246). In GC patients, the levels of

MDSCs was associated with cancer stage and survival (248), such

that higher levels of MDSCs were associated with later tumor stage

and poor prognosis (249–251), as well as with higher mortality

and risk of tumor recurrence and progression. In addition,

patients with high MDSCs levels had significantly shorter OS

than patients with low MDSC levels in patients with stage IV

gastrointestinal cancer (252).

Eliminating the immunosuppression of MDSCs is

beneficial for restoring anti-tumor immunity, and strategies

include reducing circulating and tumor-infiltrating MDSCs

and eliminating the immunosuppressive functions of MDSCs

(244). The reduction of circulating and tumor-infiltrating

MDSCs can be achieved with some chemotherapy drugs,

targeted drugs, all-trans retinoic acid (ATRA), or by blocking

the chemokine receptor on MDSCs. Low-dose chemotherapy

drugs such as 5-fluorouracil (253), paclitaxel (254),

gemcitabine (255), platinum (256), and Adriamycin (257) all

have been shown to reduce MDSCs in cancer patients. 5-

Fluorouracil combined with oxaliplatin reduced the number

of MDSCs in the mouse model of GC (258). Epirubicin or

docetaxel can reduce MDSCs and inhibit MDSCs function in

GC patients and can also induce MDSCs apoptosis through

mitogen-activated protein kinase (MAPK) and NF-kappa B

signaling pathway (259). In addition, the targeted drugs

apatinib and ATRA both can downregulate the proportion of

MDSCs and reduce the number of MDSCs in blood circulation

(260, 261). At the same time, ATRA can restore the

accumulation of intratumoral MDSCs induced by anti-

VEGFR2 (262). The number of MDSCs can be reduced by

blocking the chemokine or cytokine receptors (e.g., CCR5,
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CSF-1R, CXCR1, and CXCR2) targeting MDSCs, which

prevented myeloid marrow cells from trafficking into

peripheral lymphoid organs or the tumor microenvironment

(263–266). In addition, anti-CCR5 therapy also can reduce

granulocyte-like MDSCs (G-MDSCs) and monocyte MDSCs

(M-MDSCs) in peripheral and tumors of GC patients (267). At

the same time, anti-CSF-1R can significantly reduce the ratio of

MDSCs in tumor-infiltrating immune cells (268) and resulted

in greater inhibition of tumor angiogenesis and tumor growth

when combined with anti-VEGFR-2 antibodies (269). In

addition, SX-682 (a small-molecule inhibitor of CXCR1 and

CXCR2) can also inhibit the migration of MDSCs and

eliminate the accumulation of MDSCs in tumor (270). The

targeted drug Bruton’s tyrosine kinase ibrutinib had been

confirmed to play an anti-tumor effect by reducing the

recruitment and the number of MDSCs and inducing the

maturation of MDSCs (271).

In addition, the growth of tumors can be driven by the

interaction between immune cells and cancer stem cells (CSCs)

in the tumor microenvironment. CSCs are the main cause of

tumor metastasis, drug resistance, and recurrence (272). A study

showed that GC tissue–derived mesenchymal stem cells (MSCs)

can impair the anti-tumor immune response of PBMCs through

disruption of the Treg/TH17 balance (273). MSCs can induce

MDSCs in the tumor microenvironment (274), induce the

generation of G-MDSCs, and modulate their activation, and
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can also coordinate MDSCs to transform the bone marrow (BM)

microenvironment into an immunosuppressive environment

(275). In addition, the metastasis of GC can be promoted

through the inhibition of serine/threonine protein kinase 24

(STK24) expressed in normal and GC tissues, and this

promotion was achieved by inducing overexpression of the GC

stem cell marker CD44, enhancing CD11b+Ly6C+ MDSCs in the

mouse spleen, and inducing their expansion (276). Infection

with H. pylori [classified as a group 1 carcinogen by the World

Health Organization (WHO)] can promote gastric stem cell–like

properties by altering the microenvironment of the gastric

mucosa (277), such as promoting the migration of myeloid

cell differentiation factor Schlafen 4+ (SLFN4+) MDSCs into

gastric metaplasia (278), enhancing the infiltration of MDSCs in

the tumor microenvironment, and increasing their number

(279), which are beneficial to the generation, proliferation, and

survival of GC CSCs (280). Therefore, reducing the number of

MDSCs will attenuate the generation of GC stem cells, and

targeting CSCs can also play an anti-tumor effect by indirectly

reducing MDSCs.

