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M2-like tumor-associated
macrophage-related biomarkers
to construct a novel prognostic
signature, reveal the immune
landscape, and screen drugs
in hepatocellular carcinoma

Xiaodong Qu †, Xingyu Zhao †, Kexin Lin †, Na Wang, Xuezhi Li ,
Songbo Li, Luyao Zhang and Yongquan Shi*

State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases,
Xijing Hospital, Fourth Military Medical University, Xi’an, China
Background: M2-like tumor-associated macrophages (M2-like TAMs) have

important roles in the progression and therapeutics of cancers. We aimed to

detect novel M2-like TAM-related biomarkers in hepatocellular carcinoma

(HCC) via integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk

RNA-seq data to construct a novel prognostic signature, reveal the “immune

landscape”, and screen drugs in HCC.

Methods: M2-like TAM-related genes were obtained by overlapping the

marker genes of TAM identified from scRNA-seq data and M2 macrophage

modular genes identified by weighted gene co-expression network analysis

(WGCNA) using bulk RNA-seq data. Univariate Cox regression and least

absolute shrinkage and selection operator (LASSO) regression analyses were

carried out to screen prognostic genes from M2-like TAM-related genes,

followed by a construction of a prognostic signature, delineation of risk

groups, and external validation of the prognostic signature. Analyses of

immune cells, immune function, immune evasion scores, and immune-

checkpoint genes between high- and low-risk groups were done to further

reveal the immune landscape of HCC patients. To screen potential HCC

therapeutic agents, analyses of gene–drug correlation and sensitivity to anti-

cancer drugs were conducted.

Results: A total of 127 M2-like TAM-related genes were identified by integrative

analysis of scRNA-seq and bulk-seq data. PDLIM3, PAM, PDLIM7, FSCN1,

DPYSL2, ARID5B, LGALS3, and KLF2 were screened as prognostic genes in

HCC by univariate Cox regression and LASSO regression analyses. Then, a

prognostic signature was constructed and validated based on those genes for

predicting the survival of HCC patients. In terms of drug screening, expression

of PAM and LGALS3 was correlated positively with sensitivity to simvastatin and

ARRY-162, respectively. Based on risk grouping, we predicted 10 anticancer
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drugs with high sensitivity in the high-risk group, with epothilone B having the

lowest half-maximal inhibitory concentration among all drugs tested.

Conclusions: Our findings enhance understanding of the M2-like TAM-related

molecular mechanisms involved in HCC, reveal the immune landscape of HCC,

and provide potential targets for HCC treatment.
KEYWORDS

hepatocellular carcinoma, tumor-associated macrophages, prognostic signature,
immune landscape, drug screening
Introduction

Primary liver cancer is the third most deadly malignancy

worldwide. It accounted for ~906,000 new cases and ~830,000

deaths in 2020, with hepatocellular carcinoma (HCC)

accounting for 75–85% of cases (1). The overall burden of

HCC worldwide has increased over time (2). In the USA, the

incidence of HCC has tripled in the last three decades (3). The

median survival and 5-year survival for patients with HCC after

primary hepatic resection are 47 months and 45%, respectively.

However, HCC recurs in 54% of patients, resulting in a 24%

reduction in 5-year survival and a 54-month reduction in median

survival (4). HCC pathogenesis is incompletely understood and

the prognosis is not promising. Hence, there is a need for more in-

depth research and identification of innovative “signatures” to

predict the prognosis of HCC patients.

The tumor microenvironment (TME) consists mainly of tumor

cells, immunecells, and inflammatory cells (5).Among them, tumor-

associated macrophages (TAMs) play an important part in tumor

progression. Macrophages can be polarized into M1 and M2 types.

TAMs are not present in the steady state of an organism but are

observed in several types of tumors. Therefore, TAMs are not always

considered an additional subpopulation of macrophages. TAMs

share the characteristic polarization of M1 and M2 macrophages

(6), but their function is similar to that ofM2macrophages (i.e., M2-

like TAMs). TAMs promote cancer angiogenesis by producing

matrix metalloproteinases, cathepsins, and angiogenic growth

factors (7, 8). In addition, TAMs facilitate tumor metastasis by

promoting epithelial–mesenchymal transition (9). More

importantly, TAM can interact with multiple types of immune

cells within the TME. They can suppress cluster of differentiation

(CD)8+ T cells, induce dysfunction of natural killer (NK) cells and

NK T cells, and suppress effector T cells indirectly by amplifying T

regulatory cells (Tregs), thereby reducing the number of anti-tumor

immune cells to accelerate tumorigenesis (10). Therefore, in-depth

investigation of the role ofM2-like TAMs inHCC development and

constructing a prognostic signature associated with M2-like TAMs

are very important and rational approaches.
02
Single-cell RNA-sequencing (scRNA-seq) enables study of the

heterogeneity within tumors at the cellular level (11). Ma et al.

undertook scRNA-seq on liver-cancer specimens (9 HCC and 10

intrahepatic cholangiocarcinomas) (12). They carried out

bioinformatics analysis to screen for marker genes. We

combined the scRNA-seq data with The Cancer Genome Atlas-

Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. Then,

eight M2-like TAM-related prognostic genes were identified and a

novel prognostic signature of HCC was constructed. After

validation in the test set, this M2-like TAM-related signature

was found to predict the prognosis of patients with HCC.

