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Integrated analysis of single-cell
and bulk RNA-sequencing
identifies a signature based on
T-cell marker genes to predict
prognosis and therapeutic
response in lung squamous
cell carcinoma

Xuezhong Shi, Ani Dong, Xiaocan Jia, Guowei Zheng,
Nana Wang, Yuping Wang, Chaojun Yang, Jie Lu
and Yongli Yang*

Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University,
Zhengzhou, China
Cancer immunotherapy is an increasingly successful strategy for treating patients

with advanced or conventionally drug-resistant cancers. T cells have been proved

to play important roles in anti-tumor and tumor microenvironment shaping, while

these roles have not been explained in lung squamous cell carcinoma (LUSC). In

this study, we first performed a comprehensive analysis of single-cell RNA

sequencing (scRNA-seq) data from the gene expression omnibus (GEO)

database to identify 72 T-cell marker genes. Subsequently, we constructed a 5-

gene prognostic signature in the training cohort based on the T-cell marker genes

from the cancer genome atlas (TCGA) database, which was further validated in the

testing cohort and GEO cohort. The areas under the receiver operating

characteristic curve at 1-, 3-, and 5-years were 0.614, 0.713 and 0.702 in the

training cohort, 0.669, 0.603 and 0.645 in the testing cohort, 0.661, 0.628 and

0.590 in the GEO cohort, respectively. Furthermore, we created a highly reliable

nomogram to facilitate clinical application. Gene set enrichment analysis showed

that immune-related pathways were mainly enriched in the high-risk group.

Tumor immune microenvironment indicated that high-risk group exhibited

higher immune score, stromal score, and immune cell infiltration levels.

Moreover, genes of the immune checkpoints and human leukocyte antigen

family were all overexpressed in high-risk group. Drug sensitivity revealed that

low-risk groupwas sensitive to 8 chemotherapeutic drugs and high-risk group to 4

chemotherapeutic drugs. In short, our study reveals a novel prognostic signature

based on T-cell marker genes, which provides a new target and theoretical

support for LUSC patients.

KEYWORDS
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Introduction

Lung cancer is one of the most common malignant tumors

worldwide, with a high incidence and mortality rate (1). Lung

squamous carcinoma (LUSC) is one of the major histological

types of lung cancer, accounting for approximately 25% to 30%

of all lung cancer cases (2). Although some drugs have been

approved for the treatment of LUSC, the 5-year overall survival

(OS) rate remains under 18% and most patients eventually

develop drug resistance (3, 4). In recent years, immunotherapy

has emerged as a promising strategy for cancer treatment, but

only a minority of LUSC patients could benefit from immune

checkpoint inhibitors (ICIs) treatment (5, 6). Therefore, it is very

urgent to find suitable biomarkers to predict the prognosis and

treatment response of LUSC.

The tumor microenvironment (TME) plays an important

role in tumor progression and invasion (7). It has a critical

impact for immunotherapy, which in turn can affect patient

survival (8). In the TME, the development of novel cancer

immunotherapies requires an in-depth understanding of

tumor-resident T cells (9). T cells are known to play a major

role in immunosurveillance and tumor eradication. The lack of T

cells in tumors can lead to immunotherapy resistance (10). In

addition, the success of chimeric antigen receptor T cell

infusions in patients with leukemia and lymphoma also

demonstrates the importance of T cells in antitumor immunity

(11, 12). It has been reported that the presence of T cells plays an

important role in the survival of non-small cell lung cancer

(NSCLC). The presence and activation status of T cells can be

used as a marker of the prognosis in NSCLC (13). As the anti-

tumor immunity of T cells are poorly studied in LUSC, it is

necessary to explore the gene expression profile of T cells and its

relationship with prognosis and treatment response.

