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Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and
fatal fibrotic pulmonary disease with unknow etiology. Owing to lack of reliable
prognostic biomarkers and effective treatment measures, patients with IPF
usually exhibit poor prognosis. The aim of this study is to establish a risk score
prognostic model for predicting the prognosis of patients with IPF based on
autophagy-related genes.

Methods: The GSE70866 dataset was obtained from the gene expression
omnibus (GEO) database. The autophagy-related genes were collected from
the Molecular Signatures Database (MSigDB). Gene enrichment analysis for
differentially expressed genes (DEGs) was performed to explore the function of
DEGs. Univariate, least absolute shrinkage and selection operator (LASSO), as
well as multivariate Cox regression analyses were conducted to identify a
multi-gene prognostic model. Receiver operating characteristic (ROC) curve
was applied to assess the prediction accuracy of the model. The expression of
genes screened from the prognostic model was validated in clinical samples
and human lung fibroblasts by gPCR and western blot assays.

Results: Among the 514 autophagy-related genes, a total of 165 genes were
identified as DEGs. These DEGs were enriched in autophagy-related processes
and pathways. Based on the univariate, LASSO, and multivariate Cox regression
analyses, two genes (MET and SH3BP4) were included for establishing the risk
score prognostic model. According to the median value of the risk score,
patients with IPF were stratified into high-risk and low-risk groups. Patients in
high-risk group had shorter overall survival (OS) than low-risk group in both
training and test cohorts. Multivariate regression analysis indicated that
prognostic model can act as an independent prognostic indicator for IPF.
ROC curve analysis confirmed the reliable predictive value of prognostic
model. In the validation experiments, upregulated MET expression and
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downregulated SH3BP4 expression were observed in IPF lung tissues and TGF-
Bl-activated human lung fibroblasts, which is consistent with results from
microarray data analysis.

Conclusion: These findings indicated that the risk score prognostic model
based on two autophagy-related genes can effectively predict the prognosis of

patients with IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive
and fatal interstitial lung disease with unknown etiology (1). It is
characterized by repetitive epithelial cell injury, fibroblast
activation and overwhelming extracellular matrix (ECM)
deposition which ultimately cause progressive loss of lung
function and even death owing to respiratory failure (1). In
the USA, the annual occurrence rate of IPF was 6.8-8.8 per
100,000 population with narrow case definitions and 16.3-16.7
per 100,000 population with broad case definitions (2). The
annual occurrence rate in Europe was 0.22-7.4 per 100,000
population (2). The medial survival after diagnosis is only 2-3
years and the 5-year survival rate is no more than 40% (3, 4).
Due to the complex etiology and unclear pathogenesis, there is
still a lack of effective drugs. Pirfenidone and nintedanib, the two
FDA-approved drugs, can’t stop disease progression or reduce
mortality (5). Therefore, it is important to identify the
pathogenesis of IPF, explore novel treatment strategies and
develop prognosis model.

Autophagy is a multi-step dynamic process that regulated by
autophagy-related genes. In this process, autophagosomes are
generated by phagocytosis of unwanted organelles and
cytoplasmic proteins in a double membraned-surrounded
vesicle (6). Then, autophagosomes are fused with lysosomes to
degrade the contents of vesicles (6). Dysregulation of autophagy
is involved in various lung diseases, including pulmonary
hypertension, asthma, chronic obstructive pulmonary disease,
and pulmonary fibrosis (7). For instance, a study has shown that
leucine-rich repeat kinase 2 (LRRK2) is conducive to alleviate
pulmonary fibrosis via preventing alveolar type II epithelial
dysfunction and regulating the innate immune responses (8).
Kim et al. reported that interleukin-37 (IL-37) attenuates IPF by
blocking the transforming growth factor-B1 (TGF-f1) pathway
and enhancing autophagy in IPF fibroblast (9). Wan et al. found
that the downregulation of thymocyte differentiation antigen-1
(Thy-1) and upregulation of integrin B3 can lead to pulmonary
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fibrosis via activating PI3K/AKT/mTOR pathway and inhibiting
lung fibroblast autophagy (10). Nevertheless, the role of
autophagy-related genes in the prognosis of IPF remains
largely unclarified and awaits further study.