Differences in “immune landscapes” and immunotherapy based

on risk grouping were revealed and potential anticancer drugs

predicted. The flowchart of this study is illustrated in Figure 1.
Materials and methods

Acquisition and processing of data

The GSE125449 single-cell transcriptome profiles of liver

cancer was downloaded from the Gene Expression Omnibus

(GEO) database (www.ncbi.nlm.nih.gov/). We selected seven

HCC samples from Set 1 for analyses. The “Seurat” package

(13) was used for processing scRNA-seq data, including data

filtering (cells and genes), normalization, principal component

analysis (PCA), and t-distributed stochastic neighbor embedding

(t-SNE). The quality control standards referred to the uploader

(12). Cell samples with >20% mitochondrial gene expression were

filtered. Cells with >700 detected genes and genes detected in >3

cells were reserved. The “DoubletFinder” package (14) was used to

remove samples with a doublet rate >0.4%. After cell filtering, the

scRNA-seq data of high-quality cells were normalized to find

highly variable genes for downstream analyses. Then, PCA was

done on highly variable genes to identify significant principal

components (PCs). Cell clustering was undertaken on the top-20

PCs using the t-SNE algorithm. The “FindAllMarkers” function

was applied to detect the marker genes of each cell cluster. Next,
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annotation of cell type in different cell clusters was done with the

“SingleR” package (15). HCC-related clinical information and

gene-expression data were downloaded from The Cancer Genome

Atlas (TCGA) database (www.cancer.gov/), GEO database

(GSE76427), and the International Cancer Genome Consortium

(ICGC) database (https://dcc.icgc.org/), and only HCC samples

with complete survival information were retained. Then, the

TCGA-LIHC dataset (which contains the survival data and

clinical information for 368 HCC patients) was used as the

training set. Gene-expression data from TCGA-LIHC were

downloaded in the format of fragments per kilobase million and

analyzed. Data on progression-free survival (PFS), disease-specific

survival (DSS), and disease-free survival (DFS) for TCGA-LIHC

were downloaded from UCSC Xena (https://xena.ucsc.edu/) (16).

The ICGC-LIRI-JP dataset and GES76427 dataset contain the

survival data, clinical information, and gene-expression data for

232 and 115 HCC patients, respectively. The mRNA-seq data in

the ICGC-LIRI-JP dataset were transformed by log2(x+1), and

data in the GSE76427 dataset were normalized using the “limma”

package (17). Then, the batch effect between the ICGC-LIRI-JP

dataset and GSE76427 dataset was eliminated using the “sva”

package (https://bioconductor.org/packages/sva/), so that they

were combined into a merged dataset to serve as the test set. A

summary of the clinicopathological characteristics of patients in

all datasets is shown in Supplementary Table S1.

Macrophage infiltration and related
survival analyses

The relative content of M1 and M2 macrophages in each

TCGA-LIHC sample was calculated on CIBERSORTx (https://
Frontiers in Immunology 03
cibersortx.stanford.edu/) (18) using the default signature

matrix. The “surv_cutpoint” function of the “survminer”

package (https://rdocumentation.org/packages/survminer/)

was used to calculate the optimal cutoff value to distinguish

high- and low-content groups of M1 or M2 macrophages in

TCGA-LIHC samples. Survival analyses were carried out using

the “survival” package (https://cran.r-project.org/web/

packages/survival/index.html). Survival between low- and

high-M1 (or M2) macrophage-content groups were analyzed

and compared by Kaplan–Meier method to ascertain if M1

and/or M2 macrophage content was related to survival

from HCC.
Acquisition of M2-like TAM-related genes

After grouping the HCC samples by trait of high or low M2

macrophage content, we analyzed TCGA-LIHC expression data

using the Weighted Gene Co-expression Network Analysis

(“WGCNA”) package (19) to obtain genes most related to M2

macrophage content. Samples were clustered to ascertain the

overall relevance of all samples in the dataset, and outliers were

excluded. The soft thresholding power b was chosen based on

the lowest power for which the scale-free topology fit index

reached a high value. The minimum gene number/module was

set to 50 and, finally, 11 modules were generated. Next, we

undertook correlation analyses between modules and traits to

find the most relevant modules for M2 macrophage content.

Finally, the obtained modular genes were intersected with the

TAMmarker genes acquired from analyses of scRNA-seq data to

filter M2-like TAM-related genes.
FIGURE 1

Flowchart of this study.
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Construction and validation of a M2-like
TAM-related prognostic signature

To obtain M2-like TAM-related genes that could construct a

prognostic signature, univariate Cox regression and least

absolute shrinkage and selection operator (LASSO) regression

analyses were carried out. Initially, we wished to uncover the

association between signature genes and the prognosis. Hence,

after the consensus clustering of HCC samples into different

clusters based on expression of signature genes, we analyzed the

difference in the prognosis among clusters. And we undertook

analyses of the enrichment of function and signaling pathways of

signature genes using the Gene Ontology (GO) database (http://

geneontology.org/) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) database (www.genome.jp/kegg/),

respectively, by employing the “clusterProfiler” package (20).