Single-cell RNA sequencing (scRNA-seq) has been of great

significance for the development of targeted therapy and

immunotherapy (14). In recent years, scRNA-seq reveals

distinct immune cell subpopulations in TME, providing a new

way to define functional biomarkers (15). Given this advantage,

many studies have focused on identifying novel biomarkers for

cancer by integrating scRNA-seq and bulk RNA-seq data (16–

18). In our study, we performed an integrative analysis of

scRNA-seq and bulk RNA-seq of LUSC to identify T-cell

marker genes and construct a prognostic signature in the

training cohort. The test and gene expression omnibus (GEO)

cohort were used to further evaluate the predictive power of the

signature. In addition, we analyzed the differences in tumor

immune microenvironment (TIME), tumor mutational burden

(TMB) and drug sensitivity between the two risk groups. We

believe that our findings will provide potential prognostic

biomarkers and therapeutic targets for LUSC.
Frontiers in Immunology 02
Materials and methods

scRNA-seq data and transcriptome
data acquisition

The scRNA-seq data of 2 purification LUSC tumor samples

(GSM3635278 and GSM3635285) of GSE127465 were

downloaded from the GEO database (http://www.ncbi.nlm.nih.

gov/geo/). The bulk RNA-sequencing data and clinical

information of LUSC patients were downloaded from the

cancer genome atlas (TCGA) database (https://portal.gdc.

cancer.gov), including 49 normal patients and 502 tumor

patients. After excluding tumor patients without survival data,

488 tumor patients were included in the analysis. In addition,

GSE37745 (n =66), GSE73403 (n =69) and GSE74777 (n =107)

were downloaded from the GEO dataset to validate the

prognostic power of the model. Data from GEO were

integrated into the entire set and batch effects were corrected

with the “ComBat” algorithm of “sva” package (19). The bulk

RNA-sequencing data were processed with log2 transformation.
scRNA-seq data analysis

The R software “Seurat package” (20) was used to convert

scRNA-seq data into Seurat objects. Firstly, we performed

quality control the scRNA-seq data by removing clusters with

cell counts less than 3, cells with the number of genes mapped

less than 50 and cells with more than 5% of mitochondrial genes.

Then, the “NormalizeData” package was applied for data

normalization. The top 15 principal components (PCs) were

extracted by principal component analysis (PCA) based on the

top 2,000 highly variable genes. T-distributed stochastic

neighbor embedding (t-SNE) was used for unsupervised

clustering and unbiased visualization of cell subpopulations on

a two-dimensional map (21). The “FindAllMarkers” function

was used to compare the differences of gene expression between

a cluster and all other clusters. To identify the marker genes for

each cluster, |log2 (fold change) | > 1 and adjusted P-value< 0.05

were used. Finally, the “SingleR” package (22) was used to

annotate the cell subpopulations of the different clusters.
Construction and validation of a
prognostic signature

We integrated transcriptomic and survival data from 488 LUSC

patients and randomly divided them into training and testing

cohort in a 7:3 ratio. The univariate Cox regression analysis was

performed to identify the T-cell marker genes that were significantly
frontiersin.org

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://doi.org/10.3389/fimmu.2022.992990
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2022.992990
associated with prognosis in the training cohort (P<0.05).

Subsequently, the least absolute shrinkage and selection operator

(LASSO) Cox regression was performed to select the optimal l to

incorporate into the model. Finally, the selected key genes were

included in multivariate Cox regression analysis. T-cell marker

genes risk score (TCMGrisk) calculating formula was:

TCMGrisk =o
n

i=1
coef i*xi

where coefi means the coefficients, xi is the FPKM value of each

T-cell marker genes. The patients were divided into high-risk

and low-risk groups based on the median value of the

TCMGrisk. Kaplan-Meier (K-M) curve was used to evaluate

the differences of overall survival (OS) between two groups. The

time-dependent receiver operating characteristic (ROC) curves

and the area under curve (AUC) were measured by package

“survivalROC” in R software, which was used to evaluate the

prognostic predictive accuracy of the model. We used the same

method to validate the model predictive power on the testing

cohort and GEO cohort.
Exploration of mRNA and protein
expression levels of signature genes