In the present study, the autophagy-associated differentially
expressed genes (DEGs) between control samples and IPF
samples were analyzed in GSE70866 dataset. Gene ontology
(GO) and kyoto encyclopedia of genes and genomes (KEGG)
enrichment analyses were performed for DEGs. Then, based on
the univariate, least absolute shrinkage and selection operator
(LASSO) as well as multivariate regression analyses, two
autophagy genes were included to establish a risk score
prognostic model in the training set. Finally, this risk score
model was proved to be an independent and reliable prognostic
factor in patients with IPF.

Materials and methods

Acquisition of dataset and autophagy-
related genes

The microarray data and clinical information in GSE70866
dataset (GPL14550 platform) were downloaded from gene
expression omnibus (GEO) database [20 normal
bronchoalveolar lavage fluid (BALF) samples and 112 IPF
BALF samples]. The diagnosis of IPF in the dataset was
confirmed by a multidisciplinary board at each institution
according to the American Thoracic Society/European
Respiratory Society criteria. To obtain BALF, pre-warmed and
sterile saline was instilled by 20ml aliquots with immediate
aspiration by gentle suction after each aliquot. Additional
information regarding the collected BALF samples can be seen
in this article (11). The raw microarray data were pre-processed
for quality control with the use of “limma” package, including
background adjustment and normalization. The general
information of 112 patients with IPF was presented in
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Table 1. A total of 12 autophagy-related gene sets were
downloaded from the Molecular Signatures Database
(MSigDB) (version 7.5.1) (Supplementary Table 1). After
deleting the overlapping genes, 504 autophagy-associated
genes were included for analysis (Supplementary Table 2).

Identification of
autophagy-associated DEGs

The autophagy-associated DEGs between normal samples
and IPF samples were investigated using “limma” R package. A
gene with p<0.05 was considered as DEG. Then, based on the
GO and KEGG analyses, the biological functions and
mechanism pathways for these autophagy-associated DEGs
were explored.

Construction of risk score
prognostic model

A total of 112 IPF samples was randomly divided into the
training set (n=56) and the test set (n=56) with the use of “caret”
R package. First, the prognosis-related genes from autophagy-
associated DEGs were identified utilizing a univariate Cox
regression analysis in the training set. Then, in order to avoid
overfitting, we adopted the LASSO regression analysis to obtain
the crucial autophagy-associated DEGs. Finally, a multivariate
Cox regression analysis was conducted to select the autophagy-
associated genes for establishing a risk score prognostic model.
The formula of risk score model was presented as follows: Risk
score= [(expression value of gene 1 x 1) + (expression value of
gene 2 x 32) +...+ (expression value of gene n x Bn)], where f3 is
the corresponding gene’s regression coefficient. The risk score of
each sample was calculated according to the formula. Samples

10.3389/fimmu.2022.997138

were stratified into the high-risk group and low-risk group on
the basis of the median value of risk score. Kaplan-Meier analysis
and log-rank test were performed to compare the survival
differences between the two risk groups using “survival” R
package. Receiver operating characteristic (ROC) curve was
conducted to assess the model’s prediction accuracy using
“survivalROC” R package. Cox regression analysis, including
univariate and multivariate, was performed to evaluate whether
the risk score model is an independent factor in IPF.

Pre and post risk score prognostic
model comparison for principal
component analysis

First, based on all autophagy-associated genes, PCA was
performed to explore the sample distribution between two risk
groups in the training set. Then, based on the two genes from
risk score model, PCA was performed again. Finally, the
“ggplot2” R package was employed to visualize the results.

