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Background: The tumor necrosis factor (TNF) family plays a role in modulating

cellular functions that regulate cellular differentiation, survival, apoptosis, and

especially cellular immune functions. The TNF family members also play

important roles in oncogenesis and progression. However, the potential role

of the TNF family members in lung adenocarcinoma (LUAD) is yet to be

explored.

Methods: The expression of TNF-related genes (TNFRGs) in 1,093 LUAD

samples was investigated using The Cancer Genome Atlas and Gene

Expression Omnibus datasets. The characteristic patterns of TNFRGs in LUAD

were systematically probed and three distinct molecular subtypes were

identified. Furthermore, a correlation was found between the different

subtypes and their clinical characteristics. A TNF scoring system was created

to predict overall survival (OS) and therapeutic responses in patients with LUAD.

Subsequently, the predictive accuracy of the score was verified and a

nomogram was used to optimize the clinical applicability range of the TNF

score.

Results: A high TNF score, involving the immune and stromal scores, indicated

negative odds of OS. Moreover, the TNF score was associated with immune

checkpoints and chemotherapeutic drug sensitivity. Collectively, our

comprehensive TNFRGs analysis of patients with LUAD revealed
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that TNF could be involved in forming the diverse and complex tumor

microenvironment, its clinicopathological features, and its prognosis.

Conclusions: A TNF-related prognostic model was constructed, and a TNF

score was developed. These findings are expected to improve our knowledge

regarding the function of TNFRGs in LUAD, pave a new path for assessing the

disease prognosis, and assist in developing personalized therapeutic strategies

for patients with LUAD.
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Introduction

Globally, the incidence of lung cancer has increased and it is

the primary cause of cancer deaths worldwide (1). Non-small

cell lung cancer (NSCLC) is the primary lung cancer pathology

(2), and lung adenocarcinoma (LUAD) constitutes a

predominant type of NSCLC. Moreover, recently, there has

been an increase in LUAD-associated morbidity (3). The

survival rate of patients with LUAD remains unoptimistic,

with the 5-year overall survival (OS) is about 16% (4).

Immunotherapy is vital in treating advanced LUAD (5).

However, immunotherapy agents are ineffective in a large

number of patients (6). Therefore, it is imperative to explore

effective prognostic evaluation methods and identify reliable

biomarkers of patient survival to formulate highly

individualized treatment and management plans for patients

with LUAD.

The tumor necrosis factor (TNF) family contributes to the

modulation of cellular functions involved in cellular

differentiation, survival, proliferation, apoptosis, and especially

immune functions against cancer cells (7). A study revealed that

the members of the TNF superfamily act against pathogens and

cancer cells by activating the nuclear factor-kB pathway (8).

Reportedly, the success rate of immunotherapy increased by

combining cytotoxic T lymphocyte antigen 4 (CTLA-4)/

programmed cell death 1 (PD-1) immune checkpoint

Inhibitors with the extra engagement of the TNF receptor

family members (9). This implied that modulating the TNF

superfamily/TNF receptor families could be a potential

treatment mechanism for cancer in the future and could be

applied by enhancing T-cell reactivity through engaging

costimulatory receptors from the TNF superfamily/TNF

receptor families. However, the specific expression modes and

functions of the TNF members in LUAD remain unclarified and

warrant systematic investigation. Tumor microenvironment
02
(TME) is crucial for tumor progression (10); the density of

tumor-infiltrating immune cells in the TME has been closely

associated with tumor prognosis (11). Research has revealed that

TNF-a induces diverse oncogenic and tumor-suppressive effects

in TME (12) and that dynamic changes in TME could influence

the pharmacological action of PD-1/PD ligand 1 (PD-L1)

blockers, potentially developing immunotherapy tolerance

(13). However, the mechanism by which TNF mediates

immune cell infiltration in TME and further influences the

efficacy of immunotherapy remains to be investigated.

In our study, three TNF subtypes associated with clinical

consequences were established. Among the three TNF subtypes,

based on the differentially expressed genes (DEGs), two gene

subtypes exhibiting distinct clinical prognoses and immune cell

infiltrations were identified. A scoring system to predict OS was

established and used for describing the immune level of LUAD.