We studied 49 pairs of LUSC tumor patients and normal

patients from the TCGA database to compare the differences in

the mRNA expression levels of signature genes. The

immunohistochemistry (IHC) staining images of the signature

genes were obtained from the human protein atlas database

(HPA; https://www.proteinatlas.org/), which was a valuable

database that contains IHC-based expression data for the 20

most common cancer (23).
Relationship between prognostic
signature and clinicopathological factors

To facilitate clinical application and provide a more

convenient tool for predicting the prognosis of LUSC patients,

we integrated TCMGrisk and clinical factors including age,

gender, stage to construct the nomogram. Furthermore,

calibration curves were plotted to assess the agreement

between actual and predicted values with the 45° dotted line

indicating the optimal prediction. Decision curve analysis

(DCA) was used to assess the net clinical benefit of TCMGrisk

and clinical factors on patient survival outcomes (24).
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) (25) was used to assess

related pathways and molecular mechanisms between low-risk

and high-risk groups of LUSC patients. Kyoto encyclopedia of
Frontiers in Immunology 03
genes and genomes (KEGG) gene sets and phenotype tag

expression files were loaded into the GSEA software and run

1,000 times to demonstrate function consistently. The screening

criteria were |normalized enrichment score (NES)| > 1, nominal

(NOM) P-value< 0.05 and FDR q-value< 0.25.
Evaluation of tumor immune
microenvironment

The immune score, stromal score and ESTIMATE score of

LUSC patients were assessed with the estimation of stromal and

immune cells in malignant tumor tissues using expression data

(ESTIMATE) algorithm (26). The levels of 22 immune cell

infiltration were assessed with the cell type identification by

estimating relative subsets of RNA transcripts (CIBERSORT)

algorithm (27). The activity of immune cell and immune

function of each sample was calculated by single sample GSEA

(ssGSEA). Marker genes for different immune cells were

obtained from previous studies (28) and listed in Table S1.

Wilcoxon test was used to estimate differences in the expression

levels of immune checkpoints and human leukocyte antigen

(HLA) -related genes between low-risk and high-risk groups.

Finally, we retrieved the tumor immune dysfunction and

exclusion (TIDE) score file from the TIDE website (29)

(http://tide.dfci.harvard.edu). We then assessed the difference

in immune checkpoint blockade response between the two

groups using the “ggpubr” package.
Mutation and drug sensitivity analysis

The somatic mutation data from LUSC patients were

downloaded from the TCGA database. The number of

mutation frequencies and exon lengths were calculated for

each patient. To identify gene mutation characteristics between

different risk groups, waterfall plots were generated using the

“maftools” package and TMB value were described. We divided

LUSC patients into low-TMB group and high-TMB group based

on median TMB value. Wilcoxon test was used to compare the

differences of the TMB value between the two groups. K-M curve

was used to evaluate the differences of OS between the two

groups. The chemotherapeutic response of LUSC patients was

assessed by genomics of drug sensitivity in cancer (GDSC) (30).

We utilized “pRRophetic” package (31) to assess the

chemotherapeutic response based on the 50% maximum

inhibitory concentration (IC50).
Statistical analysis

All statistical analyses were conducted using the R software

version 4.1.3 (http://www.R-project.org). Unless otherwise

noted, P< 0.05 was considered as statistical significance.
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Results

Identification of T-cell marker genes
expression profiles

The flow chart of this study was shown in Figure S1. The

scRNA-seq data used in this study were obtained from 12,950 cells

of 2 LUSC tumor samples. Figure 1A showed the range of detected

gene numbers, the depth of sequencing and the percentage of

mitochondrial content in each sample. After strict quality control

filtering to remove low-quality cells, 1,370 cells were included in

the subsequent analysis. After normalizing the data, we selected

the top 2,000 highly variable genes (Figure 1B). The PCA method

was used for dimensionality reduction (Figure 1C), and 15 PCs

with P-value< 0.05 were selected for further analysis (Figure 1D).

