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Comprehensive analysis of the
clinical significance, immune
infiltration, and biological role
of MARCH ligases in HCC

Jun Cao †, Dao-yuan Tu †, Jie Zhou †, Guo-qing Jiang,
Sheng-jie Jin, Bing-bing Su, Hao Tang, Yu-hong Tang,
Ao-qing Wang, Qian Wang, Ren-jie Liu, Chi Zhang*

and Dou-sheng Bai*

Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University,
Yangzhou, China
The membrane‐associated RING‐CH (MARCH) family, a member of the E3

ubiquitin ligases, has been confirmed by a growing number of studies to be

associated with immune function and has been highlighted as a potential

immunotherapy target. In our research, hepatocellular carcinoma (HCC)

patients were divided into C1 and C2 MARCH ligase-related patterns by the

non-negative matrix factorization (NMF) algorithm. Multiple analyses revealed

that the MARCH ligase-related cluster was related to prognosis,

clinicopathological characteristics, and the tumor immune microenvironment

(TIME). Next, the signature (risk score) of the MARCH prognosis was constructed,

including eight genes associated with the MARCH ligase (CYP2C9, G6PD,

SLC1A5, SPP1, ANXA10, CDC20, PON1, and FTCD). The risk score showed

accuracy and stability. We found that the correlations between risk score and

TIME, tumor mutation burden (TMB), prognosis, and clinicopathological

characteristics were significant. Additionally, the risk score also had important

guiding significance for HCC treatment, including chemotherapy,

immunotherapy, and transarterial chemoembolization (TACE).

KEYWORDS

MARCH ligases, tumor immune microenvironment, prognostic signature,
bioinformatics, hepatocellular carcinoma
Introduction

The global mortality and morbidity rates of hepatocellular carcinoma (HCC) are seven

and three, respectively, which seriously threaten human health and life (1). With poor

prognosis and complicated early diagnosis owing to the lack of reliable biomarkers, despite

significant improvements in anticancer therapies over the past decades, the overall survival
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(OS) of HCC patients is still poor (2). Chemotherapy,

immunotherapy, and transarterial chemoembolization (TACE)

are the preferred treatments in patients with recurrent or end-

stage HCC. However, the median OS probability usually does not

improve much owing to the absence of reliable biomarkers of

therapeutic sensitivity (3).

Ubiquitination is a highly versatile and conserved

posttranslational modification that participates in the

localization and degradation of many cytosolic and membrane

proteins (4) and plays a significant role in cancer tumorigenesis

and progression (5, 6). It requires the sequential action of three

enzymes, E1, E2, and E3 ubiquitin ligase, and the E3 ubiquitin

ligase, which can determine the specificity of protein substrates,

is considered a potential diagnostic and therapeutic target for

cancer (7). The membrane‐associated RING‐CH (MARCH)

ligases, as one of the E3 ubiquitin ligases, control the function

of important immunoreceptors, including histocompatibility

complex class (MHC) molecules and the costimulatory

molecule CD86. In fact, numerous studies have demonstrated

the important role of MHC in the anti-PD-1 treatment of

tumors. MHC-I expression is well known to facilitate immune

evasion; MHC-II expression is correlated with the response to

PD-1 blockade treatment (8). In addition, MARCH ligases are

close ly re lated to tumor invasion and metastas is .

Downregulation of MARCH 1 decreases phosphorylated p38

MAPK (p-p38 MAPK) and Stat3 (p-Stat3) and inhibits HCC cell

viability (9). MARCH 6 upregulation of ATF2 promotes HCC

development (10). Downregulation of MARCH 8 expression in

gastric cancer cells inhibited cell growth (11). These results

suggest that MARCH ligases may play an important role in

the regulation of the tumor immune microenvironment (TIME).

Therefore, a comprehensive analysis of the clinical significance,

immune infiltration, and biological role of MARCH ligases can

provide new ideas for the diagnosis and treatment of HCC.

