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Parasitic helminth infections remain a significant global health issue and are

responsible for devastating morbidity and economic hardships. During

infection, helminths migrate through different host organs, which results in

substantial tissue damage and the release of diverse effector molecules by both

hematopoietic and non-hematopoietic cells. Thus, host protective responses

to helminths must initiate mechanisms that help to promote worm clearance

while simultaneously mitigating tissue injury. The specialized immunity that

promotes these responses is termed type 2 inflammation and is initiated by the

recruitment and activation of hematopoietic stem/progenitor cells, mast cells,

basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-

derived suppressor cells, and group 2 innate lymphoid cells. Recent work has

also revealed the importance of neuron-derived signals in regulating type 2

inflammation and antihelminth immunity. These studies suggest that multiple

body systems coordinate to promote optimal outcomes post-infection. In this

review, we will describe the innate immune events that direct the scope and

intensity of antihelminth immunity. Further, we will highlight the recent

progress made in our understanding of the neuro-immune interactions that

regulate these pathways and discuss the conceptual advances they promote.

KEYWORDS

innate immune cells, neuro-immune crosstalk, innate immunity, antihelminth
immunity, host protection
Introduction

Since Norman Stoll’s hallmark paper 75 years ago revealing the global burden of

helminthiasis, various systemic- and meta-analyses have demonstrated that more than a

quarter of the global population is infected with helminth parasites (1–5). Included

among these infections are nematodes that can be categorized as roundworms (Ascaris

lumbricoides, Trichinella spiralis, and Strongyloides stercoralis), whipworms (Trichuris
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trichiura) and hookworms (Ancylostoma duodenale and Necator

americanus). Additionally, helminths are also comprised of

platyhelminths, or flatworms, that include free-living

turbellarian flatworms, land planarians, and the disease-related

Neodermata, consisting of both flukes (schistosomes) and

tapeworms (6). These diverse parasites can be transmitted by

the consumption of food or water that is contaminated with eggs,

via insect bite, or by the parasites directly penetrating the skin (4,

5). Despite their prevalence, helminth infections have long been

considered as neglected tropical diseases (NTD) that result in

malnutrition, significant morbidity, growth retardation,

cognitive deficiencies, and immunopathology (3, 7–9). Control

of these NTDs mainly relies on mass antihelmintic drug

administrations (MDA) with compounds such as albendazole

or mebendazole to reduce worm burdens. These treatments are

often combined with improved sanitation measures to prevent

future infections (10). Despite these efforts, reinfection rates

remain extremely high, with studies showing that up to 60% of

individuals can be reinfected within 6-12 months of receiving

treatment (3, 10). The frequent use of MDA has also resulted in

an increased risk of drug-resistant helminths, a trend that is

already seen in livestock populations (11). These limitations

highlight the significant need for the development of more

dependable and enduring treatment strategies, such as effective

immunotherapies. Unfortunately, the development of immune-

based therapies has been fraught with difficulty due to the

complexity of helminth life cycles and their stage-dependent

antigenic variation (10, 12). Further, our incomplete

understanding of how antihelminth immunity is initiated and

regulated has proven to be another substantial hurdle. To
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address this, many groups have sought to better understand

the innate immune events that promote host protective

responses to helminths. Given that investigating helminth

infections in patient populations is extremely challenging,

many studies have employed animal models infected with

Trichuris muris , Trichinella spiralis , Nippostrongylus

brasiliensis, Heligmosomoides polygyrus, Strongyloides ratti,

Strongyloides venezuelensis, Brugia malayi, and Schistosoma

mansoni to study the mammalian immune response to these

parasites [summarized in Table 1 (13–18), also reviewed by (20,

21)]. Collectively, these animal models have tremendously

informed our understanding of the innate immune responses

activated upon the initial exposure to these parasites (22, 23). As

mentioned above, antihelminth immunity is primarily mediated

by type 2 cytokine responses that are characterized by the

development of type 2 helper T (TH2) cells. During a helminth

infection, it is well appreciated that inflammation is initiated by

the release of specific cytokines from immune cells and epithelial

cells, such as, Tuft cells at barrier surfaces (24–29). Included

among these rapidly released molecules are interleukin (IL)-25,

IL-33, and thymic stromal lymphopoietin (TSLP) (30–32) that

are produced in response to both the physical damage caused by

the worms and also their release of excretory-secretory (ES)

products (24, 26, 27, 33, 34). The production of these effector

molecules mobilizes and activates diverse populations of innate

immune cells that help to promote the development of TH2 cells

(30, 35). Once activated, TH2 cells produce IL-13, influencing

goblet cells within infected epithelial barriers to increase mucus

production and facilitate worm expulsion (36, 37). Moreover, IL-

13 from IL-25 activated ILC2 can regulate epithelial cell
TABLE 1 Experimental animal models of helminth infections.