The relationship between risk scores and
clinical parameters

The relationship between risk scores and clinical parameters
was explored, including age, gender, gender-age-physiology
(GAP) index. GAP index is a staging system for patients with
IPF and can be calculated using gender (G), age (A), and two
lung physiology variables (P), including forced vital capacity
(FVC) and diffusing capacity for carbon monoxide (DLCO) (12).
GAP index may be used as a simple and quick approach for
assessing risk in patients with IPF (12). IPF samples were divided
into different groups according to the clinical parameters and the
difference of risk scores among these groups was compared.

TABLE 1 Baseline characteristic of patients with IPF in training and test set.

Characteristic Total (n=112) Training set (n=56) Test set (n=56) P value
Age (Mean=SD) 67.97+10.06 69.54+10.36 66.4149.61 0.812
Age, n (%)

<70 56 (50.00) 25 (44.64) 31 (5.36)

>70 56 (50.00) 31 (55.36) 25 (44.64) 0.257
Sex, n (%)

Male 93 (83.04) 44 (78.57) 49 (87.50)

Female 19 (16.96) 12 (21.43) 7 (12.50) 0.208
GAP index (Mean+SD) 4.54+1.73 4.64+1.88 4.43+1.58 0.535
Status, n (%)

Alive 36 (32.14) 19 (33.93) 17 (30.36)

Dead 76 (67.86) 37 (66.07) 39 (69.64) 0.686

SD, Standard deviation; GAP, Gender-age-physiology.
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Immune cell infiltration and immune-
related function analyses in the two
risk groups

The 22 kinds of immune cells in two risk groups were
determined using CIBERSORT. CIBERSORT is a
deconvolution method that assesses the immune cell
composition of tissue from their gene expression profile (13).
It applies linear support vector regression (SVR) (a machine
learning approach) to deconvolute a mixture of gene expression.
It has been shown that the results are correlated well with flow
cytometric analysis. Therefore, CIBERSORT is also referred as
“digital cytometry” (14). In addition, the 13 kinds of immune-
related function were explored in the two risk groups.

Gene set variation analysis

GSVA is a nonparametric and unsupervised analysis method
to condense information from gene expression profiles into a
pathway summary (15). To investigate the biological process
between the two risk groups, GSVA was performed with the use
of “GSVA” R package. P<0.05 was considered as statistically
significant. The gene set of “c2.cp.kegg.v7.5.1.symbols”,
downloaded from the MSigDB, was used as a reference.

Validation of the risk score model in the
test set

According to the median value of risk score from the
training set, the patients with IPF in test set were split into the
high-risk and low-risk groups. The OS in two groups were
compared using Kaplan-Meier analysis and log-rank test. ROC
curve was conducted to evaluate the prediction accuracy of the
model in the test set.

Preliminary experimental validation of
the genes from risk score model

Lung tissue samples were obtained from six patients with
IPF and six healthy controls at the First Affiliated Hospital of
Guangzhou Medical University. This study was approved by the
ethics committee of the First Affiliated Hospital of Guangzhou
Medical University and was carried out in accordance with the
Declaration of Helsinki.

Human lung fibroblasts were purchased from the ATCC.
Cells were cultured in DMEM medium supplemented with 10%
fetal bovine serum, 100U/ml penicillin, and 100mg/ml
streptomycin (Gibco) at 37°C in a 5% carbon dioxide
atmosphere. The fibroblasts were stimulated with 10ng/ml TGF-
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B1 for 48h to induce them differentiate into myofibroblasts. Then,
the total RNA and protein were collected for further analysis.

qPCR

To detect the mRNA levels, total RNA from cells was
obtained using NucleoZOL reagent (Macherey-nagel Gmbh &
Co. Kg, Germany). RNA concentration was determined with a
NanoDrop 2000 micro—spectrophotometer (Thermo Fisher
Scientific, USA). Then, total RNA was reverse-transcribed into
complementary DNA (cDNA) using Hifair® III 1st Strand
c¢DNA Synthesis SuperMix (Yeasen Biotechnology, China).
Subsequently, the cDNA was amplified by SYBR Green Master
Mix (Yeasen Biotechnology, China). The relative expression
levels of mRNA were normalized to the levels of GAPDH and
calculated by the 2"**CT method.

