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Background: Sepsis-induced apoptosis of immune cells leads to widespread

depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has

been implicated in the apoptotic pathway, although little is known regarding its

role in sepsis-related immune cell apoptosis. The aim of this study was to

develop an ER stress-related prognostic and diagnostic signature for sepsis

through bioinformatics and machine learning algorithms on the basis of

the differentially expressed genes (DEGs) between healthy controls and

sepsis patients.

Methods: The transcriptomic datasets that include gene expression profiles of

sepsis patients and healthy controls were downloaded from the GEO database.

The immune-related endoplasmic reticulum stress hub genes associated with

sepsis patients were identified using the new comprehensive machine learning

algorithm and bioinformatics analysis which includes functional enrichment

analyses, consensus clustering, weighted gene coexpression network analysis

(WGCNA), and protein-protein interaction (PPI) network construction. Next,

the diagnostic model was established by logistic regression and the molecular

subtypes of sepsis were obtained based on the significant DEGs. Finally, the

potential diagnostic markers of sepsis were screened among the significant

DEGs, and validated in multiple datasets.

Results: Significant differences in the type and abundance of infiltrating

immune cell populations were observed between the healthy control and
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sepsis patients. The immune-related ER stress genes achieved strong stability

and high accuracy in predicting sepsis patients. 10 genes were screened as

potential diagnostic markers for sepsis among the significant DEGs, and were

further validated in multiple datasets. In addition, higher expression levels of

SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis

patients than healthy donors (n = 5).

Conclusions: We established a stable and accurate signature to evaluate the

diagnosis of sepsis based on the machine learning algorithms and

bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of

sepsis that may affect its progression by regulating ER stress.
KEYWORDS

sepsis, immunity, endoplasmic reticulum stress, machine learning, SCAMP5
Introduction

Sepsis is associated with high morbidity and mortality rates

which caused by a disproportionate inflammatory response of

the host to infection (1). An estimated 48.9 million people

worldwide were diagnosed with sepsis in 2017, resulting in

over 11 million deaths that accounted for 20% of the global

mortality rate (2). Despite advances in resuscitation strategies,

ventilator management, antibiotic therapy and glucose

maintenance, there is no particularly effective treatment for

sepsis other than standard care and supportive treatment, and

severe sepsis remains a leading cause of death (3, 4). Studies in

human subjects and animal models have shown that sepsis is

associated with the overactivation of innate immune effector

cells, resulting in uncontrolled inflammation that leads to

extensive tissue damage and organ failure in case of severe

septicemia (5–7). In order to reduce sepsis-related mortality, it

is very necessary to explore the biological mechanisms and

potential biomarkers associated with sepsis.

Endoplasmic reticulum (ER) is the place of protein folding

and post-translational modifications, and is also a critical

organelle of the secretory pathway (8). Cellular stress and

inflammation can lead to the accumulation of unfolded or

misfolded proteins, a phenomenon also known as ER stress

(9). ER arising from inflammation and the loss of dynamic

balance in endoplasmic reticulum function under stress has been

closely related to the progression of sepsis (10). However, the

possible relationship between ER and sepsis, especially the

possible role of ER stress on immune cell apoptosis during

sepsis, remains unclear. To this end, we explored the role of

immune cell apoptosis and ER stress on the development of

sepsis, as well as their correlation to patient prognosis. Our
02
objective was to identify the molecular subtypes of sepsis to

expand the repertoire of potential diagnostic biomarkers.

The gene expression profiles of sepsis and normal blood

samples were retrieved from the GEO database using R software

(11), and the differentially expressed genes (DEGs) between the

two groups were screened. Immune cell infiltration in the sepsis

and control groups was analyzed using the CIBERSORT

algorithm, and the sepsis dataset was clustered on the basis of

immune checkpoint genes in order to identify key genes

associated with the immune responses during sepsis. The

DEGs related to sepsis and ER stress were functionally

annotated by GO and KEGG pathway enrichment analyses,

and weighted gene correlation network analysis (WGCNA)

(12) was performed to identify co-expressed gene modules.

Next, the protein-protein interaction (PPI) network of the

genes intersecting the WGCNA and ER stress-related gene sets

was constructed using the STRING database (13), and the

clinical relevance of the hub genes was analyzed in multiple

datasets. In addition, the correlation between the hub genes and

immune cell infiltration levels was also examined. Finally, the

potential diagnostic markers of sepsis were screened, which

offers new insights for sepsis diagnosis and treatment.
Materials and methods

Data availability

All the raw data is available.