Animal
model

Experimental
route of

inoculation

Infection
stage

Natural
route of
infection

Affected
compartment1

Human pathogen
equivalent

Population affected annually
worldwide estimated

Trichuris muris p.o. Eggs Oral ingestion Intestinal tract Trichuris trichiura ~ 800 million (13)

Trichinella
spiralis

p.o. L1 larvae Oral ingestion Intestinal tract,
skeletal muscle

Trichinella spiralis ~ 10000 cases (14)

Heligmosomoides
polygyrus

p.o L3 larvae Oral ingestion Intestinal tract Ascaris lumbricoides,
Ancylostoma duodenale,
Necator americanus

A. Lumbricoides: 807 million–1.2 billion
(15); A. duodenale & N. americanus: ~ 740
million (16);Nippostrongylus

brasiliensis
i.d., s.c. L3 larvae Skin

penetration
Skin, lungs,
intestinal tract

Strongyloides
ratti

s.c. L3 larvae Skin
penetration

Skin, intestinal
tract

Strongyloides stercolaris 30~ 100 million (17)

Strongyloides
venezuelensis

Litomosoides
sigmodontis

s.c., mite L3 larvae Mosquito
Blackflies

Blood, pleural
cavity

Brugia malayi, Wuchereria
bancrofti, Onchocerca
volvulus

~ 90.2 million (18)

Schistosoma
mansoni

Percutaneous
exposure
s.c.

Cercariae Skin
penetration

Skin, liver, lungs Schistosoma spp. ~ 200 million (19)
1Affected compartment: refers to the experimental models of infection. Intestinal tract changes generally include both host and commensal alterations that occur across both the small and
large intestines.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.995432
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.995432
differentiation and drive a more secretory epithelial phenotype

to facilitate intestinal remodeling and worm expulsion (33, 38).

At the same time, TH2 cells produce IL-4 and IL-5 to promote

the population expansion of alternatively activated (M2)

macrophages and the migration of eosinophils to the affected

tissues (39). Collectively, this cascade of events serves to clear

worms, while also promoting wound healing once the worms are

killed or expelled (40) (Summarized in Figure 1).

While many non-hematopoietic and adaptive immune cells

play critical roles in the promoting host protection to helminth,

this article will highlight important studies that have

substantially increased our understanding of the various innate

immune cells that initiate and regulate helminth-induced

inflammation. We wil l firs t review recent reports

demonstrating the crucial roles various myeloid cells play in

promoting host protection to helminths. We will then emphasize

the known contributions of innate lymphoid cells to

antihelminth immunity. Finally, we will discuss emerging

studies defining how these pathways can be regulated by

neuro-immune communication occurring within the affected

tissue and highlight how neuro-immune crosstalk appears to

fine-tune antihelminth immunity to promote optimal outcomes

(clearing the worms and restoring tissue homeostasis).
The contributions of mast cells to
antihelminth immunity

Mast cells (MCs), having matured from progenitors in

peripheral tissues, seed barrier surfaces and are ideally suited

to respond to invading helminths. Once activated, MCs are well

described for their ability to influence the development and

persistence of TH2 cell-associated responses via their release of

effector molecules including histamines, leukotrienes,

prostaglandins, cytokines, and proteases (44, 45). Specifically,

MCs can assist with the polarization of TH2 cells, in part,

through the secretion of IL-4 and IL-13 (45). MCs can also

influence the activation of antigen presenting cells (APCs), and

some studies suggest that mast cells can act as APCs and thereby

directly influence T-cell responses. However, the APC functions

of MCs are debated and have been challenged by other reports

(46–48). The below sections will summarize the known

contributions of MCs to type 2 cytokine-mediated

inflammation and antihelminth immunity.

Mastocytosis is an established feature of helminth-induced

inflammation (49–53) but the roles MCs play in promoting

antihelminth immunity are still being elucidated (54–57). While

the precise mechanisms that govern the expansion of MC

populations remain to be fully defined, studies have reported

that mast cell precursors respond to helminth-induced alarmins

such as IL-25, IL-33, and TSLP (34). Specifically, IL-25 has been

shown to induce a population of c-Kit-expressing progenitor

cells that possess MC potential and support immunity to
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Trichuris muris (58–60). MC populations also expand and

activate in response to cytokine alarmins following infection

with Heligmosomoides polygyrus bakeri (60). The functions of

MC(s) during helminth infections have long been studied using

MC(s)-deficient Kitw/KitW-v mice and employing MC(s)

stabilizers (60). Using these approaches, it has been shown

that MC(s)-deficient Kitw/KitW-v mice infected with H.

polygyrus exhibited elevated intestinal worm burdens, reduced

production of type 2 cytokines, as well as decreased serum levels

of MC protease-1 (Mcpt1) (60). Further, treatment of mice with

the MC(s) stabilizer, cromolyn sodium resulted in suppressed

type 2 cytokine production and reduced Mcpt1 levels post-H.