Treatments to inhibit the immunosuppressive function of

MDSCs include phosphodiesterase-5 inhibitors (e.g., sildenafil

and tadalafil) (281, 282), cyclooxygenase-2 inhibitors (COX-2),

triterpenoids, and some targeted drugs (283). Phosphodiesterase-5

inhibitors can reduce the function of MDSCs by downregulating

the expression of ARG1, IL4Ra, and ROS (282), which have
FIGURE 3

The mechanisms involved in MDSC-mediated immunosuppression in gastrointestinal (GI) cancer. MDSCs suppress proliferation and function of T
cells and NK cells; reduce CD8+ T-cell infiltration; inhibit the function of DCs; inhibit the antigen presentation of DCs to CD4+ T cells; promote M2
macrophage differentiation; and promote Tregs expansion and immunosuppression. Additionally, the effect of ADCC function and anergy of NK cells
is induced by the production of nitric oxide (NO) and the inhibition of NKG2D by TGF-b, respectively. MDSCs secrete matrix metalloproteinases
(MMPs), exosomes, and vascular endothelial growth factors (VEGF) to promote GI cancer cell proliferation and metastasis (245).
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shown positive results in patients with head and neck squamous

cell carcinoma and melanoma in clinical trials (284, 285). The

function of MDSCs has been suppressed by celecoxib as an

immunomodulator of targeting COX-2 (286). In addition,

triterpenoids can inhibit the suppression of effector T cells by

MDSCs-mediated and have shown promising anticancer results in

phase I clinical trials (287). The targeted drug tyrosine kinase

inhibitor sunitinib can modulate anti-tumor immunity by

reversing the immunosuppression mediated by MDSCs (288).

In addition to mediating MDSCs migration, the CCR1 and CCR5

silenced in vivo can also lead to repolarization of MDSCs into

tumor-killing neutrophils thus playing an anti-tumor effect (256).

MDSCs play a crucial role in promoting tumor progression

and metastasis and generating immunosuppressive TME. The

efficacy is limited in targeting MDSC treatments as monotherapy

although they have seen efficacy in preclinical studies, whereas,

combining with ICIs, they have seen synergistic effects in animal

tumor models and have entered the clinical trials stage (244).

Therefore, the anti-tumor efficacy may be increased by

combining anti-MDSCs therapy with other anti-tumor means

or combining multiple anti-MDSCs therapies, which is a

promising therapeutic strategy.
TANs-targeted therapy

Neutrophils can also be targets for anticancer therapy and

s t ra teg i e s main ly inc lude suppres s ing neut roph i l

immunosuppression by altering neutrophil recruitment and

migration, depleting neutrophils at tumor sites, increasing

neutrophil anti-tumor activity, and altering neutrophil polarity.

Neutrophils in the BM are released and migrated to the

tumor microenvironment under the stimulation of mediators

such as granulocyte CSF (G-CSF), granulocyte-macrophage CSF

(GM-CSF), and chemokines such as CXC and CCL3 (289).

TANs exhibits two subtypes under the action of cytokines in

the tumor microenvironment: N1 TANs with anti-tumor effect

and N2 TANs with tumor support activity (290). N1 TANs can

directly kill tumor cells by releasing ROS and reactive nitrogen

species (RNS), which can also promote the activation of T cells

and the recruitment of M1 TAMs, whereas N2 TANs inhibits the

function of NK cells and recruits M2 TAMs and Tregs. It can also

release matrix metalloproteinase 9 (MMP9) to promote

angiogenesis and the spread of tumor cells (291). The N2

TANs phenotype increased in the TME since the high

expression of TGF-b in the tumor microenvironment (292).