Raw data l ink : ht tps : / /www. j ianguoyun.com/p/

DU2vz6oQzM3iChj1us0EIAA.

(Access Password: k6zrvo).
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Identification of sepsis-related DEGs

The sepsis-related transcriptomic datasets GSE9960 and

GSE57065 (14, 15) were downloaded from the GEO database

using the GEO query package in R (version 4.0.3, http://r-

project.org/) (16). The details of the datasets are listed in

Table 1. The datasets were merged using the sva package in R,

and the difference between batches was eliminated according to

the data source. The samples in the merged dataset were divided

into the normal (n = 41) and sepsis (n = 136) groups using

ComBat in the sva package, and all samples were included in the

study. After normalizing the expression data, the DEGs between

the normal and sepsis samples were screened by the limma

package in R (17), with logFC > 1 or < -1 and adjP value < 0.05 as

the thresholds.
Analysis of immune infiltrating
cells in sepsis

Based on the principle linear support vector regression, we

used CIBERSORT algorithm to analyze the gene expression matrix

of immune cell subtypes. LM22 and CIBERSORT matrices can

predict the proportion of 22 infiltrating immune cell subtypes in

individual samples of a dataset (18). The infiltrating immune cell

populations in the sepsis and normal samples were estimated on

the basis of RNA-Seq data, and the abundance of the 22 subtypes of

immune cells in the datasets was evaluated by the CIBERSORT

algorithm. The differentially enriched immune cells between septic

and normal samples were also identified, and their correlation with

key sepsis-related genes was analyzed.
Identification of immune subtypes

Consensus Clustering is used to determine the number of

possible clusters in gene expression datasets, and is routinely

applied in cancer genomics research to identify molecular

subtypes. The “ConsensusClusterPlus” package in R (19) was

used to cluster the sepsis datasets on the basis of immune

checkpoint genes (20) in order to distinguish immune

subtypes and identify the key genes related to sepsis-related

immunity. The number of clusters was set between 2 and 10, and
Frontiers in Immunology 03
the process was repeated 100 times to extract 80% of the total

samples using clusterAlg = “pam”, distance = “Euclidean”. The

pheatmap package in R was used to draw the clustering heat map

consisting of the top 20 down-regulated and up-regulated genes.
Functional annotation of DEGs

Gene ontology (GO) is used for large-scale functional

annotation of genes based on the enriched molecular functions

(MF), biological processes (BP) and cellular components (CC).

Subsequently, KEGG is a database of biological pathways, drugs,

genomes and diseases. The clusterProfiler package in R (21) was

used for KEGG pathway enrichment analyses and GO functional

annotation of the intersecting sepsis-related DEGs and ER

stress-related genes. P-value < 0.05 was used as the threshold

for significant enrichment. Gene set enrichment analysis (GSEA)

is used to evaluate the correlation of genes in a pre-defined gene

set with a specific phenotype (22). The “c5.go.v7.4.symbols” with

“c2.kegg.v7.4.symbols”gene sets in the MSigDB database (23)

were subjected to GSEA using the clusterProfiler package (21).

P-value < 0.05 was considered statistically significant (23).
Weighted Gene Correlation Network
Analysis (WGCNA)

WGCNA is used to identify co-expressed gene modules,

explore the relationship between gene network and phenotype,

and study the core genes in the network. WGCNA was

performed on the DEGs between sepsis and control datasets

using the WGCNA package in R (12). The correlation coefficient

between two genes was first calculated, then its weighted value

was used to make the connection between the genes in a scale-

free network. The hierarchical clustering tree was then

constructed according to the correlation coefficients, wherein

different gene modules were represented by the branches and

color-coded. The “minModuleSize” was set to 50, and the

module significance and correlation of mRNA expression

levels with different modules were calculated. Finally, the most

significant module related to the disease was identified, and the

characteristic genes were extracted for subsequent analysis.
Construction of protein-protein
interaction (PPI) networks

The STRING database (13) contains 2031 species, which

includes 9.6 million proteins and 1380 million protein and

protein interactions (PPIs) obtained from experimental data,

text mining results from PubMed, other databases, and

bioinformatics predictions. The PPI network of the genes

intersecting the WGCNA and ER stress-related gene sets was
TABLE 1 Data information.