polygyrus infection (60). Furthermore, MC(s)-deficient Kitw/

KitW-v mice also showed delayed expulsion of Trichinella

spiralis (61) and studies have demonstrated that Mcpt1 and

mast cell-derived IL-4 are required for optimal clearance of T.

spiralis (52, 56, 62, 63). Collectively, these studies highlight an

important role for MCs in promoting immunity to several

helminth parasites (31, 62, 63). In contrast, by taking similar

loss-of-function approaches, it has been shown that MC(s) do

not appear to promote worm expulsion in the context of

Nippostrongylus brasiliensis or T. muris infection, suggesting

that the roles MC(s) play are parasite-specific (31, 60, 62,

64, 65).
The contributions of hematopoietic
stem/progenitors to host protection

It has traditionally been reported that the developmental

pathways for red blood cells (RBCs) and MCs begin in the bone

marrow with hematopoietic stem cells (HSCs), which can

differentiate into a colony forming unit committed to the

granulocyte, erythrocyte, monocyte, and megakaryocyte

lineages (CFU-GEMM) (66) or follow the differentiation

pathways of myeloid and lymphoid cells (39). Likely due to

activation by circulating erythropoietin (EPO), CFU-GEMM can

become burst-forming units-erythroid (BFU-E) (67) and

thereby generate RBCs. In the case of MC development,

instead of being influenced by EPO and enter ing

erythropoiesis, the CFU-GEMM can be acted upon by stem-

cell factor to develop down the granulocyte pathway (53).

During this process, CFU-GEMMs increase their CD34

expression and become multipotent progenitors (MPP) (67).

MPPs can then progress to become common myeloid

progenitors (CMP) followed by granulocyte/monocyte

progenitors (GMP) that can ultimately become a committed

MC progenitor (MCp) (68–70). These MCps can then mature

into MCs with heterogeneous properties depending on factors

such as their tissue location (70). Additionally, emerging studies

investigating MC and erythrocyte development now suggest that

they may share more developmental similarities than

previously appreciated.
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Recent single cell-based work in humans and mice have

determined that RBCs and MCs are directly linked and arise from

a common progenitor cell (56, 57, 71, 72). Consistent with a link

between these distinct lineages, a progenitor cell with dual MC and

RBC potential was also identified in the context of a T. spiralis

challenge (57). This erythrocyte/mast cell progenitor was defined by

its expression of the metabolic enzyme carbonic anhydrase 1 (Car1)

and was sufficient to promote type 2 cytokine responses and RBC

development post-T. spiralis infection (56, 57). This work suggests

that in addition to supporting protective immunity via promoting

MCdevelopment, Car1-expressing progenitor cells may also combat

helminth-induced wounding by supporting RBC development and

thereby help to mitigate blood loss, a common feature of infection.

These studies complement earlier work that further suggest

important roles for hematopoietic stem/progenitors (HSPCs) in

promoting antihelminth immunity. The tissue-derived cytokines

(IL25, IL33, and TSLP) can promote the populations expansion

of other multipotent progenitor cells that have varied expression
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of CD34 and c-Kit. These specialized progenitors can develop

into several innate immune (MCs, basophils, and macrophages)

and thereby promote antihelminth immunity (31, 58, 73). After

entering the periphery with an immature phenotype, helminth-

mobilized HSPCs can undergo extramedullary hematopoiesis

and support innate immune responses at the host parasite

interface (31, 58, 73). Collectively, these studies demonstrate

that the egress of HSPCs from the bone marrow is an important

component of host protection (31, 56–58, 73).
The contributions of basophils to
antihelminth immunity

Although the contributions of basophils to antihelminth

immunity and type 2 inflammation have long been studied,

their diverse functions are still being elucidated. At baseline,

basophils are extremely rare and represent the least prevalent
FIGURE 1

Overview of helminth-induced innate immune responses. Upon invasion, helminths cause substantial tissue damage as they burrow through
various barriers and organs, such as the lungs, gut, and skin (1). Helminth also release excretory-secretory (ES) products that can act both locally
and systemically (2). The damage-associated and helminth-derived signals promote the production of cytokine alarmins (IL-25, IL-33, and TSLP)
from both hematopoietic and non-hematopoietic cells, such as macrophages (Macs) and epithelial cells (3). These early events drive the
activation and expansion of innate immune cells, hematopoietic stem/progenitor (HSPCs), mast cells (MCs), basophils (Baso), dendritic cells
(DCs), and ILC2s etc. (4). Moreover, innervating neurons can respond to helminth-derived signals by producing neuropeptides (NPs) and
neurotransmitters (NTs) that directly influence immune cell activation and regulate inflammation (5). Collectively, these events induce the
production of the type 2 cytokines IL-4, IL-5, and IL-13 that promote the polarization of type 2 T helper (TH2), the induction of M2
macrophages and eosinophilia (6). Reviewed in (9, 23, 41–43).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.995432
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.995432
granulocyte in the blood. However, peripheral basophilia is a