We identified a total of 1,086 differentially expressed marker genes

from 9 clusters and listed in Table S2. The relative expression of

marker genes in each cluster were presented in the heatmap

(Figure 1E). Afterwards, the 9 clusters were visualized using the t-

SNE algorithm (Figure 1F). Using the “singleR” algorithm to

annotate cell subpopulations, we found that clusters 2 and 4 were

defined as T-cells subpopulations (Figure 1G). Ultimately, we

obtained 72 T-cell marker genes of LUSC according to |logFC| >1

and adjusted P-value< 0.05.
Construction and validation of
prognostic model

Through univariate Cox regression analysis, we found that

17 T-cell marker genes were significantly associated with

prognosis in the training cohort (P<0.05). (Table S3). LASSO

analysis determined 8 genes based on the optimal lambda value

and the corresponding coefficients (Figures 2A, B). Multivariate

Cox regression analysis obtained 5 genes, including BTG1,

JUND, IER3, ZNF331 and PSAP (Figure 2C). Based on their

correlation coefficients, a TCMGrisk was built: TCMGrisk =

(-0.297× BTG1expression) + (0.197 × JUNDexpression) +

(0.166 × IER3expression) + (0.228 ×ZNF331expression) +

(0.330×PSAPexpression). The patients were divided into high-

risk and low-risk groups based on the median TCMGrisk

(median TCMGrisk =0.973). The scatter plot of TCMGrisk

indicated that as TCMGrisk score increased, OS decreased

while mortality rise (Figures 2D–I). Subsequently, we assessed

the prognostic value of the model. Compared with the low-risk

group, the high -risk group had significantly longer survival

(P<0.001) (Figure 2J). The AUC of 1-, 3- and 5-years of training

cohort were 0.614, 0.713 and 0.702, respectively (Figure 2M). To

further verify the robustness of the model, we perform the same

analysis in the test cohort and GEO cohort. The results of the test
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cohort showed that OS of the low-risk group was better than that

of the high-risk group (P=0.015) (Figure 2K). The AUC in 1-, 3-

and 5-years were 0.669, 0.603 and 0.645, respectively

(Figure 2N). The results of the GEO cohort showed that OS of

the low-risk group was better than that of the high-risk group

(P=0.030) (Figure 2L). The AUC in 1-, 3- and 5-years were

0.661, 0.628 and 0.590, respectively (Figure 2O). Both results

showed that the model had a good predictive power.
Differential expressions of
signature genes

We examined the mRNA and protein expression levels of

signature genes. IER3 expression was upregulated in LUSC

patients, whereas JUND, PSAP and ZNF331 expression was

downregulated in LUSC patients when compared with normal

patients. BTG1 expression was not statistically significant between

the two groups (Figure S2A–S2E). IHC results from the HPA

database were used to further evaluate the expression of signature

genes in LUSC. IER3 protein was significantly highly expressed in

LUSC tissue, with strong antibody staining and more stained cells.

While JUND and PSAP proteins were significantly highly

expressed in normal tissue (Figures S2F–H). ZNF331 and BTG1

were not shown in HPA databases.
The establishment of nomogram and
decision curve analysis

We constructed a nomogram by integrating clinical factors

and TCMGrisk to predict 1-, 3-, and 5-year survival probabilities

of LUSC patients, respectively (Figure 3A). Calibration plots

showed that the observed values were highly consistent with the

predicted values (Figure 3B). In addition, The AUCs exhibited

the nomograms held more clinical net benefit in predicting

prognosis at 1-, 3-, and 5-years (Figures 3C–E). DCA showed

that the nomogram provided the optimum clinical net benefit

for 1- and 3-year OS but not for 5-year OS as well (Figures 3F–

H). This suggested that the nomogram based on TCMGrisk

could be used as an effective method to predict prognosis of

patients in clinical practice.
Gene set enrichment analysis

The GSEA results showed that the high-risk group from the

training cohort was mainly enriched in immune-related

pathways (nom-P<0.05), such as antigen processing and

presentation, T cell, B cell, Natural killer cell, and cytokine
frontiersin.org
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receptor interaction signaling pathway etc. Notably, the high-

risk group was enriched in the non-small cell lung cancer

pathway (Figure 4). Because these biological pathways were

immune-related and involved in tumor immunity, we further

analyzed immunity to compare the differences between the

two groups.
Frontiers in Immunology 05
Estimation of tumor immune
microenvironment and
immune-related genes