Data Normal Sepsis

GSE9960 16 54

GSE57065 25 82

GSE123729 11 15

GSE54514 18 35

GSE26378 21 82
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visualized using Cytoscape software which constructed from the

STRING database. Finally, the hub genes related to ER stress in

sepsis were screened from this PPI network.
Construction of a diagnostic model

The minor absolute contraction and selection operator

(LASSO) logistic regression method is used to screen for the

most powerful prognostic predictors since it forces the absolute

value of the regression coefficient to be less than the constant value,

which can effectively avoid model overfitting and filter out the

most important events. The sepsis-related genes were preliminarily

screened by the LASSO method using glmnet package in R (24),

and the diagnostic model was established by logistic regression.

The odds ratio (OR) and P-value of each variable were calculated

in the model, then the risk score of each sample was obtained.

Diagnostic marker genes with a P-value < 0.05 andOR value that is

more excellent than or less than one were selected.
Classification of sepsis subtypes

We used the “limma” package in R to screen the differentially

expressed genes in the combined datasets between normal and

sepsis samples. The filtering conditions were | logFC | > 2 and

adj.P Value<0.05. The ConsensusClusterPlus package in R (19)

was used to cluster the sepsis datasets based on the significant

DEGs between sepsis and control samples to obtain molecular

subtypes of sepsis.
Extraction of peripheral blood
mononuclear cells (PBMCs)

The collection of blood samples from human subjects

was approved by the Medical Ethics Committee of

Shenzhen Hospital of Southern Medical University (ID:

NYSZYYEC20200039). The clinical data is available at the China

Clinical trial Registration Center (No. ChiCTR2100043761).

Healthy volunteers were recruited from hospital staff and

through advertisements. All sepsis patients had been admitted to

the ICU of the Shenzhen Hospital of Southern Medical University.

The Third International Consensus Definitions for Sepsis and

Septic Shock (Sepsis-3) were used to diagnose sepsis (25). Blood

samples were collected by venipuncture, and the PBMCs were

separated by Ficoll-Paque density gradient centrifugation as per the

manufacturer’s instructions.
Real-time quantitative PCR

RNA was extracted from cells and tissues using TRIzol

(Gene Copoeia, MD, USA), and 1 µg total RNA from each
Frontiers in Immunology 04
sample was reverse transcribed to cDNA using specific primers

and SYBR Green reaction mix (Takara Biotech). Real-time

qPCR was per formed on the Bio-Rad Rea l -T ime

PCR cycler. Relative gene expression levels were calculated

by the 2-DDct method. The primer sequences were as

follows: SCAMP5 forward: GCCCCATCAAGGTTCAGGAC,

reverse: TACGTGTAATTGGGGGTGGC; GAPDH forward:

TGGTATCGTGGAAGGACTC, reverse: AGTAGAGGC

AGGGATGATG.
Western blotting

After proteins quantified by a BCA protein assay kit

(Thermo), equal amounts of proteins (20mg) per sample were

separated by 10% SDS-PAGE and transferred to a PVDF

membrane (Millipore, Billerica, MA, USA). After blocking

with 5% skimmed milk at room temperature for 2 h,

the membranes were incubated overnight with the anti-

SCAMP5 (Abcam, ab3432, 1:500) and anti-GAPDH (Abcam,

ab22555, 1:1000) primary antibodies, and thereafter with the

horseradish peroxidase (HRP)-conjugated secondary antibody.

The images were captured using the ChemiDoc imaging system

(Bio-Rad).
Statistical analysis

All statistical analyses were conducted using R (https://www.

r-project .org/ , 4.0.2 version). Normally distributed

continuous variables between two groups were compared

by the independent Student t-test, and variables with

non-normal distribution were analyzed by the Mann-

Whitney U test (Wilcoxon rank-sum test). The receiver

operating characteristic curve (ROC) was plotted to predict

binary categorical variables using the pROC package. All

statistical tests were two-sided. P < 0.05 was regarded as

statistically significant.
Results

Screening for DEGs between sepsis and
control samples

Data set analysis and flow chart of this study (Figure 1A).