hallmark of several helminth infections (74, 75). While basophil

development has traditionally been reported to occur in the bone

marrow, recent work also suggests that basophils can develop

from mobilized progenitor cells that enter the periphery in the

context of helminth-induced inflammation (75–77). Similar to

MCs, basophils can produce robust amounts of effector

molecules including type 2 cytokines (IL-4 and IL-13),

histamines, platelet-activating factor, and lipid mediators

(prostaglandins and leukotrienes) that allow them to promote

worm clearance (75, 78). Additionally, their production of

growth factors like amphiregulin and macrophage colony-

stimulating factor are also thought to promote tissue

reparative pathways (79, 80).

The most effective systems for studying basophil function

have been genetic mouse models targeting the basophil-specific

protease MCs protease 8 (Mcpt8) and basophil-specific IL-4

enhancer elements (75, 81). Using these systems, loss-of-

function studies have indicated a non-redundant role for

basophils in promoting worm expulsion following T. spiralis,

T. muris, andH. polygyrus infections (82–84). However, basophil

depletion had no effect on worm burdens following a primary

infection with N. brasiliensis or S. ratti (85–87). Additionally,

depleting basophils post-Strongyloides venezuelensis infection

resulted in lower S. venezuelensis egg production, suggesting

that basophils regulate parasite fitness (88). In summary, like

many other innate immune cells, the functions of basophils

appear to be highly parasite-specific.

As mentioned above, host protective responses to helminths

involves both promoting worm expulsion and mitigating

helminth-induced tissue damage. While loss-of-function

studies targeting basophils revealed no effect in regulating N.

brasiliensis worm burdens, additional work has now revealed

that basophils depletion results in dysregulated lung

inflammation. N. brasiliensis-induced ILC2 responses were

found to be exaggerated in the absence of basophils, resulting

in increased lung pathology and reduced pulmonary function

(78). The inhibitory effect of basophils was mediated by neuro-

immune interactions; the nature of these signals will be

discussed in greater detail below. Conceptually, these studies

suggest that basophils can also promote host protection by

restricting helminth-induced inflammation and preventing

excessive tissue damage.
The contributions of eosinophils to
antihelminth immunity

Similar to MCs and basophils, peripheral eosinophilia is a

common feature of parasitic helminth infections (89). Eosinophils
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traffic to helminth-affected tissues where they are reported to

contribute to worm killing and various aspects of tissue

remodeling (90–93). Eosinophils produce numerous effector

molecules including eosinophil-derived neurotoxin, major basic

protein, and eosinophil peroxidase that can contribute to type 2

cytokine responses and simultaneously promote extracellular

matrix deposition and wound healing (93, 94). Further, recent

work also suggest that eosinophils can inhibit the mobility of

parasitic larvae in an antibody-dependent manner (95).

While eosinophils can be recruited by both chemokines and

cytokine alarmins (31, 96, 97), IL-5 produced by helminth-

activated ILC2s and TH2 cells is a dominant regulator of

infection-induced eosinophilia (98, 99). Consistent with these

reports, mice lacking productive IL-5/IL-5R signaling are less

able to mount an eosinophilic response and are less efficient at

clearing T. spiralis (92, 98). Recent work has also showed that

both mouse and human eosinophils can respond directly to

parasite antigens isolated from Strongyloides stercoralis and S.

mansoni respectively (100, 101). Although eosinophils produce

numerous effector molecules, the mechanisms eosinophils

employ to kill parasitic worms remain to be fully defined. It

has been hypothesized that the release of chromatin and DNA

extracellular traps may be one killing mechanism eosinophils use

to combat large extracellular pathogens, but more work is

required to support this hypothesis (102). Further, serum

levels of eosinophil granular proteins are reported to be

elevated in individuals infected with helminths such as S.

stercoralis, indicating eosinophils may also activate and

degranulate at distal sites (93). These data suggest that

eosinophils may contribute to host protection beyond their

roles in killing worms at the host parasite interface.
Contributions of dendritic cells to
antihelminth immunity

Dendritic cells (DCs), known for their professional antigen

presenting cell (APC) capacities, are appreciated as important

liaisons that bridge the gap between innate and adaptive

immunity. As such, DCs are known for their pivotal roles in

the recognition, capture, processing, and presentation of

helminth-derived antigens to T cells (103–105). Many studies

have reported that helminth ES products can activate DCs via

toll-like receptor 2 (TLR2), TLR4, or C-type lectin receptors

(103). Moreover, it has also been shown that helminth infections

can promote non-classical DC maturation which is reported to

dramatically influence T cell activation [reviewed in (103)]. For

example, T. spiralis ES antigens and Glutathione-S-transferase

can suppress DC maturation (106, 107) and T. spiralis-

conditioned DCs can alleviate 2,4,6-trinitrobenzene sulfonic
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acid (TNBS)- induced colitis in mice (108). More recently, Ding

et al. also reported that DCs stimulated by T. spiralis ES products

were able to significantly inhibit tumor growth in H22 tumor-

bearing mice (109). Interestingly, Connor and Webb et al. also

found that DCs adopt a type 1 interferon (IFN-I) signature when

stimulated with S. mansoni or N. brasiliensis antigens (110, 111).