The primers sequences were as follows:

MET, forward, 5-AGCGTCAACAGAGGGACCT-3’,
reverse, 5-GCAGTGAACCTCCGACTGTATG-3’; SH3BP4,
forward, 5-ACCCTGATTGACCTGAGCGA-3’, reverse, 5-
GGGGTTGTCTACGAGCAAGG-3’.

Western blot

Tissues from explanted IPF lungs or healthy donor lungs were
collected and stored in liquid nitrogen before use. For protein
extraction, tissues or cells were homogenized in ice-cold RIPA lysis
buffer supplemented with phenylmethylsulfonyl fluoride (Biosharp,
China) and phosphatase inhibitor cocktail (Sigma, USA). After
centrifuging at 14,000 xg for 30 min at 4 °C, the supernatant was
collected as total protein and the protein concentration was
determined using BCA protein assay kit (Thermo Fisher
Scientific, USA). Equal amounts of protein (20pg) were separated
by 10% SDS-PAGE and transferred to PVDF membranes. After
blocking with 5% non-fat milk at room temperature for 1h, the
membranes were soaked in primary antibodies solutions at 4°C
overnight. On the next day, membranes were washed with TBST
for three times, then incubated with secondary antibodies at room
temperature for 1h. Finally, the protein bands were visualized via
an electrochemiluminescence reagent (Thermo Fisher Scientific,
USA). The images were analyzed by Image ] software. The
following primary antibodies were utilized: anti-MET (1:1000,
25869-1-AP, Proteintech), anti-SH3BP4 (1:200, sc-393730,
Santa Cruz).

Statistical analysis

The statistical analysis was implemented by R software
(version 4.1.3). Gene expression in two groups was compared
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by Wilcoxon test. Univariate Cox, LASSO and multivariate Cox
regression analyses were performed to identify the prognosis-
associated genes. The Kaplan-Meier analysis combined with a
log-rank test was used to explore the differences in OS between
two groups. ROC analysis was conducted to assess accuracy of
the risk score prognostic model.

Raw data from qPCR and western blot analysis were

»

presented as “mean + standard error of mean (SEM)” and
were further compared by Student’s t test. GraphPad software
(version 8.0) was used to visualize the statistical results. p<0.05

was considered as statistically significant.

Results

Identification of autophagy-related DEGs
and function enrichment analysis in IPF

The overall flow chart for this study was presented in
Figure 1. A total of 504 autophagy-related genes were collected
from the MSigDB database (Supplementary Table 2). We
explored the expression of autophagy-related genes between
the 20 normal samples and 112 IPF samples. Among the 504
autophagy-related genes, 165 genes with p<0.05 were considered
as DEGs (Supplementary Table 3). Of the 165 DEGs, 113 genes
were downregulated and 52 genes were upregulated in IPF.

To further understand the function of these DEGs in IPF, we
conducted GO and KEGG enrichment analyses. Three
categories, including biological process (BP), cellular
component (CC) and molecular functions (MF), were
presented to describe the GO analysis. With respect to BP,
DEGs were mainly enriched in autophagy-related biological
activities (Figure 2A). Regarding CC, the top three items were
autophagosome, vacuolar membrane, and autophagosome
membrane, which were associated with autophagy (Figure 2A).
In terms of MF, DEGs were closely related to ubiquitin protein

10.3389/fimmu.2022.997138

ligase which can degrade the proteins (Figure 2A). For the
KEGG pathways, DEGs were also enriched in autophagy-
related pathways, such as mTOR, JAK-STAT, and autophagy
signaling pathways (Figure 2B).