The GSE9960 and GSE57065 datasets were merged and batch

effects were removed. To ascertain any significant differences in

the expression profiles of the two datasets, we analyzed data

distribution before and after removing the batch effect through

box plots. As shown in Figures 1B, D there were apparent inter-

and intra-group differences before removing the batch effect,
frontiersin.org
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which were eliminated once the batch effect of the dataset source

was removed and corrected (Figures 1C, E). The DEGs between

the sepsis and control groups were then screened using limma in

R, which revealed 577 DEGs, including 325 up-regulated and

330 down-regulated genes (Figures 1F, G).
Frontiers in Immunology 05
Analysis of immune cell infiltration

The proportion of different infiltrating immune cell types

between the sepsis and control groups was evaluated using the

CIBERSORT algorithm. After removing populations with a
B C

D E

F G

A

FIGURE 1

Data Preprocessing and identification of differentially expressed genes (DEGs). (A) Flow chart for gene set analyses. (B) Box line diagram of the
merged dataset before correction. (C) Box line diagram of the combined dataset after correction. (D) PCA for sepsis and healthy control
samples before batch correction with ComBat. (E) PCA for sepsis and healthy control samples after batch correction with ComBat. (F) Volcano
plot showing DEGs between sepsis and control samples. (G) Heatmap showing the top 20 up- and down-regulated genes.
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sum of immune abundance value 0, the Wilcox test algorithm

was applied to 15 immune cell populations, including naïve

B cells, plasma cells, memory B cells, CD8+ T cells, regulatory

T cells (Tregs), CD4+ memory resting T cells, follicular
Frontiers in Immunology 06
helper T cells, resting NK cells, activated NK cells, M0

macrophages, M2 macrophages, monocytes,activated DCs,

resting dendritic cells (DCs), resting mast cells and activated

mast cells (Figure 2A).
B

C

D

E

A

FIGURE 2

Distribution of immune cell subtypes in the merged dataset. (A) Bar plot showing percentage infiltration of 22 immune cells in each sample. (B)
The top 10 hub genes according to Friends analysis. (C) The PPI network shows the interactions of the top10 genes. (D) Correlation heatmap of
22 immune cell types. (E) Violin plot showing differential infiltration of the 22 immune cell populations.
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To assess the functional correlation between key genes and

immune cells in sepsis, we analyzed the PPI network of the 577

DEGs, and obtained the top 10 hub genes using the MCC

algorithm, and carried out with Friends analysis (Figure 2B).

The protein-protein interaction (PPI) networks for the top10

hub gene (Figure 2C). The correlation between immune cells

in the datasets, and the abundance of different populations in

the sepsis and control samples were analyzed. As shown in

Figures 2D, E, the B cells, T cells, NK cells and DCs were more

abundant in the sepsis samples compared to the controls,

whereas the infiltration of neutrophils was significantly lower

in the sepsis samples relative to that in the control samples.

These findings indicate that the samples from normal

and sepsis patients demonstrated a variety of different

immune contexts.
Frontiers in Immunology 07
Identification of immune subtypes

Principal component analysis (PCA) of the combined

dataset showed that although the control and sepsis groups

were distinct, there was still some overlap among the samples

(Figure 3A). Since the immune checkpoint-related genes were

differentially expressed between the sepsis and control groups

(Figure 3C), we clustered the 136 sepsis samples on the basis of

these immune checkpoints into the immune_ A (n = 66) and

immune_ B (n = 70) clusters using the ConsensusClusterPlus

package in R. PCA analysis was performed again (Figure 3B),

and the results showed that although a small number of samples

overlapped, most pieces were significantly separated. Next, we

performed the differentially expressed genes just obtained to

draw the heat map (Figure 3D), and the results show that the
B

C D

A

FIGURE 3

Identification of immune subtypes in sepsis. (A) PCA according to the subgroups of sepsis and healthy control samples. (B) PCA according to
immunophenotyping. (C) Heatmap of immune infiltration-related genes in the normal and septic groups. (D) Heatmap of immune infiltration-
related genes according to immunophenotyping. Red and blue squares indicate activation and suppression, respectively.
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expression difference trend of these genes is more prominent.

These findings indicated that sepsis samples were clustered into

immune subsets based on immune checkpoint related genes

were differentially expressed.
Functional annotation of ER stress-
related genes in sepsis

To explore the involvement of ER stress in sepsis, we

performed a Venn analysis of the sepsis-related DEGs and ER

stress-related genes (Figure 4A), and functionally annotated the

intersecting genes by GO and KEGG analyses. As shown in

Figure 4B and Table 2 the genes are enriched in biological

processes such as response to ER stress, negative regulation of

response to ER stress, negative regulation of protein exit from

the ER, cell components including platelet alpha granule lumen,
Frontiers in Immunology 08
platelet alpha granule, phagophore assembly site membrane, and

molecular functions such as ubiquitin-like protein ligase

binding, ubiquitin-protein ligase binding and protein

phosphatase 2A binding. The critical functions of the DEGs

include response to ER stress, ubiquitin protein ligase binding,

protein processing in ER, negative regulation of protein exit

from the ER and so on (Figure 4C and Table 3).