This system may enhance the understanding of TNF in immune

infiltrations and assisted in finding a new direction for more

effective therapeutic strategies for LUAD.
Materials and methods

Data collection and processing

Figure S1 shows a map of the process of the present work.

Gene expression data, copy number variation (CNV) and

somatic mutation data, and corresponding clinical information

regarding LUAD were downloaded from The Cancer Genome

Atlas (TCGA) database. GSE31210 and GSE72094 were

downloaded from the Gene Expression Omnibus (GEO)

database. The “Combat” algorithm was used to eliminate batch

effects, and three cohorts were combined. Patients with

insufficient clinicopathological or survival information were

excluded from the study. Our study included 1,093 patients
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and their detailed clinical information is presented in Table S1.

In total, 43 TNF-related genes (TNFRGs) were included in the

study obtained by reviewing previous studies and sorting out the

above mRNA sequencing data. The details of these TNFRGs are

provided in Table S2.
Consensus clustering analysis of tumor
necrosis factor

Through “ConsensusClusterPlus” (14) package in R,

unsupervised clustering analysis was applied to classify

patients into different molecular subtypes based on the mRNA

expression profiles of TNFRGs. Consensus clustering is a

common research method for cancer subtype classification.

Samples can be divided into several subtypes according to

different sets of omics data, so as to find new disease subtypes

or compare and analyze different subtypes. The distribution of

the subtypes was confirmed as per the expression profiles of the

genes using principal component analysis (PCA).
Differentially expressed genes
identification and functional
enrichment analysis

DEGs were screened using “limma” (15) package in R

among the different subtypes with a fold-change of two and an

adjusted p-value <0.01. The Gene Ontology (GO) and Kyoto

Gene and Genome Encyclopedia (KEGG) analyses of the DEGs

were performed using “cluster profile” package in R to further

explore the potential functions and enrichment pathways of the

DEGs associated with different the TNF patterns.
Construction of the tumor necrosis
factor-related prognostic signature

Univariate Cox regression analysis was performed for selecting

genes with prognosis value; p <0.05 was considered to be statistically

significant. The training and test sets were randomly generated

from all the patients with LUAD in a ratio of 1:1. Then, the training

set was applied to establish the TNF-related prognostic signature.

LASSO Cox regression analysis was used to identify the key genes

and corresponding coefficients for model building. The risk score of

each patient was calculated based on the standardized expression

level of the key genes and their corresponding regression coefficient.

The formula was established as follows: Score = GREM1 × 0.077 +

GJB2 × 0.068 + CCR2 × −0.151 + MMP1 × 0.002 + IL7R × −0.006

+ MS4A1 × −0.062 + HLA − DQB2 × −0.042. Patients were

classified into low- and high-risk groups based on the median value

of the risk score. TheOS among the different groups of patients with

LUAD was compared using “Survival” software package.
Frontiers in Immunology 03
Mutation and drug susceptibility analysis

The tumor mutational burden of the TCGA cohort was

visualized using “maftools” (16) package in R software.

“pRRophetic” (17) software package was used to calculate the

half-inhibitory concentration (IC50) values of drugs for treating

LUAD to explore the differences in drug sensitivity among the

patients with different scores.
Establishment of a nomogram
scoring system

The package “rms” was utilized to construct a nomogram,

providing valuable clinical predictive information regarding the

clinical characteristics and risk score of patients with LUAD,

particularly on 1-, 3-, and 5-year OS. In the nomogram, each

clinical variable was mapped with a score and the total score was

calculated by adding the scores across all the variables.

Calibration plots were used to assess the predictive value

among the predicted 1-, 3-, and 5-year OS and the virtually

observed outcomes.
Assessment of tumor microenvironment

Using “estimate” package, the stromal, immune, and

ESTIMATE scores of each sample were computed using the

ESTIMATE algorithm. The abundance of infiltrated immune

cells in each sample was assessed using single-sample Gene Set

Enrichment Analysis (ssGSEA).
Statistical analysis

All statistical analyses were performed using R 4.1.2 version.