Neutrophils are highly enriched and can enhance GC cell

migration, invasion, and epithelial-mesenchymal transition

(EMT) by secreting IL-17a in GC (293). The infiltration of

neutrophils is closely related to the development of

metachronous GC after endoscopic submucosal dissection

(ESD) (294). Furthermore, the high levels of TANs are

associated with disease progression and poor prognosis in GC
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(295). TANs are an independent risk factor for LNM in patients

with early GC (EGC) (296). In addition, one study established a

method to measure N2 TANs (cN2: CD15 minus CD66) and the

results showed that cN2 TANs were closely associated with

clinicopathological factors such as T stage, lymphatic, and

perineural invasion in GC and were an independent marker of

poor prognosis in DFS and OS (290). In addition, treatments can

affect TANs, and the density of TANs decreased in tumor tissues

of GC after neoadjuvant therapy compared with untreated

GC (297).

The number of TANs can be reduced by decreasing

neutrophil migration and recruitment to tumor sites in the

tumor microenvironment. G-CSF can support tumor

progression by mobilizing TANs (298), and neutralizing

G-CSF or neutralizing IL-17, the upstream regulator of G-

CSF can prevent neutrophil accumulation and downregulate

the T-cell inhibitory phenotype of neutrophils (299).

Furthermore, the CXCL/CXCR1/2 signaling axis is critical

for neutrophil recruitment (300) and inhibition of CXCR1/2

signaling can reduce neutrophil recruitment (301); in

addition, CXCR2 blockade as a single drug can prevent TAN

accumulation and reduce tumor burden in tumor-bearing

mice and can also enhance the efficacy of chemotherapy and

immunotherapy (302, 303). The chemokine CXCL8 and the

chemokine receptor CXCR4 are also involved in the

recruitment of neutrophils in the tumor microenvironment.

Inhibiting CXCL8 or blocking CXCR4 can inhibit the

infiltration of TANs in TME (304–307). IL-6 can also attract

TANs to the tumor environment and can attenuate and

reverse the pro-inflammatory effects of neutrophils in the

tumor microenvironment thus leading to immune-killing

resistance. Therefore, immunotherapy targeting IL-6 is a

potential target for tumor treatment via TANs (308). In

addition, some targeted drugs such as ALK inhibitor

lorlatinib and c-Met inhibitor capmatinib can also reduce

TANs by inhibiting the entry of neutrophils in the BM into

circulation (309, 310).

Depletion of TANs at tumor sites or neutrophil subsets with

tumor-promoting functions is also a therapeutic strategy. The

morphology and functions of polymorphonuclear MDSCs

(PMN-MDSCs) are very similar to N2 TANs. The research

showed that targeting TRAIL-R2 resulted in the elimination of

different populations of MDSCs such as PMN-MDSCs and

eMDSCs, without affecting mature myeloid or lymphoid cells

(311). Splenectomy or the tyrosine kinase inhibitor sorafenib

(low dose) can also attenuate or inhibit the inhibitory effect of

tumor PMN-MDSCs on T-cell proliferation and cytotoxic

activity (312).

In addition, it can also treat tumors by increasing the

anti-tumor ability of neutrophils, and targeting Fc receptors

on neutrophils can play an anti-tumor effect through

antigen-dependent cytotoxicity (ADCC). Neutrophil-

dependent ability induced by different tumor-associated
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antigens to kill tumor cells had been confirmed in extensive

preclinical experiments in CD89 transgenic mice (including

breast, colon, renal cell carcinoma, and T- and B-cell

lymphoma) (313). Blockade of the Fas ligands that are

upregulated by PMN-MDSCs can improve the anti-tumor

efficacy of adoptive T-cell therapy in the TiRP melanoma

model and improve the efficacy of checkpoint blockade in

transplanted tumors (314).

Altering neutrophil polarization is also a therapeutic

strategy, such that the immunosuppressive cytokine TGF-b
can differentiate neutrophils into the N2 phenotype, and

blocking TGF-b using the TGF-b inhibitor SM16 resulted in

the accumulation of N1 TANs (312). Furthermore, type I IFN

also can polarize TANs into the N1 phenotype in mouse tumor

models, and similar changes were observed in melanoma

patients with treated IFN-b (315).