Establishment of an autophagy-related
gene risk score model in the training set

IPF samples (n=112) were randomly divided into the training
set (n=56) and test set (n=56) (Table 1). First, 165 autophagy-
related DEGs were included for a univariate Cox regression
analysis. The results showed that 39 autophagy-related genes
were associated with prognosis of patients with IPF (p<0.05)
(Supplementary Table 4). LASSO and multivariate Cox
regression analyses were performed to select the key genes from
the above 39 genes for construction of a risk score prognostic
model. Finally, two genes were identified to establish the risk score
prognostic model using the following formula: Risk score= MET x
0.545 + SH3BP4 x (-0.461). In IPF, MET is a risk factor with
HR>1, whereas SH3BP4 is a protective factor for HR<1 (Figure 3
and Table 2). In addition, upregulated MET expression and
downregulated SH3BP4 expression were found in IPF group as
compared with the control group (Figure 4).

Based on the formula of risk score, patients were stratified
into high-risk and low-risk groups with a median value of risk
score as a cut-off point. First, we explored the distribution of
patients using PCA analysis. As shown in Figure 5, the genes
from risk score model could distinguish IPF from different risk
groups. In order to assess the performance of risk score model in
predicting the prognosis of patients with IPF, Kaplan-Meier
curves were conducted. The results demonstrated that patients
in high-risk group had a shorter OS as compared to the low-risk
group (p<0.001) (Figure 6D). The distribution of risk score in
different risk groups was displayed in Figure 6A. Survival status
of each patient was shown in Figure 6B. The heatmap presented

GSE70866: microarray data
(20 Ctrl samples+112 IPF samples) (BALF cells)

[ ‘Autophagy-associated DEGs (n=165) ]

GO and KEGG analyses | [

Patients with IPF (n=112) |

[ training set @=56) ]

[ Testsetm=se) ]

Univariate Cox regression analysis

| Autophagy-associated DEGs related to prognosis (n=39) |

Lasso and multivariate Cox regression analyses |

| Construction of a two-gene risk score prognostic model |-—

[ High-risk and low-risk group

I

Validation of two genes in clinical specimen and

cells by qPCR and Western blot

Immune cell
infiltration

K-M curve
analysis

GSVA
analysis

FIGURE 1
Flow chart of the study.
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TABLE 2 Details of the two genes from the risk score prognostic
model.

Gene Location Coefficient HR P value
MET chr7:116,672,196-116,798,386 0.545 1724 <0.001
SH3BP4  chr2:234,952,017-235,055,714 -0.461 0.631 0.009

HR, hazard ratio.

the expression profiles of the two genes in the high-risk and low-
risk groups (Figure 6C).

The risk score serves as an independent

prognostic indicator

In order to determine if the risk score prognostic model is
an independent prognostic factor for IPF, univariate and

10.3389/fimmu.2022.997138

multivariate regression analyses were performed. We
integrated the risk score and clinical parameters (including
age, sex, and GAP index) for analysis. The univariate
regression analysis showed that GAP index and risk score
were correlated to prognosis (Figure 7A). In the multivariate
regression analysis, risk score as well as GAP index
was proved to be an independent prognostic indicator
(Figure 7B). These findings demonstrated that risk score
prognostic model is reliable in forecasting the survival of
patients with IPF.

We further performed ROC analysis to assess the risk score.
The area under the ROC curve (AUC) for risk score at one,
three, and five years was 0.889, 0.816, and 0.725, respectively
(Figure 8A). In addition, we found that the AUC value for risk
score at one year (0.889) was higher than age (0.497), sex (0.550)
and GAP index (0.710) (Figure 8B). Taken together, this risk
score model had a good prediction accuracy.
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The relationship between risk scores and
clinical features

To explore the association between risk scores and clinical
features, we analyzed the distribution of risk scores in age, sex
and GAP index. There was no statistical difference in risk score
associations with age and sex, while higher risk scores were
related to high GAP index (Figure 9).