GSEA was next performed to determine the effect of gene

expression level on sepsis. As shown in Figure 5A, the DEGs are

related to biological functions such as autoimmune thyroid

disease, al lograft rejection, antigen processing and

presentation. The top 5 functions are shown in Figure 5C. To

test out the enrichment results of the gene set, we used GSVA

(Gene Set Variation Analysis) analysis. The expression matrix of

genes among different products is transformed into the

expression matrix of gene sets among samples to evaluate

whether different metabolic pathways are enriched. Finally, the
B

C

A

FIGURE 4

GO and KEGG enrichment analysis. (A) Venn diagram showing the intersection of DEGs and ER stress-related genes in the combined dataset.
(B) GO functional enrichment analysis of the intersecting genes with the top three of BP, CC and MF terms and KEGG pathways. The horizontal
coordinate shows -log(p.adjust) values and the vertical coordinate shows GO terms. (C) The enrichment results are displayed on the network,
and the node size represents the number of genes enriched. The red dots represent the nine genes that were enriched.
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results are visually displayed using the pheatmap package

(Figure 5B and Table 4). We found that sample grouping can

distinguish the effects of gene set enrichment analysis. These

results indicate activation of endoplasmic reticulum stress-

related pathways is an important biological process affecting

immune cell function in sepsis.
Identification of key ER stress-related
genes in sepsis

Furthermore, we used theWGCNA algorithm to construct co-

expression modules and identify mRNA-related modules. The key

parameter of soft threshold power was set to 7 to ensure the overall

connectivity of the co-expression module. Seven co-expression
Frontiers in Immunology 09
modules were obtained and the color-coded gene clusters are

shown in Figure 6A. The purple, gray 60 and gray modules were

positively correlated with mRNA (Meplum: r = 0.62, P = 9e−20;

Megrey60: r = 0.17, P = 0.02; Megrey: r = 0.25, P = 8e−04), and the

orange, dark blue, sky blue and orange-red modules showed

negative correlation with mRNA (Meorange: r = -0.24, P =

0.002; Memidnightblue: r = -0.19, P = 0.01; Meskyblue: r =

-0.56, P = 3e-15; Meorangered: r = -0.037, P = 0.6) (Figure 6B).

Next, the correlation of the module membership with the sepsis

samples was shown (Figures 6C–H). The purple module was most

significantly correlated to sepsis (Figure 6C), and its characteristic

genes with the highest correlation were intersected with ER stress-

related genes. There were 70 intersecting genes in the venn diagram

(Figure 7A). PPI network analysis was performed on these genes,
TABLE 2 GO enrichment analysis of differentially expressed genes.

Term ID Description p.adjust

BP GO:0034976 response to endoplasmic reticulum stress 4.91E-14

BP GO:1903573 negative regulation of response to endoplasmic reticulum stress 2.07E-06

BP GO:0070862 negative regulation of protein exit from the endoplasmic reticulum 3.83E-06

BP GO:0035966 response to topologically incorrect protein 4.35E-06

BP GO:1904293 negative regulation of ERAD pathway 4.35E-06

CC GO:0031093 platelet alpha granule lumen 0.0215363

CC GO:0031091 platelet alpha granule 0.0215363

CC GO:0034045 phagophore assembly site membrane 0.053925509

CC GO:0097440 apical dendrite 0.053925509

CC GO:0005788 endoplasmic reticulum lumen 0.053925509

MF GO:0031625 ubiquitin-protein ligase binding 8.55E-06

MF GO:0044389 ubiquitin-like protein ligase binding 8.55E-06

MF GO:0051721 protein phosphatase 2A binding 0.003507229

MF GO:0043621 protein self-association 0.008115479

MF GO:0051087 chaperone binding 0.021453686
fro
TABLE 3 KEGG enrichment analysis of differentially expressed genes.