To group the HCC patients, the risk score of each HCC patient

in the training set was calculated according to the following

formula:

risk score =o
n

i=1
  coefficient   geneið Þ ∗ expression   geneið Þ½ �

Then, patients were divided into low- and high-risk groups

based on the optimal cutoff of the risk score. Kaplan–Meier

survival curves and the log-rank test were used to analyze and

compare the survival between low- and high-risk groups.

Receiver operator characteristic (ROC) curves for 1, 3, and 5

years were plotted using the “survivalROC” package (https://

cran.rstudio.com/web/packages/survivalROC/index.html/) to

evaluate the performance of the prognostic signature.

According to the KEGG database, signaling pathways enriched

significantly in low- and high-risk groups were analyzed by gene

set enrichment analysis (GSEA) software (21). The count of

permutations was set to 1000. Significantly enriched pathways

were defined as those with P<0.05 and a false discovery

rate<0.25. The five most enriched pathways in the high- and

low-risk groups, respectively, were obtained. Moreover,

the prognostic signature was validated in the test set. Based

on the prognostic signature and clinical characteristics of

samples, the “rms” package (https://cran.r-project.org/web/

packages/rms/index.html) was used to construct a nomogram.

The performance of the nomogram was evaluated using

calibration curves and 1-, 3-, and 5-year ROC curves.
Analyses of immune cells, immune
functions, and immunotherapy

The “GSVA” (22) and “GSEABase” packages (www.

bioconductor.org/packages/release/bioc/html/GSEABase.html/)

were used to analyze differences in scores for immune cells and

immune function between high- and low-risk groups. The
Frontiers in Immunology 04
Tumor Immune Dysfunction and Exclusion (TIDE) score was

calculated for each sample in high- and low-risk groups on the

TIDE website (http://tide.dfci.harvard.edu/) (23). The

immunophenoscore of each sample was obtained on The

Cancer Immunome Atlas (TCIA) database (https://tcia.at/

home/) (24).
Correlation analyses and drug screening

We wished to further identify new potential targets and

more efficacious drugs for HCC treatment. The CellMiner

database (https://discover.nci.nih.gov/cellminer/) was

employed to screen for antitumor drugs whose sensitivity was

associated significantly with prognostic genes. The “pRRophitic”

package (https://github.com/paulgeeleher/pRRophetic/) was

used to predict the half-maximal inhibitory concentration

(IC50) of different drugs in high- and low-risk groups. The

lower the IC50 of a drug, the more efficacious the drug is for

treating cancer.
Sample collection and real-time reverse
transcription-quantitative polymerase
chain reaction

The study protocol was approved by the Human Subjects

Committee of Xijing Hospital (Xian, China). All patients provided

written informed consent. We collected samples of tumor tissue

and adjacent normal tissue from 15 patients with HCC. Detailed

clinicopathological information is summarized in Supplementary

Table S2. Total RNA from human tissues was extracted using

TRIzol® Reagent (Invitrogen). Then, the RNA was reverse-

transcribed into complimentary-DNA using a PrimeScript RT

kit (Takara Biotechnology. Shiga, Japan). qPCR was done using

SYBR Premix Ex Taq II (Takara Biotechnology) for a real-time

PCR detection system (Bio-Rad Laboratories, Hercules, CA,

USA). Supplementary Table S3 lists all the primers used in

PCR. Expression of genes was normalized to that of

glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
Statistical analyses

Statistical analyses were conducted using R 4.0.3 (R Institute

for Statistical Computing, Vienna, Austria). The packages within

R used for statistical analyses were as described above. The

Kaplan–Meier method was employed for survival analyses. The

Wilcoxon test was used to compare differences between two

groups. The Kruskal–Wallis test was employed to compare

differences among three or more groups. P<0.05 was

considered significant.
frontiersin.org

http://geneontology.org/
http://geneontology.org/
http://www.genome.jp/kegg/
https://cran.rstudio.com/web/packages/survivalROC/index.html/
https://cran.rstudio.com/web/packages/survivalROC/index.html/
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
http://www.bioconductor.org/packages/release/bioc/html/GSEABase.html/
http://www.bioconductor.org/packages/release/bioc/html/GSEABase.html/
http://tide.dfci.harvard.edu/
https://tcia.at/home/
https://tcia.at/home/
https://discover.nci.nih.gov/cellminer/
https://github.com/paulgeeleher/pRRophetic/
https://doi.org/10.3389/fimmu.2022.994019
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qu et al. 10.3389/fimmu.2022.994019
Results

Screening for M2 macrophage-related
genes by WGCNA in HCC

We wished to further clarify the relationship between

macrophages and the HCC prognosis. The CIBERSORTx

algorithm was used to calculate the content of M1 and M2

macrophages in TCGA-LIHC samples. Then, HCC patients

were divided into high- and low-M1 macrophage-content

groups and high- and low-M2 macrophage-content groups.

Kaplan–Meier analyses showed no significant difference in

survival from HCC between high- and low-M1 macrophage-

content groups (Figure 2A), but HCC patients in the low-M2

macrophage-content group had longer survival (Figure 2B),

thereby indicating that M2 macrophages had an important
Frontiers in Immunology 05
role in HCC. Based on this observation, WGCNA was

undertaken to identify M2 macrophage-related genes in HCC.