Comparison analysis of immune cells or
immune functions between high-risk and
low-risk groups

Studies have shown that BALF contains different kinds of
blood cells which might affect the progression of pulmonary
fibrosis (16). Therefore, we explored the infiltration level of
immune cells in high-risk and low-risk groups. We found more
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monocytes and macrophages in the high-risk group than in the
low-risk group (Figure 10A). On the contrary, low-risk group
has more resting CD4" T cells as compared with high-risk group
(Figure 10A). In addition, high-risk group exhibits high scores of
antigen-presenting cell (APC) co-stimulation, cytokine-cytokine
receptor (CCR) interaction, parainflammation and type II IFN
response (Figure 10B), while,human leukocyte antigen (HLA)
was increased in low-risk group (Figure 10B).

GSVA

In order to explore the differences in pathway activity
between the high-risk and low-risk groups in the training set,
GSVA was performed. A total of 23 pathways were found to be
statistically significant, such as pathways related to cancer, p53
signaling pathway, cytokine-cytokine receptor interaction, ECM
receptor interaction, and Toll-like receptor signaling pathway

(Figure 11). These pathways were closely linked to the
development of IPF (17-21).

Verification of the risk score model in
the test set

To further validate the universality of the risk score model
from the training set, the formula was applied in the test set. The
risk score of each patient in the test set was calculated according
to the formula from the training set. Subsequently, patients in
the test set were divided into high-risk and low-risk groups based
on the median value of risk score from the training set. The
patients’ risk curve and distribution of survival status in the test
set were analyzed. We discovered that risk curve, survival status,
and heat map were similar to those in the training set
(Figures 12A-C). Likewise, we found that patients in high-risk
group had poorer OS than low-risk group in the test set
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The relationship between risk scores and clinical parameters in the training set. (A) age; (B) sex; (C) GAP index.
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Immune cells and immune-related functions of the two risk groups in the training set. The proportion of 22 types of immune cells (A) and 13
immune-related functions (B) were analyzed in the high-risk and low-risk group. *p<0.05; **p<0.01; ***p<0.001.

(Figure 12D). In addition, the AUC value was 0.706 in one year,
0.818 in three years and 0.819 in five years, respectively
(Figure 13A). Furthermore, the AUC value of risk score at one
year was better than age, sex, and GAP index (Figure 13B). These
findings proved the universality and robustness of the risk score
prognostic model.

Validation of model gene expression in
clinical specimens and fibroblasts

To validate the gene expression, we performed qPCR and
western blot analysis in clinical specimens and TGF-f1-
activated human lung fibroblasts. As shown in Figures 14A-C,
the protein expression of MET was increased in IPF lung tissues
as compared with normal lung tissues. On the contrary, the
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protein expression of SH3BP4 in IPF lung tissues was decreased
as compared to the normal lung tissues, although no statistical
significance was observed. This could be due to the relative small
sample size or different types of the samples as the microarray
data were obtained from BALF cells, while our samples were
lung homogenates. The differential expression of autophagy-
related genes in the BALF may be coming from different cell
types in the BALF between control subjects and IPF patients or
from different gene expression profiles within the same types of
cells, or combination of these factors, which needs further study.

Activated lung fibroblast are the principal effector cells of
progressive fibrotic process in IPF (22). TGF-B1, a well-known
pro-fibrotic factor, was used to activate fibroblasts. Similar as in
IPF lung tissues, we found an upregulated MET expression and
downregulated SH3BPE expression in the TGF-Bl-activated
fibroblasts (Figures 15A-E). These results are consistent with
the microarray data analysis.
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FIGURE 11
GSVA enrichment analysis between the two risk groups in the training set

Discussion

IPF is a progressive lung disease with a poor prognosis.
Molecular signatures of gene expression from lung tissue are
associated with prognosis of IPF (23). Nevertheless, genomic
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signatures are not widely applied in clinics as lung biopsy is an
invasive and unpleasant operation. Bronchoalveolar lavage
(BAL) is a medical procedure that sterile saline solution is
injected into lung and then collected by a bronchoscope (24).
BAL fluid exhibits biochemical changes due to lung diseases and
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FIGURE 12