Term ID Description p.adjust

KEGG hsa05219 Bladder cancer 0.000968991

KEGG hsa04141 Protein processing in the endoplasmic reticulum 0.001091676

KEGG hsa04115 p53 signalling pathway 0.001851097

KEGG hsa05131 Shigellosis 0.002275623

KEGG hsa05161 Hepatitis B 0.011814754

KEGG hsa05144 Malaria 0.021266314

KEGG hsa01524 Platinum drug resistance 0.037234276

KEGG hsa05210 Colorectal cancer 0.037234276

KEGG hsa05206 MicroRNAs in cancer 0.037234276

KEGG hsa05222 Small cell lung cancer 0.037234276
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and those with interaction scores greater than 0.4 are shown in

Figure 7B. The top 20 hub genes were identified with the MCC

algorithm, and are shown in (Figure 7C). In conclusion, a multi-

factor network indicated complex interaction of the 20 ER stress-

related hub genes in sepsis.
Identification of sepsis subtypes and
diagnostic markers

The potential diagnostic markers of sepsis were screened

from the DEGs of the combined dataset using LASSO regression
Frontiers in Immunology 10
and logistic regression. As shown in (Figures 8A, B), there were

76 genes with OR > 1 and 85 genes with OR < 1 (and P < 0.05).

The potential diagnostic markers were validated on the

GSE123729 dataset by PCA, which showed that most markers

distinguished sepsis from normal samples (Figures 8C, D). The

differential expressions of these markers in the validation dataset

are shown in the heat maps in (Figures 8E, F) and Table 5.

Fifty-seven DEGs were significantly related to sepsis, including

47 up-regulated and 10 down-regulated genes, and were used to

cluster the sepsis datasets. When the number of genotypes was set

to 2, the sepsis-related genes were able to classify the sepsis samples

and distinguish them from the control samples (Figure 9A). The
B

CA

FIGURE 5

Results of GSEA and GSVA. (A) Mountain range plot showing the GSEA results of the merged dataset. Horizontal coordinate shows the gene
ratio, vertical coordinate show the KEGG pathways, and the color indicates P-value. (B) Heat map showing the results of GSVA on GSEA
enrichment data. Red and blue indicate activation and suppression, respectively. (C) The top 5 items of the GSEA.
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heat map of these genes in the normal and sepsis groups indicated

differential expression (Figure 9B). The sepsis subtypes were then

used to map the same genes again, and the difference was more

pronounced (Figure 9C). The diagnostic markers with OR < 1 and

OR > 1 were screened to improve accuracy, and the top 8 genes

with the highest correlation are shown in (Figures 9D, E.)

Together, these results indicated that the immune-related ER

stress genes achieves strong stability and high accuracy in

predicting sepsis patients.
Predictive value of SCAMP5

We further assessed the predictive value of the sepsis hub genes

on the GSE26378 and GSE54514 datasets that included data of 39

healthy controls and 117 sepsis patients. SCAMP5 was significantly

up-regulated in the sepsis samples compared to the control

samples in both datasets (P < 0.05). On the other hand, while

RNF175, FBXO6 and TBL2 showed a trend towards higher

expression levels in the sepsis patients in GSE26378, no

significant difference was observed in GSE54514 (Figures 10A,

C). ROC analysis further demonstrated that SCAMP5 could

accurately predict sepsis, with AUC of 0.757 in GSE26378 and

0.637 in GSE54514 (Figures 10B, D).We then tested the expression

levels of SCAMP5 in the PBMCs from sepsis patients (n = 5) and

healthy donors (n = 5), and found that SCAMP5 protein and

mRNA were both up-regulated in the PBMCs from sepsis patients

compared to healthy controls (Figures 10E, F). In addition, analysis

of single-cell sequencing results in Protein Atlas database (https://

www.proteinatlas.org/ENSG00000198794-SCAMP5/single+cell

+type/PBMC) showed that SCAMP5 was expressed in the

circulating DCs (Figure 10G). These results indicate that

SCAMP5 is a potential diagnostic marker for sepsis.
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Discussion

Sepsis is a syndrome associated with a high mortality rate,

and is therefore a serious public health concern worldwide.

During the COVID-19 pandemic, some severe and critically ill

patients exhibited multiple organ dysfunction that met the

diagnostic criteria of sepsis (4). In recent years, the key role of

immune cell apoptosis in sepsis-related immune dysfunction has

been elucidated (26). Sepsis-induced apoptosis of immune cells

not only leads to the depletion of critical immune effector cells,

but also exerts an immunosuppressive effect (27). Some studies

have also suggested a pathological role of ER stress in

inflammatory diseases, including sepsis (28, 29). In addition,

the ER stress-mediated apoptosis pathway is a potential

therapeutic target in sepsis (30, 31).

Machine learning algorithms are increasingly being used to

create decision models that aid in disease diagnosis and

treatment (32). In the current study, we screened the DEGs

between sepsis patients and healthy individuals, which can not

only help identify potential diagnostic/prognostic biomarkers or

therapeutic targets for sepsis from highly related gene

aggregation modules, but also elucidate the molecular

mechanisms underlying the pathogenesis of sepsis. We

identified 577 DEGs from the combined GSE9960 and

GSE57065 datasets, of which 325 were up-regulated and 330

were down-regulated in the sepsis samples relative to

the controls.