The OS was compared between the different subgroups using

Kaplan–Meier analysis. Time-dependent receiver operating

characteristic (ROC) curve analysis was applied to assess the

predictive value of the TNF score. p <0.05 was considered

statistically significant.
Results

Multiomics landscape of tumor
necrosis factor-related genes in
lung adenocarcinoma

Somatic mutations in 43 TNFRGs involved in LUAD were

observed; 84 of 561 (14.97%) LUAD samples exhibited genetic

mutations. The top five mutations were FASLG, TNFRSF8,

CD40LG, EDA2R, and EDAR (Figure 1A). The overall mutation
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frequency was low, and numerous genes had not mutated.

Figure 1B shows the location of the CNV of these TNFRGs on

their respective chromosomes. Among them, TNFRSF11B, TNFSF4,

TNFSF10, FASLG, and TNFRSF18 exhibited higher CNV

amplification frequencies, whereas TNFRSF19, TNFSF11, and

TNFRSF10D exhibited higher CNV deletion probabilities

(Figure 1C). The expression levels of the 43 TNFRGs in tumor

and normal tissues were compared; the expression levels of almost

all the TNFRGs were significantly different between the LUAD and

normal samples (Figure 1D). This indicates the potential role of

TNFRGs in LUAD oncogenesis and prognosis.
Tumor necrosis factor-related molecular
patterns with distinct survival and
tumor microenvironment features
in lung adenocarcinoma

The biological behaviors and expression characteristics of

TNFRGs in LUAD were thoroughly investigated. Patients with

LUAD were classified using unsupervised clustering analysis

based on the expression profiles of the 43 TNFRGs. As a result of

the consensus cumulative distribution function (CDF) curve, k =

3 was considered the optimum choice for sorting the entire

cohort into subtype clusters A, B, and C (Figures 2A, B). The

patients in cluster A displayed shorter OS time (Figure 2C) per
Frontiers in Immunology 04
the results of the Kaplan–Meier curves. PCA analysis revealed

obvious distinctions in the TNFRG transcription profiles among

the three subtypes (Figure 2D). The three patterns with different

clinicopathological features of the patients with LUAD are

illustrated in Figure 2E.
Identification of tumor necrosis factor-
related gene subtypes based on
differentially expressed genes

To probe the potential biological behavior of the TNF subtypes,

the TNF subtype-related DEGs were distinguished and functional

enrichment analysis was conducted using R GO analysis indicated

that these DEGs were significantly enriched in certain biological

processes, including T-cell activation and lymphocyte

differentiation (Figure 3A). KEGG analysis revealed immune-

related enrichment pathways (Figure 3B). This implied that TNF

acted as a critical factor in the immune regulation of the TME.

Subsequently, univariate Cox regression analysis was performed to

identify the genes possessing prognostic values. The patients were

divided into two genomic subtypes based on prognostic genes using

an unsupervised clustering analysis to further investigate the special

regulation mechanism (Figures 3C, D). The OS time of the patients

in the gene cluster A was better than those in the gene cluster B per

the results of Kaplan–Meier curves (Figure 3E). Additionally,
B

C

D

A

FIGURE 1

The multiomics landscape of the TNF family in LUAD. (A) Mutation frequency of 43 TNFRGs in patients with LUAD from the TCGA cohort.
(B) Locations of CNV alterations of the TNFRGs on chromosomes. (C) Frequencies of CNV gain, loss, and nonCNV among the TNFRGs.
(D) Boxplot shows the expression distributions of DEGs between LUAD and normal tissues; *p < 0.05, **p < 0.01, ***p < 0.001.
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associations between clinicopathological features and the two gene

clusters were explored, and the results indicated that most genes

with prognostic values significantly differed in the A and B gene

clusters (Figure 3F). The two TNFRG gene clusters demonstrated

substantial distinctions in TNFRG expressions, as expected from the

results of the TNF patterns (Figure 3G).
Development and validation of tumor
necrosis factor-related score

Training and validation cohorts were randomly constructed

from the included patients. LASSO Cox regression analysis was

used to construct an eight-genes prognostic signature in the training

cohort. The risk score of each patient with LUAD was calculated

basedonLASSOCoxanalysis. All the patientswere divided intohigh

and lowTNF score groups. The distribution of the patients and their

survival outcomes in the three clusters, twogeneclusters, and tworisk
Frontiers in Immunology 05
score groups were displayed in Figure 4A. The patients in cluster A

exhibited the highest TNF score compared with those in clusters B

and C (Figure 4B). Meanwhile, the gene cluster B exhibited the

highest TNF score (Figure 4C). The patients in the high TNF score

groupdemonstratedworseOS in the training cohort (Figure 4D); the

same observation was also noted in the test and the entire sets

(Figures 4E, F).Next, the prognostic value of themodelwas validated

in three independent cohorts (TCGA, GSE31210, and GSE72094;

Figures 4G–I). The ROC curve further demonstrated that ourmodel

had a strong prognostic value (Figures 4J-O).