Of note, this IFN-I responsiveness was required for DCs to

prime TH2 immune activation in these contexts (110, 111).

It is well established that conventional DCs (cDCs) can be

subdivided into cDC1s and cDC2s that possess unique effector

functions and abilities to polarize T cells (112). Specifically,

cDC1s (CD8a+CD103+) are reported to specialize in antigen

cross-presentation and promote TH1 cell development that

supports immunity to intracellular pathogens. In contrast,

cDC2s (CD4+CD11b+) that express interferon regulatory

factor 4 (IRF4) specialize in presenting antigen to CD4+ T

cells and possess a unique ability to promote TH2 or TH17

responses (112, 113). Given the plasticity of these DC subsets, it

is perhaps not surprising that specialized DCs have also been

reported to promote antihelminth responses. Cook et al.,

revealed that DC production of RELMa is required for

optimal TH2 priming post-S. mansoni egg challenge (114).

Moreover, TH2-inducing DCs expressing OX40 ligand,

CD301b and programmed death ligand-2 (PDL2), are required

for optimal TH2 cell development post-N. brasiliensis infection

(115–117). More recently, Halim et al. showed that

IRF4+CD11b+CD103− DCs produce the TH2 cell-attracting

chemokine CCL17 post-N. brasiliensis challenge (118). Studies

by Mayer et al., also identified a role for IRF4-expressing DCs in

priming TH2 cell responses following S. mansoni egg

challenge (119).

Interestingly, CD11b+CD103+ DCs were shown to promote

TH2 responses in the small intestine, while CD11b+CD103- DCs

appear to play similar roles in the colon, suggesting functional-

specificity for DCs in different anatomical compartments (119).

Collectively, these studies demonstrate that highly specialized

DC subsets play important roles in promoting antihelminth

immunity and suggest that CD103 expression may dictate the

tissue specificity of these APCs.

Unlike conventional DCs, the roles of plasmacytoid DCs

(pDCs) in antihelminth immunity remain less defined. While

studies suggest that pDCs are dispensable for hepatic TH2

responses during acute S. mansoni infection (23, 120), other

reports suggest that pDCs are required for optimal TH2 cytokine

production in response to S. mansoni eggs in the intestinal-

draining mesenteric lymph nodes (120). Furthermore, pDC

depletion at chronic stages of infection resulted in increased

hepatic and splenic pathology as well as suboptimal TH2

cytokine production in the liver. However, further studies are

needed to better define the role pDCs play in promoting

antihelminth immunity and regulating tissue pathology.
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The contributions of neutrophils to
antihelminth immunity

Although neutrophils are best known for their roles in

antiviral and antibacterial immunity, recent studies have begun

to define a role for these dynamic cells in the context of type 2

inflammation (121–123). For instance, recent reports have

demonstrated that neutrophils can inhibit the mobility of S.

ratti larvae via their release of myeloperoxidase and matrix

metalloproteinase-9. Additionally, studies have also highlighted

that neutrophils are recruited to the lung post-N. brasiliensis

infection where they contribute to tissue damage and

hemorrhaging (124). It is reported that N. brasiliensis-induced

neutrophils are recruited by local production of IL-17A from

activated gdT cells in response to chitinase-like proteins (CLPs),

such as Ym1 (121, 122). Additionally, it has been shown that

soluble extracts from S. stercoralis promote neutrophil

recruitment through CXCR2, rather than IL-17, suggesting

helminth-induced neutrophils may be regulated by distinct

signals (125). Even though gd+ intraepithelial lymphocyte

populations are found to be expanded post-T. muris and -T.

spiralis infection (126, 127), whether neutrophil recruitment is

initiated in the context of these infections remains unknown.

Importantly, work by Chen et al. showed that neutrophils sort-

purified from the lungs of N. brasiliensis-infected mice had a

distinct transcriptional signature compared to lipopolysaccharides-

activated neutrophils (121). One dominant feature ofN. brasiliensis

-induced neutrophils was their increased expression of the type 2

cytokine IL-13, prompting them to be named N2 neutrophils.