A variety of therapeutic strategies targeting neutrophils are

being carried out, but most of them are in the preclinical

research stage; therefore, further validation of data from

clinical trials is required.
Therapies targeting B cells

B cells can not only participate in the humoral immune response

by producing antibodies and cytokines but also have a role in antigen
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presentation and immune regulation. In tumors, B cells are mainly

concentrated in the tumor margin and the lymph nodes close to the

tumor (316). In addition, B cells infiltrating the tumor margin

differentiate into Bregs under the action of growth factors and

different signaling pathways, which can support tumor growth by

suppressing anti-tumor responses through producing anti-

inflammatory cytokines and expressing inhibitory molecules (317)

(Figure 4). For example, it can inhibit TH17, TH1, and CD8+ T-cell

responses; inhibit CD4+ T-cell proliferation and induce their death

(319); inhibit the production of IFN-g and TNF-a (320); promote

Tregs expansion (320) and increase the expression of CTLA4 onTregs
(321); secreteTGF-b, IL-10, and IL-35 (322); and affect the balance of
TH1/TH2(323). Inaddition,Bregs also expressPD-1andPD-L1(322).

In GC, Bregs are significantly increased in tumor tissues compared

with surrounding tissues (324, 325), and the frequency of which in

peripheral blood is significantly higher than that in the healthy

control group (326). Studies have shown that Bregs were

significantly associated with poor prognosis in GC patients. The 5-

year OS rate in Breg
Low GC patients was significantly better than that

in Breg
High patients (326). Therefore, reducing Bregs can help increase

the anti-tumor response based on Bregs-mediated immune escape.

The treatments can take measures such as reducing the number of

Bregs and reversing B cell–mediated immunosuppression. The

number of Bregs can be reduced by proteasome inhibitor

bortezomib, MEK inhibitor cobimetinib, and CD22 antibodies

(327–329). Anti–IL-10 antibodies can inhibit the secretion of IFN-
FIGURE 4

The immunosuppressive mechanisms of Bregs: the functional mechanisms of Bregs are mediated through the release of soluble factors, such as
IL-10, TGF-b, and IL-35, and through direct cell-cell contact via co-stimulatory molecules, including the inhibition of T-cell differentiation into
type 1 T helper (TH1) cell and type 17 T helper (TH17) cell; inhibit the production of pro-inflammatory cytokine by CD4+ effector T cells; inhibit
the production of TNF-a by monocytes; and inhibit the responses of cytotoxic CD8+ T cell. Bregs can initiate apoptosis of effector T cells
through the expression of FASL and can also promote the differentiation of Foxp3+ T cells and type 1 regulatory T (Tr1) cell, alter cytokine
production by dendritic cells, and support the maintenance of iNKT cells, which may have regulatory functions (318).
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g and TNF-a by Bregs (324). In addition, reversing B cell–mediated

immunosuppression is also a therapeutic strategy. For example, the

widely used ICI PD-1 antibody (nivolumabor pidilizumab) has been

shown to reverse B cell–mediated immunosuppression (318). Above

all, therapeuticapproaches targetingBregshaveachievedsomesuccess

but they aremostly based onpreclinical studieswith limited data and

needed more research to support.
Conclusion and prospects

The incidence ofGC remains high inChina, SouthKorea, Japan,

and other Asian countries, and most patients are diagnosed in the

middle or late stages because early cancer screening has not been

popularized in some areas and the symptoms are not typical. TheOS

hasnot been significantly improved in the treatment of advancedGC

after years of effort. However, the emergence of immunotherapy has

brought hope to these patients. This review introduces the effects of

various immune cells on the occurrence, development and prognosis

of GC in the tumor microenvironment. Among them,

tumor-infiltrating DCs, NK, M1 TAMs, and N1 TANs are

beneficial to anti-tumor immunity and are associated with better

prognosis inGC, whereasM2TAMs,MDSCs, N2 TANs, eTregs, and

Bregs and the expressions of PD-1, CTLA-4, LAG-3, TIM-3, and

TIGITonvarious immune cells canpromote immune escape andare

associated with poor prognosis in GC. Based on the importance of

tumor-infiltrating immune cells to patient survival, the database

Tumor ImmunoassayResource (TIMER)conducts a comprehensive

analysisof tumor immunologyandclinical andgenomicsdata,which

is used to estimate the abundance of six tumor-infiltrating immune

cell (TIIC) subsets (B cells, CD4 T cells, CD8 T cells, macrophages,

neutrophils, and DCs) to comprehensively study the molecular

characterization of tumor-immune interactions. The TIMER

database consists of six functional modules, including the

association of TIIC abundance with gene expression (Gene), OS

(Survival), somatic mutations (Mutation), and DNA somatic copy

number alterations (SCNA), as well as analysis of differential gene

expression (DiffExp) and gene-gene correlations (Correlation) (330).