Next, to verify the prognostic reliability of the different

subgroups of clinical features, a detailed investigation was

conducted. In the age subgroups, high-score patients were

observed to exhibit a poor prognosis (Figures 5A, B). Similarly, in

the gender (male and female) and T1–2 subgroups, in the high-

score patients, a notably worse survival rate was observed

(Figures 5C–E). Additionally, the T3–4 subgroups displayed the

same trend; however, without statistical significance (Figure 5F; p =
B C D

E

A

FIGURE 2

TNF clusters in the TCGA cohort. (A) Consensus matrix heatmap defining three clusters (k = 3) and their correlation area. (B) Cumulative
distribution function (CDF) when k = 2–9. (C) Kaplan–Meier curve of the three clusters of patients with LUAD in the TCGA cohort. (D) PCA
analysis between the three clusters. (E) Heatmap shows the relationships between clinicopathological characteristics of the patients and the
three clusters.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.993890
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.993890
0.051). The difference in TNF scores among age, gender, and T

grade groups was also analyzed. The TNF scores in those aged <65

years, male and stage T3–4 group were significantly higher than in

those aged ≥65 years, female, and stage T1–2, respectively

(Figures 5G–I).
Evaluation of immune infiltration
and checkpoints

We further explored the association between TNF score and

TME characteristics. Data revealed that the low TNF score group
Frontiers in Immunology 06
exhibited significantly higher scores for aDCs, B cells, iDCs, Tfh

cells, T-helper cells, et al. than those exhibited by the high TNF

score group (Figure 6A). The patients with low TNF scores

exhibited significantly higher scores of HLA, cytolytic activity,

and inflammation-promoting et al. (Figure 6B). Furthermore,

the patients in the low TNF score group had distinctly higher

estimate scores (Figure 6D; p = 1.5e-14) and immune scores

(Figure 6C; p < 2.2e-16). However, the stromal score of the high

and low TNF score groups was almost the same (Figure 6E; p =

0.14). Altogether, the TNF score exhibited a close association

with TME in LUAD. Additionally, the correlations between the

immune checkpoints and our risk model were investigated in
B

C

D

E

F

G

A

FIGURE 3

Identification of the TNF gene clusters based on the DEGs. (A, B) GO and KEGG enrichment among the three clusters. (C) Consensus matrix
heatmap defining the two gene clusters (k = 2) and their correlation area. (D) Cumulative distribution function (CDF) when k = 2–9. (E) Kaplan–
Meier curves for the two gene clusters (log-rank tests, p < 0.001). (F) Heatmap shows the relationships between the clinicopathological
characteristics of the patients and the two distinct gene clusters. (G) Boxplot shows the expression distributions in 43 TNFRGs among the two
gene clusters; *p < 0.05, ***p < 0.001.
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detail. The results revealed that the two risk groups exhibited

notably distinct immune checkpoint expressions, such as BTLA,

PDCD1, CD274, CTLA4, and CD47 (Figure 6F).
Construction of a prognostic nomogram
and drug susceptibility analysis

A new nomogram OS prediction model combining the TNF

score and other clinicopathological parameters was developed to

optimize the prediction accuracy of the risk model (Figure 7A).