First, no outlier was detected in TCGA-HCC (Figure 2C), and 7

was chosen as the optimal soft-threshold power (Figures 2D, E),

and 11 modules were identified by WGCNA (Figures 2F, G).

Correlation analysis between modules and M2 macrophage

content showed the red module to be associated most

significantly with high-content M2 macrophages (correlation =

0.32, P<0.001). Thus, 405 genes (Supplementary Table S4) in the

red module were selected for downstream analyses.

Acquisition of TAM marker genes using
scRNA-seq data

After quality control, 19,106 genes within 2,719 cells were

obtained. The number of genes (nFeature), the sequence count per
A B

D E

F G

C

FIGURE 2

Macrophage-related survival analysis and screening of M2 macrophage related genes. (A) Kaplan–Meier survival curves showed no difference in
the prognosis between groups with high and low content of M1 macrophages. (B) The prognosis was significantly worse in the group with high
content of M2 macrophages. (C) Samples were clustered and outlier samples were not found. (D, E) According to the instructions of the
WGCNA package, 7 was selected as the soft threshold power. (F, G) Correlation analysis of modules with traits yielded 10 non-gray modules,
with the red module considered to be the most relevant module for M2 macrophages. WGCNA, weighted gene co-expression network analysis.
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cell (nCount), and percentage of mitochondrial genes (percent.mt)

were displayed in Vlnplots (Figure 3A). Correlation analyses

showed that nCount was correlated positively with nFeature

(Figure 3B). Then, 2000 variable genes were plotted in a scatter

diagram (Figure 3C). Thirty PCs were identified (Figures 3D, E),

showing high heterogeneity in HCC cells. The top-20 PCs were

selected for t-SNE analyses. According to t-SNE and cell-type

annotation, HCC cells were clustered into two groups: 1,226

immune cells and 1,493 non-immune cells (Figure 3F). The

immune group was composed of B cells, T cells, and TAMs. The

non-immune group included cancer-associated fibroblasts (CAFs),

cells with an unknown entity but express hepatic progenitor cell

markers (HPC-like cells), malignant cells, tumor-associated
Frontiers in Immunology 06
endothelial cells (TECs), and unclassified cells (Figure 3G). The

2047 TAM marker genes of immune cells were detected

(Supplementary Table S5) and shown in a heatmap (Figure 3H).
Screening of M2-like TAM-related
prognostic genes

After marking the intersection of 2047 TAM marker genes

and 405 M2 macrophage modular genes, 127 candidate M2-like

TAM-related genes were obtained (Figure 4A, Supplementary

Table S6). Initially, the univariate Cox regression analysis

revealed nine genes associated with the HCC prognosis
A B

D E

F G H

C

FIGURE 3

Processing of scRNA-seq data and acquisition of TAM marker genes. (A) Quality control of scRNA-seq data of samples of HCC cells. (B) The
number of genes detected was positively associated with the depth of sequencing. (C) Scatter plots showing the top-2000 differentially
expressed genes. (D, E) Principal component analysis was employed to classify the cells, and the top-30 PCs are displayed. (F) Initially, cells
were annotated as “immune cells” and “non-immune cells” by the t-SNE algorithm. (G) Further detailed annotation of cells. (H) Heatmap
demonstrated the marker genes with differential expression in immune cells. scRNA-seq, single-cell RNA-seq; TAM, tumor-associated
macrophage; HCC, hepatocellular carcinoma; PCs, principal components; t-SNE, t-distributed stochastic neighbor embedding.
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(Supplementary Table S7). Finally, LASSO regression analysis

identified eight prognostic signature genes: PDZ and LIM

domain 3 (PDLIM3), peptidylglycine alpha-amidating

monooxygenase (PAM), PDZ and LIM domain 7 (PDLIM7),

fascin actin-bundling protein 1 (FSCN1), dihydropyrimidinase

like 2 (DPYSL2), AT-rich interaction domain 5B (ARID5B),

galectin 3 (LGALS3), and Kruppel-like factor 2 (KLF2)

(Figures 4B, C). The prognostic genes were enriched

significantly in 403 terms according to the GO database, the

top-10 of which were displayed in a bubble plot (Figure 4D). The

biological process (BP) category included “multicellular

organism growth” and “T cell activation via T cell receptor

contact with antigen bound to MHC molecule on antigen

presenting cell”. The cell component (CC) category included

“stress fiber” and “contractile actin filament bundle”. The

molecular function (MF) category included “muscle alpha-

actinin binding” and “alpha-actinin binding”. Moreover,

TCGA-LIHC samples were consistently clustered into different

clusters according to the expression of prognostic genes. It can

be seen that the area under the cumulative density function

(CDF) curve increased significantly when k ≤ 4 (Figure 4E), but

the area under the CDF curve did not increase significantly when

k≥5. And when k=5, the effect of consensus clustering was not

good (Supplementary Figure S2). Therefore, HCC patients were

divided into 4 clusters (Figure 4F). Differences in gene

expression and clinicopathological characteristics among these

four clusters were demonstrated with a heatmap (Figure 4G).