We further investigated the relationship between TCMGrisk

and TIME. The heatmap results indicated that immune-related
B C

D E

F G

A

FIGURE 1

Identification of T-cell marker genes by scRNA-seq analysis. (A) Quality control of scRNA-seq data from two LUSC samples. (B) The variance
plot showed 22,822 genes in all cells, red dots represent the top 2000 highly variable genes. (C) PCA was used for dimensionality reduction.
(D) 15 PCs were identified based on P-value< 0.05. (E) The heatmap showed the relative expression of genes in 9 clusters. Yellow represents
high expressed genes and purple represents low expressed genes. (F) 9 clusters were visualized based on the t-SNE algorithm. (G) Cell
subpopulations identified by marker genes.
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functions were more active in the high-risk group (Figure 5A).

Correlation analysis showed that TCMGrisk was positively

correlated with immune score and stromal score (Figures 5B,

C). The ESTIMATE algorithm results showed that the stromal

score, immune score and estimated score were all significantly

higher in the high-risk group (P<0.001) (Figure 5D). Results of the

ssGSEA algorithm found that T cell CD4 memory resting, NK cell

activated, dendritic cell resting, and neutrophils were highly
Frontiers in Immunology 06
expressed in the high-risk group (Figure 5E). Considering the

role of ICIs in immunotherapy, we compared the expression levels

of eight common immune checkpoint-related genes in the two

risk groups. The results showed that PD-L1, CTLA-4, IDO1, PD-

L2, TIM-3, LAG-3 and TIGIT were highly expressed in the high-

risk group, while PD-1 expression was not statistically different in

the two risk groups (Figure 5F). Importantly, the TIDE score

results showed that high-risk patients had significantly lower
B C

D E F

G H I

J K L

M N O

A

FIGURE 2

Construction and validation of prognostic models. (A, B) LASSO regression analysis. (C) Forest plot of multivariate Cox regression result, * represents P<
0.05. (D–F) Distribution of TCMGrisk score in training cohort, testing cohort and GEO cohort, respective. (G–I) Scatter plot of the OS of each patient in
the training cohort, testing cohort and GEO cohort, respective. (J–L) The Kaplan-Meier curves in the training cohort, testing cohort and GEO cohort,
respective. (M–O) The AUC at 1-, 3-, and 5-years of prognostic models in the training cohort, testing cohort and GEO cohort,respective.
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scores (FigureS3). In addition to this, we found that the expression

levels of HLA-related genes were all higher in the high-risk group

(Figure 5G). The above results suggested that the high-risk group

may be more suitable for ICIs therapy.
Gene mutation analysis

The overall mutation profile of LUSC was shown in

Figure 6A. Figure 6B demonstrated the interaction of genetic

mutations, with co-occurrence of mutations between most genes

(P<0.05). In addition, we also investigated the genetic mutations

in the low-risk and high-risk groups. We found that TP53, TTN,

and CSMD3 were the most frequently mutated genes in the low-

risk and high-risk groups (Figures 6C, D). There was no
Frontiers in Immunology 07
difference in TMB expression levels between the two risk