Validation of risk score model in the test set. (A) Distribution of risk score per patient. (B) Survival status of each patient. (C) An expression
heatmap of the two genes. (D) Kaplan-Meier survival curve analysis of IPF patients divided into the high-risk and low-risk groups.
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external factors (24). The analysis of cells in BAL fluid may be
conducive to diagnose and treat lung diseases, even assess the
prognosis of patients with lung disease (25). Therefore,
establishment of a multi-gene prognostic model based on the
BALF cells is necessary to predict the prognosis of patients
with IPF.

In this study, a total of 165 autophagy-related DEGs was
determined between IPF BAL samples and normal BAL samples
in the GSE70866 data set. Among the 165 DEGs, 39 DEGs were

HC
|

further identified to be related to prognosis of patients with IPF
in the training set. Subsequently, we constructed a two-gene risk
score prognostic model based on the LASSO and multivariate
Cox regression analyses and further validated it in the test set.
Moreover, this risk score model could serve as an independent
indicator for patients with IPF. Additionally, the ROC curve
indicated that this risk score model had a reliable and effective
prediction accuracy. Finally, we found an increased MET
expression and decreased SH3BP4 expression in both IPF lung

IPF
1

Ll

1

w [EE . eeeaa) e

SH3BP4 [ W A

.
| —

107 KDa

GAPDH |-- L —— | 36 KDa

1 2 3 4 5 6
B

-

° *

2 107 —

o

[ i ]

g 0.8

3 .

3 0.6

cu T

Q

§ 0.4 _L

a

g 021 A

] ]

©

E 0_0__&3 .
HC IPF

FIGURE 14

1

2 3 4 5 6
C

- NS

[<]

S 15 —
°

2 .0

o

S . 1.0

0 1

86 g5 —L Eg"
s -
2 ke
® .
g 00 2 T

HC IPF

The expression of two model genes in HC and IPF lung tissues. (A—C) The protein expression of MET and SH3BP4 in healthy control and IPF
lung tissues was detected by western blot assay. HC, healthy control. *p<0.05. NS, not significant. n=6.

Frontiers in Immunology

12

frontiersin.org


https://doi.org/10.3389/fimmu.2022.997138
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Huang et al.

10.3389/fimmu.2022.997138

A B
-
5 og0n —— S aq
s 2 .
. ﬁ 1.2 ?
g 15 . g 1.0+ d .
a S =
5 39 0.8 bl ]
2 1.0 - <3
§ s > Z T 0.6
o * xw
£ E 0.4
o 0.5 o
2 2 0.2
k] K
o 0.0 . . g o0 ; r
. ctl  TGF-p1 ol TGF-1
(o] D E
‘e u **
2 201 * S 44- —
T
° T H °
MET 145KDa . 8 127 . .
@ 1.5 o i -
g T 2% 0o
o o -
SH3BP4 IE' 107KDa e io 104 —— cm 8 P
z = . uy T T 0.6
[ —2—a on
L ] -
2 2 0.24
® 8
Ctrl TGF-p1 T 00 T T g 0.0 T T
= ctl  TGF-p1 ctl  TGF-p1

FIGURE 15

The expression of two model genes in human lung fibroblasts. Human lung fibroblasts were treated with 10ng/ml TGF-B1 for 48h. (A, B) The
MRNA expression of MET and SH3BP4 was detected by gPCR. (C—E) The protein expression of MET and SH3BP4 was detected by western blot

assay. *p<0.05; **p<0.01. n=5.

tissues and TGF-PB1-activated human lung fibroblasts, consistent
with the microarray results. These findings may aid clinicians in
identifying high-risk patients and designing individualized
treatment strategy for them.