Most importantly, there was a significant difference in survival

between the four clusters (P=0.002) (Figure 4H), which initially

demonstrated the prognostic value of these eight genes.
Construction of a M2-like TAM-related
prognostic signature

According to the coefficients (Table 1) and expression of

prognostic genes, the risk score of each sample in TCGA-HCC

was calculated. Then, HCCpatients in the training set were divided

into low- and high-risk groups based on the optimal cutoff of risk

score (0.126) (Figure 5A). Overall survival (OS) (Figure 5B), DFS,

PFS, and DSS (Supplementary Figures S3A–C) were longer in the

low-risk group than in the high-risk group, which indicated that

patients in the low-risk group had a better overall prognosis. To

evaluate the performance of the risk model, ROC curves were

plotted, and the area under the ROC curve (AUC) at 1, 3, and 5

years was 0.728, 0.689, and 0.663, respectively (Figure 5C). The

results for univariate andmultivariate analyses (Figures 5D, E) and

the Concordance index (C-index) (Figure 5F) showed that the risk

scorewas: (i) an independent factor affecting survival; (ii) a superior

prognostic predictor than other indicators. Moreover, GSEA

showed that “epithelial cell signaling in Helicobacter pylori

infection”, “regulation of actin cytoskeleton”, “p53 signaling

pathway”, “focal adhesion” and “MAPK signaling pathway” were
Frontiers in Immunology 07
enriched significantly in the high-risk group, whereas “fatty acid

metabolism”, “glycine, serineand threoninemetabolism”, “primary

bile acid biosynthesis”, “tryptophan metabolism” and “valine,

leucine and isoleucine degradation” were enriched significantly in

the low-risk group (Figure 5G).
External validation of the M2-like
TAM-related prognostic signature

To verify the reliability of the prognostic signature, we further

validated it in the test set. Samples were grouped in the same way as

in the training set (Figure 6A). Patients in the high-risk group had a

worse prognosis than those in the low-risk group (Figure 6B), and

had anAUC of 0.701, 0.677, and 0.653 at 1, 3, and 5 years in the test

set, respectively (Figure 6C). These results validated the reliability of

the M2-like TAM-related prognostic signature in predicting the

prognosis ofHCCpatients. Based on the risk score of our prognostic

signature and other clinicopathological indicators of patients, we

constructed anomogram tomake amore comprehensiveprediction

of patient survival (Figure 6D). Moreover, the results of the

calibration curve and ROC curve of the nomogram showed a

reliable performance, with an AUC of 0.764, 0.730, and 0.737 at 1,

3, and 5 years, respectively (Figures 6E, F).
Analyses of clinicopathological
characteristics based on the
prognostic signature

In addition to significant differences in survival between high-

and low-risk groups, they also differed in their clinicopathological

characteristics. Figure 7A shows a heatmap of the clinicopathological

characteristics and expression of signature-related genes in high- and

low-risk groups. There were no significant differences between high-

and low-risk groups in terms of sex and age distribution, whereas

therewere significant differences in the depth of tumor infiltration (T

stage) and tumor grade, with a significantly higher proportion of

patients of grade 3 and T3–4 in the high-risk group than in the low-

riskgroup(Figure7B). SurvivalanalysesofHCCpatientsdivided into

different subgroups according to their clinicopathological indicators

showed that the survival outcome of patients in the high-risk group

was worse than that of the low-risk group, whether grouped by sex,

age, grade, or T stage (Figures 7C–J).
Risk signature-related immune cells,
immune function, and the
immunotherapeutic landscape

Based on risk grouping, in terms of immune cells, we

discovered that the content of macrophages and Tregs was higher

in the high-risk group than that in the low-risk group, whereas the
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content of B cells, mast cells, NK cells, plasmacytoid dendritic cells

(pDCs), andhelperT cellswas lower than that in the low-risk group

(Figure8A). In termsof immune functions, the high-risk groupwas

lower than the low-risk group in terms of cytolytic activity and a

type-II interferon response, but higher than the low-risk group for

major histocompatibility class (MHC) class-I (Figure 8B). With

regard to immunotherapy, TIDE scores were higher in the low-risk
Frontiers in Immunology 08
group than those in thehigh-riskgroup (Figure8C), suggesting that

patients in the low-risk group were more likely to experience

immune evasion, and that immunotherapy may be less

efficacious. There was no significant difference in the scoring of

several immunotherapy treatments between patients in high- and

low-risk groups (Supplementary Figures 1A–D). In terms of

expression of the genes associated with immune checkpoints,
A B
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C

FIGURE 4

Screening of M2-like TAM-related prognostic genes and unsupervised consensus clustering. (A) Acquisition of candidate M2-like TAM-related genes.
(B, C) lasso regression analysis to identify signature genes. (D) Enrichment analysis using the GO database. (E, F) Consensus clustering plot showing that
4 was the optimal k value and TCGA-LIHC samples were classified into four clusters. (G)Heatmap demonstrated the differences in gene expression and
clinicopathological characteristics among the four clusters. (H) Kaplan–Meier survival curves revealed survival differences between the four clusters.
*P<0.05. TAM, tumor-associated macrophage; lasso, least absolute shrinkage and selection operator; GO, gene oncology.
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TABLE 1 Results of LASSO regression analysis. lasso, least absolute shrinkage and selection operator.