groups (P=0.19) (Figure 6E). The K-M curves showed that

high-TMB group had a better prognosis than low-TMB group

(P<0.001) (Figure 6F). After combining our model, the

prognosis of the low-risk+ high-TMB group was significantly

better than that of the high-risk+ low-TMB group

(P<0.001) (Figure 6G).
Drug sensitivity analysis

We further explored the difference in IC50 levels of

chemotherapeutic drugs in the low-risk and high-risk groups

(Figures 7A–L). The results found that patients in the low-risk

group had lower IC50 for the anti-cancer drugs including
B

C D E

F G H

A

FIGURE 3

The establishment and validation of nomogram. (A) The construction of the nomogram. (B) Calibration curve for assess the agreement at 1-, 3-
and 5-year OS. (C–E) The AUC of the nomograms compared for 1-, 3-, and 5-year OS, respective. (F–H) The DCA curves of the nomograms
compared for 1-, 3-, and 5-year OS, respective.
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docetaxel, gefitinib, paclitaxel, doxorubicin, erlotinib, lapatinib,

thapsigargin, and vinorelbine. In contrast, patients in the high-

risk group had lower IC50 for the anti-cancer drugs including

axitinib, imatinib, dasatinib, and rapamycin. The above results

suggested that TCMGrisk could be used as predictors for anti-

cancer drug selection.
Discussion

Immunotherapy has emerged as a powerful clinical strategy

for the treatment of cancer. Recently, there has been renewed

interest in the immunotherapy of lung cancer with the positive

results of ICIs (32). However, exploring patients with LUSC who

can benefit from immunotherapy remains a great challenge. The

current study shows that scRNA-seq technology is a powerful

tool for exploring tumor heterogeneity and different cell

subpopulations, which is important for identifying potential

therapeutic targets (33). In this study, we performed scRNA-

seq analysis to explore T-cell marker genes in LUSC and

construct a prognostic signature using the training cohort. The

test and GEO cohort were used to further evaluate the predictive

power of the signature. In addition, we found higher levels of

immune score, stromal score, immune cell infiltration, immune

checkpoints, and somatic mutations in the high-risk group.

More immune-related pathways were also enriched in the

high-risk group.

In this study, the prognostic signature was consisted of 5 T-

cell marker genes, including BTG1, JUND, IER3, ZNF331 and
Frontiers in Immunology 08
PSAP. It was reported that BTG1 overexpression inhibited

tumor cell proliferation, metastasis, invasion, and promoted

apoptosis (34). The up-regulation of BTG1 in NSCLC reduced

the migration and invasion of NSCLC cells by regulating the

expression of CyclinD1, Bcl-2 and MMP-9 proteins, thus

improving the prognosis of patients (35). JUND accelerated

tumor growth, inhibited apoptosis and enhanced cancer cell

invasion (36). It has been reported that the loss of JUND

completely eliminates RAS-driven lung tumorigenesis (37).

IER3 was an inhibitor of apoptosis, and higher expression of

IER3 contributed to the progression of lung cancer (38). ZNF331

was a zinc finger protein whose overexpression is involved in

transcriptional regulation. ZNF331 was found to be an oncogene

and was associated with poor prognosis in many studies (39–41).

The expression of PSAP in lung adenocarcinoma was higher

than that in normal tissues, but further exploration the

expression level and prognostic significance of PSAP was

needed in LUSC (42). In addition, we explored the mRNA

expression of signature genes, which was consistent with

protein expression trends in LUSC and normal lung tissues.

The signature genes identified in this study may provide

potential molecular mechanisms for further clinical studies

of LUSC.

The performance of the prognostic signature based on 5 T-

cell marker genes was further validated in the testing cohort and

the GEO cohort. We observed consistent results in both cohorts,

indicating good robustness and reproducibility of the signature.

Furthermore, we constructed a nomogram to visualize and

predict patients’ 1 -, 3 -, and 5-year survival probabilities.
FIGURE 4

Gene set enrichment analysis.
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Multiple validation methods (Calibration plots, AUC, and DCA)

have shown that the nomogram had higher predictive accuracy.

Therefore, this nomogram could guide the establishment of

individualized examination procedures for LUSC patients and

promote the effective use of medical resources.