Moreover, it was shown that neutrophil-derived IL-13 promoted

M2 macrophage polarization (121). In addition to IL-13,

neutrophils have also been shown to release neutrophil

extracellular DNA traps (NETs) to promote antihelminth

immunity. Specifically, NETs were found to be released upon

contact with S. stercoralis larvae (128). Although the NETs failed to

kill the larvae, they helped immobilize parasites (129) and may

assist with “starving” the worms by trapping them in a nutrient-

deficient microenvironment similar to what has recently been

shown by macrophages (130). Further, Bouchery et al., showed

that NETs released following an N. brasiliensis challenge can

directly impair larval viability and the parasites combat this

response by secreting DNAse II (123). The ability of helminth-

derived products to inhibit NET formation was also shown by

Chauhan et al. that demonstrated that Mesocestoides corti ES

products were sufficient to inhibit NET formation in the context

of bacterial peritonitis (131). Moreover, it was reported that

neutrophils and eosinophils require myeloperoxidase and major

basic protein to kill S. stercoralis larvae in vitro (93). Therefore, it is

possible that the NETs immobilize the parasites and thereby

maximize the parasitic exposure to antihelminth products

secreted by activated granulocytes and macrophages. Taken
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together, these studies suggest that neutrophils promote host

protective responses to helminths via a variety of effector

functions, however, further work is required to better understand

how parasite-specific these responses are, and the full range of

effector functions neutrophils employ in these contexts.
The contributions of
monocytes and macrophages to
antihelminth immunity

It is well established that the IL-4 and/or IL-13-mediated

activation of macrophages results in their polarization to what

has traditionally been termed as an alternatively activated or M2

phenotype. The importance of M2s and their roles in promoting

host protection to helminths is well established and has been

extensively reviewed elsewhere (132–135). Therefore, we will

briefly highlight this impressive body of literature and largely

focus our discussion on recent studies describing heterogeneity

within tissue-specific macrophage responses.

The induction of M2s has been demonstrated in the context of

numerous helminth infections including N. brasiliensis, S. mansoni,

H. polygyrus, Taenia crassiceps, T. spiralis, Fasciola hepatica, Ascaris

suum, and filarial parasites (136–143). While IL-4 and/or IL-13

produced by various myeloid and lymphoid cells are known to

promote M2 responses (124, 132, 137, 144–146), additional factors

can also facilitateM2 activation including antibodies (IgG), collectins

(surfactant protein A & D), complement components, helminth ES

products (34, 132), TLR and CLR ligands, macrophage migration

inhibitory factor (MIF), macrophage-derived protease inhibitor

(serpinB2), cytokine alarmins, and metabolic cues (vitamin A) (58,

147–150). M2s are known to promote host protection via several

mechanisms including the release of effector molecules and

chemokines to promote type 2 responses, directly or indirectly

killing parasitic larvae, promoting wound healing by stimulating

collagen deposition, and angiogenesis (114, 132, 133, 135, 150, 151).

Macrophages reside in every organ and mucosal surface and

exhibit distinct phenotypes and effector functions depending on

their tissue-specific niche (132). Importantly, recent studies have

also revealed that macrophages are specially programmed to

operate in an organ-specific manner (152–157). Tissue-resident

macrophages (TRMs) that are derived from embryonic

precursors, seed the tissues during early stages of development

and are tailored to perform tissue-specific tasks. While TRMs

have been shown to proliferate in the context of inflammation

(158), additional monocyte-derived macrophages can enter

these niches to supplement TRM responses. Upon entering the

tissue, monocyte-derived macrophages receive tissue-specific

signals and begin to acquire a TRM-like phenotype (115, 159,

160). These studies strongly suggest that M2 responses occurring

post-helminth infection are comprised of a heterogenous group

of cells. Additionally, recent work has shown that TRMs and
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monocyte-derived macrophages can perform unique

antihelminth functions. For instance, monocyte-derived

alveolar macrophages induced post-N. brasiliensis infection are

more effective at killing parasites than TRMs. The heightened

ability of monocyte-derived alveolar macrophages to kill

parasitic larvae was mediated by their enhanced expression of

arginase 1 which allowed them to deplete local arginine (130).

Further, by comparing macrophages from S. mansoni or

Litomosoides sigmodontis-infected mice, along with IL-4 and

anti-IL-4 antibody complexes (IL-4c) and thioglycolate-treated

mice, Gundra et al. reported that monocyte-derived

macrophages are more immunoregulatory than TRMs (161).

Moreover, additional work identified that vitamin A was

essential to instruct the tissue programming of macrophages

from a monocyte-derived phenotype to a more TRM-like

phenotype (149). Collectively, these emerging studies suggest

that antihelminth macrophage responses are more

heterogeneous than previously appreciated. Further, this

important work suggests that several factors dictate how M2

macrophages are regulated, including the nature of the parasite,

the origin of the cells (monocyte-derived versus tissue-resident)

and the signals they receive from the tissue microenvironment.
Contributions of myeloid-derived
suppressor cells to
antihelminth immunity