Gene HR (95%CI) P-value Coefficient

PDLIM3 1.137 (1.019–1.270) 0.022 0.091027

PAM 1.065 (1.011–1.121) 0.017 0.012799

PDLIM7 1.039 (1.009–1.069) 0.010 0.008915

FSCN1 1.007 (1.002–1.012) 0.009 0.002318

DPYSL2 1.042 (1.007–1.077) 0.017 0.009523

ARID5B 1.114 (1.024–1.212) 0.012 0.092583

LGALS3 1.006 (1.002–1.011) 0.008 0.005666

KLF2 0.951 (0.907–0.996) 0.032 −0.08078
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FIGURE 5

Construction of a M2-like TAM-related prognostic signature. (A) Survival status and risk scores of HCC patients in high- and low-risk groups in
the training set. Green dots denote low risk and red dots denote high risk. (B) Kaplan–Meier survival curves showed a significantly worse
prognosis for the high-risk group in the training set. (C) ROC curves for 1, 3, and 5 years and their AUCs. (D–F) The results of univariate analysis,
multivariate analysis, and C-index indicated that risk score was an independent risk factor influencing survival status in preference to other
indicators. (G) Results of GSEA analysis. TAM, tumor-associated macrophage; HCC, hepatocellular carcinoma; ROC, receiver operator
characteristic; AUC, area under curve; C-index, Concordance index; GSEA, gene set enrichment analysis.
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many differentially expressed genes between the two groups were

documented (Figure 8D), such as CD44, CD86, and CD276, which

showed significantly higher expression in the high-risk group. This

finding offers the possibility of discovering new targets

for immunotherapy.

Prediction of potential anti-cancer drugs

To further investigate the clinical use of prognostic genes, we

employed the CellMiner database to explore the relationship

between prognostic genes and drug sensitivity. PAM was

correlated significantly and positively with simvastatin sensitivity

(correlation = 0.442, P<0.001) and LGALS3 was correlated
Frontiers in Immunology 10
significantly and positively with ARRY-162 sensitivity

(correlation = 0.414, P<0.001) (Figure 9A). Patients in the high-

risk group had a significantly worse prognosis, so we predicted 10

drugswithhigher sensitivity in the high-risk group: epothiloneB,A-

443654, BEZ235, BI-2536, BMS-75480, CGP-6047, foretinib,

GSK212645, JW-7-52-1, and VX-680. Epothilone B had the

lowest IC50 (Figures 9B–K).

Measurement of signature-genes
expression in tissues

After obtaining the M2-like TAM-related biomarkers and

constructing related prognostic signature, we further analyzed the
A B

D

E F

C

FIGURE 6

External validation of a M2-like TAM-related prognostic signature. (A) Survival status and risk scores of HCC patients in the high- and low-risk
groups in the test set. Green dots denote low risk and red dots denote high risk. (B) Kaplan–Meier survival curves showed a significantly worse
prognosis for the high-risk group in the test set. (C) ROC curves for 1, 3, and 5 years and their AUCs. (D) Nomogram based on risk scores and
clinical indicators. The results of a calibration curve (E) and ROC curves (F) showed the reliable performance of the nomogram. TAM, tumor-
associated macrophage; HCC, hepatocellular carcinoma; ROC, receiver operator characteristic; AUC, area under curve. ***P<0.001.
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expression of signature genes in TCGA-LIHC samples.

Figure 10A showed that the RNA expression levels of PDLIM3,

PAM, PDLIM7, FSCN1, and LGALS3 in tumor samples were

significantly upregulated. Moreover, in the samples we obtained

from HCC patients, the RNA expression levels of these 5 genes

(Figures 10B–F) were also significantly higher in tumor tissues

than in adjacent normal tissues, perhaps suggesting that these

genes play a role in the progression of HCC.
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Discussion

As the main type of liver cancer, HCC is thought to be related

mainly to injury and long-term inflammation (25), accompanied

by infiltration of various types of immune cells into liver tissue

(26). The TME comprises tumor cells and non-immune cells. The

interaction of tumor cells with the TME promotes HCC

progression through multiple mechanisms. For example, TECs
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FIGURE 7

Survival analysis based on stratification of clinicopathological characteristics. (A) Heatmap demonstrated the differences in gene expression and
clinicopathological features between high-risk and low-risk groups. (B) Histograms related to clinicopathological features. Kaplan–Meier survival
curves illustrated the results of survival analysis stratified by T stage (C, D), tumor grade (E, F), sex (G, H), and age (I, J). **P<0.01, ***P<0.001.
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have greater proliferative capacity (27), angiogenic capacity, and

drug resistance compared with those of normal endothelial cells

(28). CAFs can secrete CLCF1 to regulate HCC “stemness” (29),

and can also promote HCC progression by secreting

proinflammatory factors such as interleukin (IL)-6 (30). TAMs

(or M2 macrophages) are important components of the TME.