For example, using the TIMER database found that TGF-b2 had the
ability to regulate immune cell recruitment and activation in gastric

adenocarcinoma (STAD), and it might be an important regulator of

immune cell infiltration and a valuable prognostic biomarker in GC

patients (331). The expression of collagen familymembers positively

correlated with infiltration of macrophages and expression of M2

macrophage markers, and with significant effects on tumor

immunology (332). In addition, the expression of long non-coding

RNA (lncRNA) target genes NOX4, COL8A1, and CHST1 was

positively correlated with the degree of infiltration of CD8+ T cells,

CD4+ T cells, macrophages, neutrophils, and DCs in the immune

microenvironment, and these lncRNA target genesmaybe involved in

the formation of the tumor immune microenvironment (333).

Applying the TIMER tool analysis also showed that the expression

of proteasome26S subunit andATPase gene (PSMC) familymembers
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was correlated with tumor purity, immune infiltration profile, and

markers of different types of immune cells, which may become a new

and important prognostic biomarker for tumor development (334).

Therefore, the application of the TIMERdatabase can help to discover

new therapeutic targets and new immune evasion mechanisms.

The number of anti-tumor immune cells is reduced and their

functions are suppressed in the tumor microenvironment, whereas

the number of immunosuppressive cells is increased. Increasing the

number or enhancing the function of anti-tumor immune cells, or

reducing the number or weakening the function of

immunosuppressive cells can restore anti-tumor immunity. Based

onthis,manystudieshavebeencarriedout to target immunecells asa

strategy for treating tumors, such as the ICIs PD-1/PD-L1 antibody

andCTLA-4 antibody,which arewidely used in clinical practice. The

ICIs expressed on a variety of immune cells but mainly restore the

anti-tumor activity of T cells. In addition, T cells also express LAG-3,

TIM-3, TIGIT, and other receptors, and these immunosuppressive

receptors are potential therapeutic targets and have seen anti-tumor

efficacy in preclinical studies. ACTs are also promising treatment

methods based on T-cell immunotherapy, such as CAR-T, TIL, and

CIK. Among them, CAR-T has achieved amazing efficacy in

hematological tumors, and CAR-T targeting CLDN18.2 has seen

better ORR and DCR in the treatment of GC. However, the wide

clinical application is limited due to the complicated preparation

process and high cost of ACT, such as TIL and CIK. DC-CIK also

belongs to ACT in DC-based therapy. Another DC-based treatment

is the cancer vaccine, and these two treatment strategies can see anti-

tumor effects when combined with other treatments such as

chemotherapy. The anti-tumor activity of immune cells can be

restored by reducing immunosuppressive cells or inhibiting the

activity of immunosuppressive cells, such as M2 TAMs, MDSCs,

N2TANs, eTregs, Bregs, and the reductionof immunosuppressive cells

can be achieved by blocking the migration of immunosuppressive

cells into the TME. For example, CSF-1/CSF-1R mediates the

chemotaxis of TAMs, TANs, and MDSCs; CXCR1/2 mediates the

chemotaxis of TANs and MDSCs; CXCR4 participates in the

chemotaxis of TAMs, TANs, and Tregs; and CCL5-CCR5

participates in the chemotaxis of TAMs and MDSCs. Blocking the

interaction of these chemokines with their receptors can reduce the

migration of immunosuppressive cells to the TME. In addition,

“reprogramming” immune cells from tumor support cells to tumor

killer cells can also increase anti-tumor activity. For example, M1

TAMs andN1TANs can inhibit and kill tumors, whereasM2TAMs

and N2 TANs promote tumor progression and tumor angiogenesis.