In addition, we also observed significant differences in the

type and abundance of infiltrating immune cell populations

between the two groups, which underscores the role of immune

cells in the development of sepsis. Monocytes and

macrophages are instrumental to the pathophysiological

process of sepsis and inflammation (33). The systemic
TABLE 4 GSEA analysis of differentially expressed genes GSE108474.

Description enrichmentScore p.adjust

KEGG_ALLOGRAFT_REJECTION -0.787525613 1.37E-05

KEGG_GRAFT_VERSUS_HOST_DISEASE -0.766795418 5.32E-05

KEGG_PRIMARY_IMMUNODEFICIENCY -0.756453466 6.93E-05

KEGG_AUTOIMMUNE_THYROID_DISEASE -0.753983298 1.72E-06

KEGG_TYPE_I_DIABETES_MELLITUS -0.731429168 6.93E-05

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION -0.709444115 0.00011187

KEGG_ASTHMA -0.707255846 0.007752697

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION -0.68182909 1.72E-06

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 0.673225498 0.033512196

KEGG_STARCH_AND_SUCROSE_METABOLISM 0.671740494 0.004234432
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ntiersin.org

https://www.proteinatlas.org/ENSG00000198794-SCAMP5/single+cell+type/PBMC
https://www.proteinatlas.org/ENSG00000198794-SCAMP5/single+cell+type/PBMC
https://www.proteinatlas.org/ENSG00000198794-SCAMP5/single+cell+type/PBMC
https://doi.org/10.3389/fimmu.2022.995974
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2022.995974
inflammatory response elicited by the circulating innate

immune cells during sepsis also influences the tissue-resident

immune cells, which can compromise the functions of vital

organs (34). Sepsis development is also associated with

significant lymphopenia, which is characterized by decreased
Frontiers in Immunology 12
counts of CD8+ and CD4+ T cells, B cells and natural killer

(NK) cells (35). Furthermore, burn patients with sepsis have

significantly higher numbers of circulating DCs compared to

burn patients without sepsis (36). In our study, B cells, NK

cells, T cells and DCs were much more abundant in the sepsis
B

C D E

F G H

A

FIGURE 6

Results of WGCNA. (A) Cluster analysis of the combined dataset. The different module clusters are color-coded. (B) Correlation between the
different modules in the normal and sepsis groups. (C–H), Scatter diagrams for module membership vs. gene significance of sepsis. (C) The
plum1 modules with the highest correlation. (D) The correlation between the skyblue module and the genes.(E) Display of the correlation
between the grey60 module and the genes. (F) Display of the correlation between the orange module and the genes. (G) Display of the
correlation between the midnightblue module and the genes. (H) Display of the correlation between the orangered4 module and the genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.995974
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2022.995974
samples compared to the controls, and therefore may play a

crucial part in establishing the immune microenvironment

about sepsis.

Our studies indicate that the immune cell dysfunction in sepsis

is closely related to ER stress. Functional annotation of the sepsis-

related DEGs indicated significant enrichment of biological
Frontiers in Immunology 13
process, molecular functions, cell components, biological

pathways and diseases involving ER stress. A recent study has

also revealed that there is a fascinating and novel interaction

between ER stress with sepsis-associated cell death (37, 38). ER

stress is also a trigger for apoptosis, except for mitochondrial

apoptotic pathwaysand death receptor (39, 40). ER function is
B C

A

FIGURE 7

Protein-protein interaction (PPI) network. (A) Venn diagram showing the intersection of the most significantly correlated genes obtained by
WGCNA with ER stress-related genes. (B) PPI network of the 70 intersecting genes. (C) Top 20 hub genes in the PPI network.
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B

C D

E F

A

FIGURE 8

Screening for diagnostic markers. (A, B) Lasso analysis of the combined dataset. (C, D) PCA plot and box plot of the validation set GSE123729
data after correction. (E, F) Heat map showing differential expression of diagnostic markers in the validation set obtained by one-way logistic
regression analysis. Red indicates up-regulation, blue indicates down-regulation, and darker colors indicate a larger fold change.
TABLE 5 Univariate logistic regression.