They play an important part in HCC development, such as

producing CXCL8 and IL-6 (31, 32), which enhance the

invasion and metastasis of HCC cells and promote HCC

progression. Moreover, TAMs have been shown to promote the

angiogenic process of HCC by producing vascular endothelial

growth factors (33), enhancing cell stemness by upregulating

secretion of the protein S100A9 (34, 35), and even increasing

drug resistance by inducing immunosuppression (36).

Due to the important role of TAMs inHCCdevelopment, there

is growing interest in TAMs-based therapeutic approaches. Wang

et al. found that targeteddeliveryofmicroRNA(miR)-99b toTAMs

in HCC could inhibit tumor growth by inducing the conversion of

macrophages from the M2 phenotype to the M1 phenotype (37).

Yang et al. found that injection of compound kushen attenuated

TAMs-mediated immunosuppression and increased the sensitivity

of HCC to sorafenib (38). With regard to the relationship between

TAMs and cancer prognosis, Hwang et al. found that a high

number of M2 macrophages was associated with a worse

prognosis in non-small-cell lung cancer (39). Related studies in

HCC are lacking, so more in-depth studies on the relationship

between TAMs and HCC prognosis are needed urgently.
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We found that the prognosis of TCGA-LIHC samples with

high content of M2 macrophages was significantly worse

compared with samples with low content of M2 macrophages,

which demonstrated the association between M2 macrophages

and prognosis in HCC. Then, 127 M2-like TAM-related genes

were obtained by intersecting the M2 macrophage modular

genes screened from TCGA-LIHC with TAM marker genes

screened from the GEO database. After univariate regression

and LASSO regression analyses, eight prognosis-related genes

(PDLIM3, PAM, PDLIM7, FSCN1, DPYSL2, ARID5B, LGALS3,

and KLF2) were screened for construction of a prognostic

signature. Among these genes, some have been reported to

play an important part in HCC, but some have not been

studied deeply. For example, Pu et al. found that FSCN1

restricted HCC progression after receiving upstream inhibition

(40). Liu et al. found that FSCN1 overexpression promoted the

migration and invasion of HCC cells (41). Bhat et al. revealed

that upregulation of LGALS3 expression was associated

significantly with HCC recurrence (42). Zhang et al. identified

LGALS3 as a key gene in the development of bone metastases

and associated skeletal complications in HCC (43). Furthermore,

among our screened prognostic signature genes, KLF2 (the only

protective factor for the prognosis) has been shown to inhibit the

growth, migration, and metastasis of HCC cells, and its

expression to be downregulated significantly in HCC (44, 45).

After unsupervised consensus clustering of TCGA-LIHC

samples into four clusters based on expression of eight
A B

D

C

FIGURE 8

Risk signature-related immune landscapes. (A, B) Differences in scores of immune cells and immune function between high- and low-risk
groups. (C) TIDE scores of high- and low-risk groups. (D) Differential expression of immune-checkpoint genes between high- and low-risk
groups. *P<0.05, **P<0.01, ***P<0.001, ns, not significant. TIDE, Tumor Immune Dysfunction and Exclusion.
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prognosis-related genes, Kaplan–Meier survival analyses showed

significant differences between the four clusters, which suggested

an association between these eight genes and the prognosis.

Then, the risk scores of patients were calculated according to our

prognostic signature. Patients were divided into high- and low-

risk groups according to the best cutoff values. We found that

patients in the high-risk group had a significantly worse

prognosis than those in the low-risk group. GSEA showed that

the high-risk group was more enriched in cancer-related

pathways, such as the p53 pathway and mitogen-activated

protein kinase pathway, whereas the low-risk group was more

enriched in metabolism-related pathways, which explained (at

least in part) the worse prognosis of the high-risk group. The

results of the C-index, univariate analyses, multivariate analyses,

and ROC curves showed that our signature could predict the

prognosis of HCC independently of other indicators in the

training set and had a promising performance. Moreover, we

externally validated the prognostic signature in the test set

consisting of the GSE76427 dataset and results from the ICGC

database: their general applicability and validity were

demonstrated. Based on our signature-related risk scores and

clinicopathological indicators of patients, we constructed a

nomogram to provide a measure by which the prognosis of

the patients could be evaluated from multiple aspects.
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In addition to predicting the prognosis of HCC patients

effectively, our prognostic signature revealed associations of risk

grouping with the immune landscape and the response to

immunotherapy. In terms of immune cells, the content of B

cells, mast cells, NK cells, and pDCs cells was lower in the high-

risk group, whereas the content of Tregs was higher. With regard

to immune function, MHC class I was more active in the high-

risk group, whereas cytolytic activity and the type-II interferon

response were more predominant in the low-risk group, which

may have been related to the higher NK-cell content in the low-

risk group. The relationship between immune cells in the TME

and prognosis has been studied intensively in various cancer

types: an increased percentage of NK cells in tumor tissue or

peripheral blood may suggest a better prognosis (46, 47). In renal

cancer and muscle-infiltrating bladder cancer, infiltration of

mast cells is an unfavorable prognostic factor (48, 49), whereas

the role in breast cancer is controversial (50). Kim et al. found

that B-cell deficiency promoted the growth of head and neck

squamous cell carcinoma (51), and that B cells were associated

positively with a good prognosis in cancers (52), such as lung

cancer (53), gastric cancer (54), and HCC (55). The pDCs

infiltration in a study by Jensen et al. suggested a poor

prognosis for stage-I/II melanoma (56). Conversely, Kießler

and colleagues found that the degree of pDCs infiltration was
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FIGURE 9