Using TGF-b inhibitors or type I IFN can polarize TANs to N1

phenotype. Meanwhile, TLR agonists, CD40 and CD47 antibodies,

CSF-1/CSF-1R inhibitors or neutralizing antibodies, and TGF-b,
HDAC, andPI3Kg inhibitors all can reprogramTAMs toM1TAMs.

These reprogramming therapeutic strategies have seen anti-tumor

efficacy inpreclinical tumormodels. In addition,CAR-NKandCAR-

Mhave been developed and applied for anti-tumor therapy based on

the success of CAR-T in hematological tumors, and both have

entered the clinical trial stage. Among them, the activity of CAR-
frontiersin.org

https://doi.org/10.3389/fimmu.2022.992762
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.992762
NK is similar to CAR-T cells and safer than that and does not have

strictHLA-matching requirements, so it is a potential strategy for the

treatment of GC. The treatment strategies to increase anti-tumor

immune cells or their functions are ACTs which was mentioned

before, such as CAR-T, CAR-NK, CAR-M, TIL, CIK, DC-CIK, etc.

There are many strategies for targeting immune cells to treat

tumors, among which the treatment strategies targeting T cells have

the most significant effect and the fastest development and have

shown good clinical efficacy in hematological tumors and various

solid tumors, such as ICIs PD-1/PD-L1, CTLA-4, and CAR-T in

adoptive immune cell therapy. However, these immunotherapies

also have limitations in the treatment of GC. For example, the

aforementioned anti–PD-1/PD-L1 antibodies and anti–CTLA-4

antibodies have failed to improve OS and PFS in patients

compared with chemotherapy in some trials. Although positive

results have been obtained in some clinical trials, most of the

benefited populations are only those with high PD-L1 CPS score,

MSH-H, or high TMB, but unfortunately these populations do not

account formuch of advancedGC. ICI can also cause the occurrence

of fatal toxic events. According to statistics, the toxicity-related

mortality rates were 0.36% (anti–PD-1), 0.38% (anti–PD-L1), and

1.08% (anti–CTLA-4). A total of 613 fatal ICI toxicity events were

reported in the WHO pharmacovigilance database (Vigilyze) from

2009 to January 2018, of which anti–PD-1/PD-L1-related deaths

wereusually frompneumonia (35%), followedbyhepatitis (22%)and

neurotoxicity (15%), whereas anti–CTLA-4–related deaths were

mostly due to colitis (70%) (335). The CAR-T cell therapy also has

limitations in the treatment ofGC, including life-threatening–related

toxicity such as cytokine release syndrome (CRS), hemophagocytic

lymphohistiocytosis and/or macrophage activation syndrome

(MAS), and immune effector cell-associated neurotoxicity

syndrome (ICANS). Moreover, the efficacy of CAR-T in the

treatment of GC is still limited. In addition, there is still antigen

escape and the immunosuppressive tumor microenvironment and

physical tumor barriers such as the tumor stroma limit the

penetration and mobility of CAR-T cells (336). Other strategies for

targeting immune cells to treat tumors have shown efficacy in

preclinical animal models but have not been widely used in the

clinic,which is partly because some treatment strategies are in clinical

trials, and results have not yet been published. Another part of the

reason may be related to the insignificant efficacy. For example, the

two cancer treatment strategies based onDCs (vaccine andDC-CIK)

are only effective when they are combined with other treatment

options suchaschemotherapy.Thewidelyused ICIsareonlyeffective

for some tumorpatients, whereas other patientswill developprimary

or secondary drug resistance. The reason for the poor efficacy of

immunotherapymaybe related to thecomplexmicroenvironment in

which the tumor is located. The interaction of tumor cells, immune

cells, and stromal cells in the tumormicroenvironment constitutes a

huge immune suppression network that leads to tumor immune

escape, but the current immunotherapy only targets one type of cells

or a certain target on a type of cells, whereas the immunosuppressive
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environment is composed of multiple cells and multiple targets. For