Since TME plays a critical role in antitumor response and

can significantly affect prognosis (43), we investigated the

relationship between TCMGrisk and TME. First, we observed
Frontiers in Immunology 09
a significant increase in immune score, stromal score, and

ESTIMATE score in the high-risk group compared to the low-

risk group. Next, 22 immune cell infiltration levels also showed a

higher proportion of CD4+ T cells resting, NK cells, dendritic

cells and neutrophils in the high-risk group, suggesting that

these patients may be in a relatively active state of anti-tumor

immune response. In addition, ICIs as a potential therapeutic

target for lung cancer (44). Our results showed that common
B
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A

FIGURE 5

Characteristics of tumor immune microenvironment. (A) Heatmap showed the relationship between TCMGrisk and 22 immune-related
functions. (B) Correlation between TCMGrisk and immune score. (C) Correlation between TCMGrisk and stromal score. (D) Differences
expression levels of stromal, immune, and ESTIMATE scores between low-risk and high-risk groups. (E) Difference expression levels of 22 types
of tumor-infiltrating immune cells between low-risk and high-risk groups. (F) Differential expression levels of the immune checkpoint-related
genes between low-risk and high-risk groups. (G) Differential expression levels of the human leukocyte antigen-related genes between low-risk
and high-risk groups. ***P< 0.001, **P< 0.01, *P< 0.05.
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immune checkpoint-related genes (PD-L1, CTLA-4, IDO1, PD-

L2, TIM-3, LAG-3 and TIGIT) were highly expressed in the

high-risk group, and TIDE was lowly expressed in high-risk

group, suggesting that immunotherapy may be more suitable for

high-risk group. Finally, HLA was a major histocompatibility
Frontiers in Immunology 10
complex (MHC) expression product in human, an antigen-

presenting molecule that modulates the immune response in

lung cancer (45, 46). The result showed that the all-HLA family

genes were highly expressed in high-risk group, indicating that

local immune response were more active. In conclusion, patients
frontiersin.org
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FIGURE 6

Characteristics of somatic mutations. (A) The overall mutation profile of LUSC. (B) Interaction effect of genes mutating differentially in patients in
the low-risk and high-risk groups. (C) The mutation frequency of genes in the low-risk group. (D) The mutation frequency of genes in the high-
risk group. (E) Differential expression levels of TMB between low-risk and high-risk groups. (F) The Kaplan-Meier curves for the low-TMB and
high-TMB groups. (G) The Kaplan-Meier analysis curves for the patients stratified by TCMGrisk and TMB.
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in the high-risk group exhibited more immune cell infiltration

and immune response, suggesting that they were more likely to

benefit from immunotherapy.

To better guide the treatment of LUSC, drug sensitivity

analysis was performed in different risk groups. We investigated

12 anticancer drugs, including docetaxel, gefitinib, paclitaxel,

doxorubicin, erlotinib, lapatinib, thapsigargin, vinorelbine,

axitinib, imatinib, dasatinib, and rapamycin between low-risk

and high-risk groups. The results showed that the low-risk group

was sensitive to 8 anticancer drugs and the high-risk group was

sensitive to 4 anticancer drugs, which provided a reference for

clinical selection of chemotherapy drugs. In the follow-up study,

we will further explore the clinical significance of these drugs

with LUSC patients.

Although this study provided new insights to promote the

development of new therapies for LUSC, it still had some

limitations. First, all cohort studies were retrospective and

require further validation in prospective cohort studies.

Second, drug sensitivity needs further confirmation by cell

experiment. Third, the number of scRNA-seq samples and the

amount of data published in the public database was limited,

thus the clinical and pathological parameters analyzed were not

comprehensive, which may lead to potential biases. Therefore, it
Frontiers in Immunology 11
is necessary to carry out multi-center, large-sample, prospective

double-blind trials for further verification in the future.

In conclusion, we developed a novel prognostic signature

consisting of 5 T-cell marker genes by combining scRNA-seq

and bulk RNA-seq data. Furthermore, the TCMGrisk was

significantly associated with TIME, immune-related pathways

and drug sensitivity. Our study provides new theoretical insights

into the role of T-cell marker genes in the prognosis and

precision therapy of LUSC patients.
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