Prediction of potential anticancer drugs based on signature genes and risk groups. (A) PAM and LGALS3 were positively correlated with the sensitivity
of simvastatin and ARRY-162, respectively. (B–K) 10 drugs with higher sensitivity in the high-risk group compared with the low-risk group.
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correlated positively with progression-free survival and overall

survival in patients with colon cancer (57). A meta-analysis of 17

cancer types by Shang et al. revealed a significant negative effect

of Tregs on overall survival (58). Thus, the differences in the

immune landscape revealed by risk grouping based on our

model indicated that differences in the HCC prognosis may

arise from TME heterogeneity, thereby providing new ideas for

our future studies.

During screening of signature genes and undertaking risk

grouping, we also analyzed and screened for potential anti-cancer

drugs. We found that the sensitivity of simvastatin and ARRY-162

(i.e., binimetinib)was correlated positivelywith expression of PAM

and LGALS3, respectively. Simvastatin has been reported to

increase the sensitivity of HCC cells to sorafenib (59), induce cell-

cycle arrest (60), and inhibit the growth and invasion of HCC cells

(61). Binimetinib is used widely as an inhibitor of mitogen-

activated protein kinase in melanoma treatment (62). A

combination of binimetinib and capecitabine can enhance the

anticancer effect in patients with cholangiocarcinoma (63).

Therefore, our data provide further support for use of these two

drugs in clinical treatment of HCC. Also, the relationship between

these two drugs and signature genes merits further exploration. In

our prognostic model, once a patient is classified in the high-risk

group, it often denotes a worse prognosis, so screening for drugs
Frontiers in Immunology 14
that aremore sensitive in the high-risk groupmay rescue their poor

prognosis. Therefore, 10 drugs with higher sensitivity in the high-

risk group were screened, with epothilone B (i.e., patupilone)

showed significantly higher sensitivity in the high-risk group and

had the lowest IC50 among the 10 drugs screened. Zhou et al. also

found that epothilone B could inhibit the growth ofHCC cells (64).

After screening for M2-like TAM-related biomarkers and

constructing a prognostic signature, the expression of these genes

in HCC tissues remained unknown. We therefore analyzed their

expression in TCGA samples and performed further validation in

the tissueswe collected.We found that theRNAexpression levels of

PDLIM3, PAM, PDLIM7, FSCN1 and LGALS3 were significantly

upregulated in tumor samples, which provides ideas for

further studies.

In general, the high mortality rate and poor prognosis of

HCC in cancer impose a heavy burden on families and public-

health systems. In recent years, increasing numbers of

researchers have constructed different types of prognostic

signatures for HCC patients. Tang et al. (65) and Zhang et al.

(66) focused on hepatitis C virus-associated HCC (HCV-HCC).

They identified hub genes that play a key part in HCV-HCC and

constructed related prognostic models. Tang et al. (67) screened

the relevant genes from the perspective of the immunological

phenotype of tumors to construct prognostic models and predict
A B
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FIGURE 10

Measurement of signature-gene expression in tissues. (A) Expression of signature genes in TCGA-LIHC samples. (B–F) RNA expression of
PDLIM3 (B), PAM (C), PDLIM7 (D), FSCN1 (E), and LGALS3 (F) in tissues. *P<0.05, **P<0.01, ***P<0.001.
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immunotherapy effects and drug candidates. Li et al. (68)

revealed the prognostic differences among different phenotypes

of CpG-island methylation in HCC patients, and screened the

associated genes to construct a prognostic signature. Dai et al. (69)

and Rao et al. (70) screened prognostic-related genes from

metabolic- and aerobic respiration-related perspectives,

respectively, to construct models. Those studies refine prediction

of the prognosis of HCC patients from various perspectives and

their models have good efficacy. Similar to our study (at least in

part), they used the results of bulk-seq from public databases in the

construction of their prognostic signature. Bulk-seq gives the total

expression of genes in tissues, but the transcriptome of different cell

types and proportions within tissues are not revealed. Therefore,

different from the literature, we integrated single-cell sequencing

(which enables identification of cell types and gives the expression

profile at cellular resolution) with bulk-seq to identify specific M2-

like TAMprognostic biomarkers for HCC. To our knowledge, this

was thefirst study touse scRNA-seq and bulk-seq data to: (i) screen

forM2-likeTAM-relatedgenes; (ii) construct aprognosticmodel in

HCC. These signature genes facilitate deeper understanding and

investigation ofHCC. The prognostic signature we identified could

aid the clinical management of HCC.

The construction and external validation of our prognostic

model were based on data from TCGA, GEO and ICGC

databases. However, the results from these databases are

retrospective and the stability of signature performance must

be confirmed in a prospective study.

Conclusions

We constructed an M2-like TAM-associated prognostic

signature. This could be a promising tool for predicting the

prognosis of patients with HCC. This prognostic signature also

reveals the TME to some extent, and provides potential targets

for HCC treatment.
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