The calibration curve suggested that this nomogram was highly

accurate in predicting LUAD outcomes (Figure 7B). We

calculated the IC50 values of the chemotherapeutic drugs
Frontiers in Immunology 07
commonly applied to treat LUAD using “pRRophetic”

package. The results revealed that patients with high TNF

scores exhibited lower IC50 values for cisplatin, docetaxel,

paclitaxel, and rapamycin while the IC50 values for bleomycin

and gemcitabine were significantly lower in the patients

exhibiting low TNF scores. However, the IC50 values of

doxorubicin was not statistically different between the two

groups (Figures 7C–I).
Discussion

LUAD is on the verge of becoming a lung cancer type with

the highest morbidity (3). Although the individualized treatment
B C

D E F G

H I J K

L M N O

A

FIGURE 4

Development of the TNF scoring system and its clinical consequences. (A) Alluvial diagram describing the relationship of the TNF cluster, TNF
gene cluster, TNF score, and survival outcome group. (B) Boxplot of the TNF scores among the three clusters. (C) Boxplot of the TNF scores
between the two gene clusters. (D–I) Survival analysis of the patients with high and low TNF scores in the different LUAD cohorts. (D) Training
set, p < 0.001; (E) Testing set, p < 0.001; (F) Entire set, p < 0.001; (G) GSE31210 set, p = 0.006; (H) GSE72094 set, p <.001; (I) TCGA set,
p < 0.001. (J–O) Time-independent ROC analysis of the risk scores for predicting the OS.
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of LUAD, comprising surgery, radiotherapy, and drug therapy,

has been positively developing, the prognosis of LUAD remains

poor. Therefore, early prognostic indicators should direct

individualized treatment and predict patient survival.

The importance of the TNF family in tumorigenesis,

progression, and prognosis of various cancers is being

recognized with the increased understanding of TNF. The

activation of the TNF family could mediate the activation or

suppression of immune response in the TME, further

influencing tumorigenesis and cancer progression (18). Till

date, distinct studies have suggested that the activation of

CD40 is a significant mechanism in transforming so-called

cold tumors into hot tumors (with prominent tumor

infiltration of T cells), thereby sensitizing them to immune

checkpoint Inhibitors (19). Various TNF family members,

including CD40, OX40, 4-1BB, GITR, and CD27, which were

investigated as new effective targets, are now under positive

exploration for understanding lung cancer (20). Reportedly,

dynamic changes in the TME cou ld inh ib i t the

pharmacological action of PD-1/PD-L1 blockers, producing

immunotherapy tolerance (13). However, the manner in which
Frontiers in Immunology 08
TNF mediates immune cell infiltration in the TME, further

influencing immunotherapy efficacy, remains to be investigated.

In our study, the clinical consequence and TME features of

the TNF patterns in LUAD were amply explored. Furthermore, a

TNFRG scoring system was established to assess the disease

prognosis of individuals exhibiting different TNFRG mutations.

Three different molecular subtypes were identified based on

the mutations in the mRNA expression profiles of TNFRG in

patients with LUAD. The clinical prognosis of the three subtypes

revealed significant differences. As per the DEGs among the

three TNF subtypes, two gene subtypes associated with different

clinical prognoses and immune cell infiltrations were identified.

Our results revealed that TNFRGs might be useful for predicting

the clinical prognoses and immunotherapy responses of patients

with LUAD. Therefore, the effective prognostic TNF score was

established for quantifying the TNF subtypes and its predictive

ability was confirmed. Finally, a quantitative nomogram was

established to further complement the application value of the

TNF score by combining the TNF score with clinical

characteristics. Our findings revealed that patients with low

TNF scores exhibited a longer survival time, thereby indicating
B C

D E F

G H I

A

FIGURE 5

Survival analysis of the clinical stratification of OS in the LUAD cohorts. (A–F) Kaplan–Meier survival analysis of the high and low TNF
score groups for different clinicopathological characteristics. (A, B) Age ≥65 or < 65 years old; (C, D) female or male; (E, F) T1–2 or T3–4.
(G–I) Boxplot of the high and low TNF score groups for different clinicopathological characteristics. (G) Age <65 or ≥ 65 years old; (H) female or
male; (I) T1–2 or T3–4.
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that high TNF scores could engender a worse prognosis for

patients with LUAD.

Herein, FASLG was one of the top mutations with higher

frequencies of CNV amplification compared with the rest.

Previous reports have revealed that FASLG is important for

tumorigenesis and cancer progression (21). Furthermore, our

findings revealed that TNFSF8 exhibited high mutation rate. A

study reported that TNFSF8 expression demonstrated a negative

correlation with the risk of lung cancer genesis (22).