To counter the problems mentioned above, a cluster of 367

HCC patients from the TCGA database was formed according to

the expression of MARCH ligases. By multiomics analysis, the

differences between MARCH ligase-related patterns were

analyzed, including clinical relevance, survival analysis, and

TIME. We constructed the prognostic signature (risk score),

which was proven to be an independent prognostic marker. The

risk score can predict the OS of HCC patients. Furthermore, we

have proven the significant correlation between risk score and

somatic mutation, TIME, and the efficacy of immunotherapy,

chemotherapy, and TACE in HCC patients.
Materials and methods

Tissue samples and related clinical data

Twenty patients with primary HCC were diagnosed at the

Department of Hepatobiliary Pancreatic Surgery, Northern
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Jiangsu People’s Hospital and received surgical treatment.

HCC tissues and paired adjacent tissues (n = 20 for both) were

obtained from the patients in our hospital. The present study

was performed in accordance with the principles outlined in the

Declaration of Helsinki. Written informed consent was obtained

from the individuals who provided the samples.
Acquisition and process of original data

From the TCGA database (https://portal.gdc.cancer.gov/),

we obtained the transcriptional RNA sequencing, somatic

mutation, and clinical information of the TCGA-HCC cohort.

Our transcript RNA sequencing panel included 374 HCC tumor

tissues. These data were compiled as fragments per kilobase of

transcript per million mapped reads (FPKM). When an

individual gene symbol included more than one Ensembl ID,

the calculation method annotated the gene expression in an

average. A total of 367 patients were included in the training set

after excluding the samples without complete information on

OS. In this study, 350 TCGA samples had somatic mutation

information. The 221 HCC samples with clinical information

and RNA-seq data were provided by the GEO (https://www.

ncbi.nlm.nih.gov/gds) to be used as the external test set. The

copy number mutation landscape of 11 MARCH ligase genes

was plotted, which are the mammalian homologs of K3 and K5

identified by bioinformatics studies (9), employing the R

package “Rcircos” in human chromosomes. We used the

GSE104580 (10) and GSE109211 (12) chips in the study to

analyze TACE and sorafenib sensitivity.
Non-negative matrix
factorization clustering

To explore the distinct MARCH ligase-related patterns, we

applied non-negative matrix factorization (NMF) through the R

package “NMF.” The original matrix is subdivided into two non-

negative matrices based on the NMF algorithm (13) to identify

the potential characteristics of the gene expression profile. To

obtain consistent clustering, the algorithm repeats the deposition

and aggregates the result. K = 2 is the best cluster value,

according to the cophenetic coefficient, sample size, and

contour. Through the R package “prcomp,” the principal

component analysis (PCA) scoring system was constructed by

all the MARCH ligase-related genes that were selected.
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is an algorithm that is

non-parametric and unsupervised that can convert the separated

gene expression matrix into a particular gene set as a
frontiersin.org
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characteristic expression matrix. The algorithm is performed by

the R packages “clusterProfiler,” “enrichplot,” and “DOSE.” We

adopted the package “limma” to analyze the significant

differences after transformation in the expression matrix.

Through the R package “GSVA”, we investigated the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway by gene

set variation analysis (GSVA). “h.all.v7.5.1.symbols.gmt” was

obtained from the GSEA database.
Evaluation of the TIME

The tumor immune dysfunction and exclusion (TIDE) score

is a computational approach for predicting the immune escape

of tumor cells; thus, a higher TIDE score suggests a lower

response rate to immune checkpoint inhibitor (ICI) treatment.

To model the mechanisms of distinct tumor immune evasion,

the superior algorithm (14) was used to evaluate the TIDE.