Myeloid-derived suppressor cells (MDSCs) were initially

described in cancer for their ability to inhibit anti-tumor

T cells but have subsequently been appreciated for their

immunosuppressive roles in response to pathogens

including helminth (162, 163). MDSCs are a heterogenous

group of cells that can be divided into two major groups,

granulocytic/polymorphornuclear MDSCs (PMN-MDSCs,

Gr1+CD11b+Ly6G+Ly6Clo) and monocytic MDSCs (M-

MDSCs, Gr1+CD11b+Ly6G-Ly6Chi). Infections with S.

mansoni, S. japonicum, T. crassicepts, Brugia malayi, N.

brasiliensis, and H. polygyrus have all been shown to induce

MDSCs that are thought to play important immunoregulatory

roles (162). The diverse roles MDSCs play in regulating

helminth-induced inflammation is discussed in great depth by

Stevenson et al. in a recent review article and therefore will not

be discussed in depth here (162).
The contributions of
innate lymphoid cells to
antihelminth immunity

Innate lymphoid cells (ILCs) are tissue-resident cells that lack

adaptive antigen receptors and are considered the non-specific
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counterparts of T lymphocytes. They reside in various tissues

including the lung, intestine, mesenteric fat associated lymphoid

cluster, liver, skin, and kidney, and are appreciated for their

pivotal roles in promoting immunity to bacteria, viruses, and

parasitic infections. ILCs are classified into 5 distinct subsets –

nature killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue

inducer cells based on their developmental origins, transcriptional

and surface marker phenotypes, as well as functional differences

(164). Importantly, various subsets of ILCs have been shown to

play diverse roles in regulating antihelminth immunity which will

be highlighted in the below sections.

NK cells have been shown to accumulate during the early

phases of H. polygyrus infection in an IFNg receptor-dependent
manner where they are thought to promote tissue protection

(165). NK cells have also been shown to be activated following S.

japonicum infection, S. mansoni infection, and S. mansoni egg

challenge (166, 167). Consistent with animal models, human

studies have also indicated that NK cells appear to respond to

helminths (168, 169). However, future studies are needed to

better elucidate the functions of NK cells in these contexts.

ILC2s are well described for their ability to respond to

cytokine alarmins (IL-25, TSLP, and IL-33) and as such become

rapidly activated in the context of helminth infections (34, 170,

171). In addition to alarmins, ILC2s are also regulated by type 2

cytokines (IL-4 and IL-9) and inflammatory lipid mediators that

are hallmarks of type 2 inflammation (172, 173). Once activated,

ILC2s are reported to produce robust levels of IL-5 and IL-13 and

thereby support the population expansion and recruitment of

eosinophils, the M2 polarization of macrophages, and mucus

production by goblet cells (28, 32, 33, 82, 121, 124, 132, 170,

171, 174, 175). Helminth activated ILC2s have also been shown to

produce IL-4 and IL-9, although these cytokines appear to be less

prominent (171, 176). These studies are excessively discussed in

review articles by Herbert et al., Bouchery et al., and Miller et al.

(177–179). Additionally, growing evidence suggests that the

antihelminth functions of ILC2s are regulated, in part, by

neuron-derived signals. The importance of these pathways will

be discussed in greater depth below.
Neuro-immune communication
during helminth infections

The central nervous system is responsible for maintaining

homeostasis during steady state conditions and in the context of

infection and inflammation (180, 181). To accomplish this,

complicated cellular and molecular networks have been

established to allow highly coordinated communication

between the nervous and immune system to occur (75, 78,

182–186). Given the intricate relationship helminths have

developed with their mammalian hosts, it is not surprising

that many of these pathways play critical roles in promoting
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host protection and regulating antihelminth immunity.

Emerging studies have significantly advanced our

understanding of these intricate networks and have

encouraged more interdisciplinary collaborations to better

understand neuro-immune interactions in the context of

helminth-induced inflammation. The following section will

highlight pathways that are known, or likely, to regulate

neuro-immune communication during helminth infections.

Additionally, we will comment on the need for future studies

to further determine how these pathways operate in response to

this diverse class of pathogens.

Novel transgenic animal models, precise activation

techniques (chemogenetics and optogenetics), and other

emerging technologies have greatly facilitated our ability to

interrogate the pathways that regulate rare immune cells

located within helminth-affected tissues (23, 75, 186). These

intricate studies have recently revealed several neuron-derived

signals that regulate ILC2 responses post-N. brasiliensis infection

(Summarized in Figure 2). For instance, the neuropeptide

neuromedin U (NMU) was recently shown to directly activate

ILC2s through its receptor NMUR1 to drive antiparasitic

immunity post-N. brasiliensis infection. In the intestine, a

subset of enteric neurons express NMU (185, 187) and

colocalize with ILC2s. NMU induces ILC2 proliferation and

production of type 2 cytokines, such as IL-5, IL-9, and IL-13.

Additionally, Chu et al. found that activated ILC2s upregulate

choline acetyltransferase to generate more acetylcholine (Ach)

following N. brasiliensis infection or treatment with cytokine

alarmins (184). Importantly, Ach was sufficient to promote ILC2

cytokine production and their expulsion of N. brasiliensis (184).