Character OR CI P. Value

SCAMP5 7.64 1.66-35.13 0.01

DNAJC18 3.74 1.07-13.06 0.04

TARDBP 0.05 0.01-0.2 0

SDF2L1 1.98 1.11-3.55 0.02

FBXO2 0.3 0.1-0.95 0.04

FBXO6 3.09 1.84-5.21 0

TBL2 3.58 1.37-9.36 0.01

RNF175 2.77 1.3-5.87 0.01

PDIA3 0.2 0.09-0.45 0

HDGF 0.57 0.35-0.93 0.02
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B C

D E

A

FIGURE 9

Identification of sepsis subtypes and diagnostic markers. (A) The number of genotype clusters in the sepsis dataset. (B) Heat map of diagnostic
genes based on control and sepsis groups. (C) Heat map of diagnostic genes based on sepsis subtype. Red indicates activation and blue
indicates inhibition. (D) Diagnostic markers with OR less than 1. (E) Diagnostic markers with OR more significant than 1.
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FIGURE 10

SCAMP5 is highly expressed in patients with sepsis and has significant diagnostic value. (A) Expression of hub genes in the control and sepsis
samples in GSE26378. SCAMP5, RNF175, FBXO6 and TBL2 were significantly up-regulated in the sepsis patients (P < 0.05 by the two-sided t
test. (B) ROC curve showing predictive value of SCAMP5 for sepsis in GSE26378 with AUC = 0.757. (C) Expression of hub genes in the control
and sepsis samples in GSE54514. SCAMP5 and SDE2L1 were significantly up-regulated in the sepsis patients (*P < 0.05 by the two-sided t test).
(D) ROC curve showing predictive value of SCAMP5 for sepsis in GSE54514 with AUC = 0.637. (E) SCAMP5 mRNA levels in the PBMCs from
healthy controls and sepsis patients as determined by qRT-PCR. Mean ± SD (n = 5), **P < 0.01. (F) SCAMP5 protein levels in the PBMCs from
healthy controls and sepsis patients. (G) Single-cell sequencing database results showing that SCAMP5 is expressed in the dendritic cells.
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disrupted during sepsis, resulting in acute or chronic ER stress,

which may initiate apoptosis in the damaged cells (41). Thus, ER

stress-mediated apoptosis pathway may be a novel therapeutic

target against sepsis-induced immune cell apoptosis (42).

We also screened for potential diagnostic markers for sepsis

among the significant DEGs, and validated them in the

GSE123729 dataset. The hub genes that can distinguish sepsis

from normal samples were identified, which included SCAMP5,

DNAJC18, TARDBP, SDF2L1, FBXO2, FBXO6, TBL2, RNF175,

PDIA3 and HDGF. Secretory carrier membrane protein 5

(SCAMP5) is an integral membrane protein that was highly

expressed in the sepsis samples compared to the controls.

SCAMP5 is known to be brain specific which is involved in

vesicle transport (43). Recent studies show that SCAMP5 is a

candidate biomarker gene for autism and its downregulation is

related to the synaptic dysfunction in autistic patients (44).

Moreover, F-box protein 6 (FBXO6) is a subunit of the

ubiquitin protein ligase complex, which bind to glycosylated

substrates within F-box-associated domains in endoplasmic

reticulum (ER) stress-associated degradation (45) .

Phosphorylation of TBL2 by ATM/ATM in response to DNA

damage identifies TBL2 is considered to be a member of the

cellular oxidative damage response network, as it phosphorylated

by ATM/ATM in response to DNA damage (46). We confirmed

the high expression levels of SCAMP5 mRNA and protein in

PBMCs isolated from sepsis patients. Moreover, SCAMP5 was

expressed in the peripheral DCs as per the single-cell sequencing

results from the Protein Atlas database. Taken together, these

findings suggest that SCAMP5 is a potential diagnostic marker for

sepsis, and may play a vital role in its development. However, it is

worth noting that the diagnosis and prediction of SCAMP5 sepsis

still need further validation in clinical trials with large sample

size. Meanwhile, the regulatory role of SCAMP5 in immune-

related ER stress needs to be further investigated in functional and

mechanistic studies.

To summarize, we developed a stable and accurate signal to

evaluate the diagnosis of sepsis through integrated bioinformatics

and machine learning algorithms. This prediction model can

surveillance protocols and optimize decision-making for

individual sepsis patients. Moreover, SCAMP5 was preliminarily

identified as a key driver of sepsis that may affect its progression

by regulating ER stress. The diagnostic and therapeutic potential

of SCAMP5 in sepsis warrants further investigation.
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