example, more than 10 kinds of immunosuppressive receptors

expressed on T cells have been confirmed, and there are many

unexplored inhibitory receptors. The development of multi-cell and

multi-target therapeutic strategies may be the future development

direction. Based on this, multi-target combination strategies have

been used for tumor treatment, such as PD-1/PD-L1 inhibitor

combined with CTLA-4 inhibitor and PD-1 inhibitor combined

with anti–LAG-3 (74, 337). At the same time, the PD-1/LAG-3 dual

antibody has been developed and has entered the clinical trial stage

(68). In addition, therapeutic strategies targeting immune cells have

also achieved good results in combination with other treatments,

such as combination with chemotherapy drugs. It has been

confirmed that drug therapy plays a role in remodeling the tumor

immunemicroenvironment, such as decreased density of CD8+ cells

and increaseddensity ofFoxP3+cells andBcells (CD20+) inPTsafter

NAC, but PD-L1 expression did not change (338). In addition, PD-

L1 expression and CD8+ T-cell infiltration were increased in the

tumor microenvironment after treatment with the targeted drug

anti-VEGFR2 antibody RAM in GC, and PD-1 expression in eTregs

cells and CD8+ T cells was significantly reduced in TILs (136).

However, this multi-target or targeting multi-cell or combined with

other therapies to treat tumorsmaybringmore toxic side effectswhile

increasing the anti-tumor efficacy.Therefore, there is a longway togo

for anti-tumor therapy targeting immune cells to achieve synergy

and detoxification.
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Glossary

GC Gastric cancer

TME Tumor microenvironment

DCs Dendritic cells

NK Natural killer

TAMs Tumor-associated macrophages

TANs Tumor-associated neutrophils

MDSCs Myeloid-derived suppressor cells

Tregs Regulatory T cells

TH T helper

eTregs Effector Tregs

Bregs Regulatory B cells

APC Antigen-presenting cells

ICI Immune checkpoint inhibitors

PD-1/PD-L1 Programmed cell death 1/programmed death-ligand

mAbs Monoclonal antibodies

CTLA-4 Cytotoxic T lymphocyte–associated protein 4

TMB Tumor mutational burden

EBV Epstein–Barr virus

CAR-T Chimeric antigen receptor T

OS Overall survival

DFS Disease free survival

PFS Progression-Free-Survival

ORR Objective response rate

DCR Disease control rate

MSI-H Microsatellite instability-high

LAG-3 Lymphocyte activation gene 3

TIM-3 T-cell immunoglobulin and mucin domain-3

TIGIT T cell immunoreceptor with immunoglobulin and ITIM domain

ACT Adoptive cell therapy

MSLN Mesothelin

PSCA Prostate Stem Cell Antigen

HER2 Human epidermal growth factor receptor 2

CEA Carcinoembryonic antigen

TIL Tumor-infiltrating lymphocyte

CIK Cytokine-induced killer cells

ICOS Inducible T-cel l costimulator

GITR Glucocorticoid-induced TNFR-related protein

OX40 Tumor necrosis factor receptor 4

VEGFR2 Vascular endothelial growth factor receptor-2

CCL/CXCL Chemokine

CCR/CXCR Chemokine receptors

FOXP3 Forkhead box P3

DC-CIK Dendritic Cell -cytokine Induced Killer Cell

IL Interleukin

ADCC Antibody-dependent cell-mediated cytotoxicity

KIR Killer immunoglobulin receptor

PI3K Phosphoinositide 3- kinase

(Continued)
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CAR-NK Chimeric antigen receptor natural killer

CAR-M Chimeric antigen receptor macrophage

CSF-1/CSF-
1R

Colony-stimulating factor 1/Colony-stimulating factor 1
receptor

TLR Toll-like receptors

HDAC Histone deacetylase

ATRA All-trans retinoic acid

COX-2 Cyclooxygenase 2

GCSF Granulocyte colony-stimulating factor

ARG1 Arginase I

iNOS Inducible nitric oxide synthase

NO Nitric oxide

MMPs Matrix metalloproteinases

ROS Reactive oxygen species

PMNMDSC Polymorphonucler myeloid-derived suppressor cell

GMDSCs Granulocyte-like myeloid-derived suppressor cells

CSCs Cancer stem cells

MSCs Mesenchymal stem cells

TH Helper T cells

IFN Interferon

TNF Tumor necrosis factor

TGF Transforming growth factor

CapeOx Capecitabine plus oxaliplatin

FOLFOX Leucovorin calcium plus fluorouracil plus oxaliplatin
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