Another neuropeptide calcitonin gene-related peptide (CGRP),

expressed by nociceptor neurons was shown to inhibit ILC2

activation and thereby limit antihelminth responses (183).

Similarly, neuromedin B (NMB) was also shown to restrict

ILC2 activation in the lungs as part of a basophils-dependent

feedback loop following N. brasiliensis infection (78).

Interrupting NMB-NMBR interactions was also shown to

result in substantially increased lung pathology and reduced

lung function post-infection, suggesting that its inhibitory effects

are required to maintain tissue integrity. This work also showed

that prostaglandin E (PGE), one of several basophil-derived lipid

mediators, can stimulate NMBR expression on ILC2s and

thereby prime them for NMB-mediated inhibition (Figure 1).

Finally, sympathetic neurons can also inhibit ILC2 responses

and helminth clearance by activating beta-2 adrenergic receptor,

which are expressed by ILC2s (182).

In addition to ILC2s, MCs have long been observed to be

anatomically and functionally associated with neurons and

neuronal processes throughout the body. Additionally, neural

regulation of MCs has been described in disease models of atopic

dermatitis, allergic asthma, and chronic obstructive pulmonary

disease (160, 188). MCs express a variety of neuron-related

receptors, transmitters and peptides, such as Ach, substance P,
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and CGRP among others (189). Recent studies have also

highlighted a pivotal role of Mas-related G-protein-coupled

receptors (Mrgprs) in neuro-immune crosstalk (188, 190).

Mrgprs are highly expressed in MCs and are reported to

mediate MC degranulation in an IgE-independent manner

(191, 192). More recently, Arifuzzaman et al., found that

cutaneous bacterial infection can activate MC activation

through an MrgprB2/MRGPRX2-mediated pathway, which

leads to enhanced recruitment of neutrophils and wound-

healing CD301b+ DCs (193), both cell types that are known to

promote antihelminth immunity. Zhang et al. also reported

that MrgprD-expressing neurons can suppress MC

hyperresponsiveness and skin inflammation by releasing

glutamate (194). Interestingly, one recent study showed that

tick peptides can cause histamine-independent itch, by directly

activating MrgprC11/MRGPRX1 on the dorsal root ganglion

and MrgprB2/MRGPRX2 on MCs (195). Furthermore, other

non-helminth models have revealed that MCs can stimulate itch

sensory and nociceptor neurons to promote itch sensation and

type 2 inflammation in the skin (168, 196, 197). Collectively,

these studies highlight important roles for MCs in mediating

neuro-immune communication at barrier surface. The ability of

MCs and other tissue-resident cell types such as macrophages to

participate in neuro-immune mechanisms that regulate

antihelminth responses is an active and exciting area of study
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that will further inform our understanding of how inflammation

is regulated in the tissue microenvironment. Further, whether

neuro-immune communication is bidirectional and also

involves helminth-activated immune cells regulating the

functions of the central nervous system is also an area of

great interest.
Summary

A robust body of literature has highlighted the important

functions of various innate immune cells in regulating host

protective responses to helminths. Further, it is now

appreciated that many of these responses are regulated in both

parasite- and tissue-specific manners. Given the ancient and

complex relationship between helminth and their mammalian

hosts, studying these infections provides a unique lens into the

factors that regulate tissue-specific immunity. This work has

begun to highlight the importance of the peripheral nervous

system in positively or negatively regulating helminth-induced

inflammation. The ability of neuron-derived signals to amplify

or restrict antihelminth responses may allow them to tailor the

inflammation to promote optimal outcomes (inflammation

strong enough to promote worm expulsion, but tightly

regulate to prevent excessive tissue damage). However, future
FIGURE 2

Neuro-Immune crosstalk regulates helminth-induced inflammation. In the context of helminth-induced inflammation, group 2 innate lymphoid
cells (ILC2s) are activated by neuromedin U (NMU) that is released by choline acetyltransferase positive (ChAT+) neurons (185). Activated ILC2s
also upregulate ChAT to promote acetylcholine biosynthesis, which serves to further amplify their production of type 2 cytokines (184).
Helminth-activated ILC2s are also restricted by neuron-derived signals. Calcitonin gene-related peptide (CGRP), neuromedin B (NMB) and
sympathetic neuron-derived norepinephrine (NE) inhibit ILC2 response in a manner that properly regulated helminth-induced inflammation
(78, 182, 183).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.995432
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.995432
studies are required to better understand how these seemingly

opposing signals operate post-infection and to determine

whether other tissue-resident cell types such MCs, TRM, and

monocyte-derived macrophages are similarly involved in these

processes. Gaining a better understanding of these pathways

may inform therapeutic strategies to treat a myriad of

inflammatory conditions and reveal more efficient ways to

treat tissue-specific pathology.
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