The prognostic model in the present study was composed of
two autophagy-related genes (MET and SH3BP4). Receptor
tyrosine kinase MET, also known as ¢c-MET, is a receptor of
hepatocyte growth factor (HGF) (26). It has been reported that
HGF/c-MET signaling pathway participates in multiple cellular
processes, including cell survival, proliferation, motility, invasion
and metastasis (27). In addition, MET is tightly linked to the
process of autophagy (28-30). A number of studies have indicated
that MET is closely involved in fibrotic diseases. Marquardt et al.
reported that lack of ¢-MET can promote carbon tetrachloride-
induced liver fibrosis in mice (31). Another study has shown an
increased MET expression in lung fibroblasts from patients with
pulmonary fibrosis as compared with lung fibroblasts from normal
people (32). Moreover, MET has been implicated in driving
profibrotic phenotypes and leading to pulmonary fibrosis (33,
34). Activation of lung fibroblast plays a major role in the
pathogenesis of IPF (22). TGF-B1 has been considered as the
main growth factor involved in the differentiation of lung
fibroblasts into myofibroblasts (35). In agreement with previous
studies, we found that MET expression was upregulated in both
IPF lung tissues and TGF-Bl-activated human lung fibroblasts,
indicating that MET may promote the progression of IPF. SRC
homology 3 domain-binding protein 4 (SH3BP4), also known as
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transferrin receptor trafficking protein (TTP), was first discovered
in human corneal fibroblasts (36). SH3BP4 affects autophagy
process by negatively regulating Rag GTPase- mTOR complex 1
(mTORCI) signaling pathway (37). Besides, SH3BP4 negatively
regulates Wnt signaling via modulating [-catenin’s subcellular
localization, thus suppressing tumor development (38). Kim
et al. reported that SH3BP4 is a direct target gene of miR-125b
and is negatively regulated by miR-125b (39). In another study,
upregulated miR-125b was found in both human cardiac fibrosis
and TGF-B-treated human cardiac fibroblasts (40). Consistent with
the microarray data, we observed decreased expression of SH3BP4
in IPF lung tissues and TGF-P1-activated human lung fibroblasts.
We speculated that SH3BP4 is a negative regulator in the
occurrence and progression of IPF and the underlying
mechanism needs to be further elucidated.

Increasing evidences indicate that immune cells are linked to
the development of IPF (1, 19, 41, 42). Kreuter et al. reported that
increased monocyte count was related to elevated risks of IPF
progression, hospitalization and mortality for patients with IPF
(43). Another study also indicated that high absolute monocyte
count is an IPF specific marker of mortality and poor outcomes
(44). Macrophages play important roles in IPF. Single-cell
transcriptomic analysis identified a distinct population of
profibrotic alveolar macrophages exclusively in patients with
pulmonary fibrosis (45). Also, accumulation of CD163" and
CD204" macrophages in lung leads to worse clinical course in
IPF patients (46). Consistent with these studies, we found a higher
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amount of monocytes and macrophages in high-risk group than
low-risk group, indicating that the elevated monocytes and
macrophages may be related to the progression of IPF. We also
found a reduced amount of resting memory CD4" T cells in BALF
of the high-risk group as compared with the low-risk group,
indicating that resting memory CD4" T cells may exhibit a
protective role in IPF. Besides, significant differences in APC co-
stimulation, CCR, HLA, parainflammation and type II IFN
response were identified between the high-risk and low-risk
groups. The exact role of these immune cells in the pathogenesis
of IPF awaits further study.

There are limitations in the present study. First of all, the
construction and validation of prognostic model were based on the
retrospective data from GEO database, and the sample size in
cohort was relatively small. Thus, a prospective study of large
sample size is necessary to identify its clinical application. Second,
clinical information was not complete in the data set, such as
patients’ therapy approaches, laboratory test, lung function data
and so on, therefore, the significance of prognostic model was
restricted. Last but not least, the association between risk score and
immune activity needs to be further explored in basic experiments.

Conclusion

In summary, our study identified a novel risk score
prognostic model of two autophagy-related genes, providing a
new approach to predict the prognosis of IPF patients.
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