Herein, the low TNF score group exhibited higher immune

infiltration than the high TNF score group. Consequently, the

scores of aDCs, B cells, iDCs, Tfh cells, T-helper cells, and CD8+

cells were notably higher in the low TNF score group than in the

high TNF score group. A recent study predicted the prognosis of
Frontiers in Immunology 09
LUAD patients, which also showed that patients with low TNF

risk score showed higher immune cell infiltration, such as

gamma delta T cells and macrophages M1 (23). CD8+ T cells

combines with T-cell receptors and tumor cells to generate IFNg,

TNF, and granzyme B and eliminate tumor cells (24). In a

similar study, 12 immune cells were found to be associated with

better prognosis in LUAD (25). Our results indicate that patients

with low TNF scores exhibit observably higher HLA scores than

patients with high TNF scores.

We found that patients exhibiting a low TNF score

demonstrated higher immune and ESTIMATE scores than

patients exhibiting a high TNF score. Additionally, TNF

could influence tumorigenesis and cancer progression via

TME regulation. The TME is a network system comprising
B

C D E

F

A

FIGURE 6

Features of TME in the high and low TNF score groups of LUAD. (A) The abundance of 16 infiltrating immune cell types in the high and low TNF
score groups. (B) Correlation of the TNF scores and 13 immune functions. (C-F) Differences in the immune score, ESTIMATE score, stromal
score and expression of five common immune checkpoints between the different TNF score groups. *p < 0.05, **p < 0.01, ***p < 0.001, and
ns p > 0.05.
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cancer cells, fibroblasts, vascular cells, and inflammatory

immune cells (26). Reportedly, TNF-a exhibits bidirectional

effects in the TME, inducing tumorigenesis as well as tumor

suppression (12).

Immunotherapy is becoming an important treatment

approach for advanced LUAD. However, a large number of

patients cannot benefit from PD-1/PD-L1 immune checkpoint

Inhibitors owing to the defect of low universality of

immunotherapy. Thus, indicating the need for another

costimulatory signal of LUAD in the TME that can be

examined urgently (6). In our study, as a result of analyzing

the correlations between immune checkpoints and the risk
Frontiers in Immunology 10
model, two subtypes were found to exhibit notably different

immune checkpoint expressions, such as BTLA, PDCD1,

CD274, CTLA4, and CD47. A study indicated that resistance

to anti-PD-1 in experimental melanoma can be eliminated by

blocking the TNFa–TNFR1 axis (27). Another study indicated

that delivering a high dosage of TNF into tumors is beneficial for

increasing the efficacy of immunotherapy (28).

A recent study predicted the prognosis signature of

Necroptosis-Related long noncoding RNA in LUAD patients

(29), the AUCs of the signature in the validation cohorts were

0.609, 0.618, and 0.631 at 1, 3,5 years, respectively; in contrast,

those determined by the model in the present work were 0.698,
B

C

D E F

G H I

A

FIGURE 7

Establishment and confirmation of a nomogram. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of patients with LUAD in the training
set. (B) Calibration curves of the nomogram for predicting 1-, 3-, and 5-year OS in the training set. (C–I) Boxplots show the differences in the
estimated IC50 levels of (C) doxorubicin, (D) bleomycin, (E) cisplatin, (F) docetaxel, (G) gemcitabine, (H) paclitaxel, and (I) rapamycin between
TNF score and chemotherapeutic sensitivity; ***p < 0.001.
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0.657, 0.67 at 1, 3, 5 years, respectively, suggesting a slightly

better predictability and stability of the proposed model.

However, this study has certain limitations. The development

of multiomics profiling, distinct expression profiles, and

bioinformatic methods facilitated the exploration of new

prognostic models for patients with LUAD (30). However,

most studies were based on entire genomic or transcriptional

information from various databases and information regarding

biological processes were not included. Therefore, there was an

ineluctable natural bias of signatures owing to the lack of

evaluation the internal characteristics of cancer in these studies.

All samples included herein were based on retrospective data.

Hence, large-scale experimental studies are warranted to verify

the study results.

In summary, a robust and proven scoring system was

established to predict OS and was used for describing the

immune level of LUAD. The score was equipped to become a

reliable biomarker for the survival prediction of the patients to

help formulate the most individualized treatment plan. It also

contributed to enhancing the understanding of TME immune

infiltrations and might assist in finding a new direction for more

effective immunotherapeutic strategies.
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