To calculate the fractions of immune cell types in each

sample, the MCP-counter method was adopted to determine

the characteristics of the TIME. Additionally, through the

Wilcoxon rank-sum test, we evaluated the relevance between

immune cell abundance and risk score. We used the single-

sample GSEA (ssGSEA) to study the immune status.
Functional enrichment analysis of
differentially expressed genes

To identify differentially expressed genes (DEGs) between

two different phenotypes, we adopted the package “limma” to

assess the differences in gene expression after NMF clustering by

p-values (p< 0.001) and t-statistics. Then, to analyze DEGs

between MARCH ligase-related patterns, we used the

enrichment of the KEGG and gene ontology (GO) pathways

by the Metascape web-based platform (15).
Establishment and validation of the
prognostic signature

The least absolute shrinkage and selection operator (LASSO)

was performed by the package “glmnet” based on the DEGs that

were prognosis-related in the model of univariate Cox

regression; the important prognostic genes included eight

DEGs (CYP2C9, G6PD, SLC1A5, SPP1, ANXA10, CDC20,

PON1, and FTCD) that were identified by minimum criteria.

Finally, we obtained the risk score formula:

f (x) =o(exp Gene� coeffient Genei)

The TCGA-HCC cohort was divided into low- and high-risk

groups through the R package “surv_cutpoint” after calculating

the optimal cutoff of risk score. Through the receiver operating
Frontiers in Immunology 03
characteristic (ROC) curve (package of “timeROC”) and

Kaplan–Meier analysis (package of “survival”), we evaluated

the predictive reliability of the prognostic models. The area

under the curve (AUC) was applied to quantify the ROC curve.

To validate the signature in the GEO cohort, we used the same

analysis methods, risk score formula of calculation, and

cutoff value.
Single-cell RNA-seq analysis

The single-cell RNA-seq data are available in the GEO

database, reference chip GSE146115 (16). The chip of genes in

each cell is in the range of 50 to 9,000, the percentage of red

blood cells is less than 3%, and the total gene expression copy

numbers are less than 300,000. We selected 1,500 genes with the

largest variances and labeled them in red, and we tagged the

names of the first 10 genes that were highly variable at the

same time.

First, PCA was utilized for dimension reduction based on the

highly variable genes, and the resolution was set to 0.5. In total,

we obtained 12 clusters. Cell clusters were visualized using

UMAP algorithms, and the first 10 genes that showed

significant differences in each cluster were selected and

mapped. Subsequently, identifying the top differentially

expressed genes for each cluster was performed using the

FindAllMarkers function. In addition, the expression pattern

of each marker gene among clusters was visualized by applying

the “DotPlot” function in Seurat. Afterward, the SingleR package

(version 1.10.0) was employed for marker-based cell-

type annotation.
Efficacy evaluation of chemotherapy and
targeted drugs

To calculate the half-maximal inhibitory concentration

(IC50), we adopted the ridge regression algorithm, and through

10-fold cross-validation (17), we obtained satisfactory prediction

veracity. The process was calculated through the package

“pRRophetic” in R.
Quantitative real-time PCR

According to the manufacturer’s protocol, total RNA was

extracted by TRIzol reagent (Invitrogen Carlsbad, CA, USA)

from 20 paired HCC and paracancerous tissues. Then, total

RNA from each sample was reverse-transcribed to cDNA using

the PrimeScript™ RT reagent Kit (Takara Bio Inc., Japan). Real-

time PCR was conducted using the SYBR-Green PCR kit

(Takara, Osaka, Japan) in a Rotor-Gene 3000 machine
frontiersin.org
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(Corbett Life Science, Sydney, Australia). The specific primers

used are listed in Supplementary Table 1.
Statistical analysis

The R software (version 4.0.5) was used to perform all

statistical analyses in this study. To confirm a significant

difference between the two groups, we used a paired-samples t-

test or Wilcoxon rank-sum test. To check if there was a significant

difference in more than two groups, the Kruskal–Wallis test was

used. The relevance coefficients among the expression of immune

checkpoint genes, tumor mutation burden (TMB), and risk score

were calculated through Spearman’s correlation analysis. To

indicate the gene mutation frequency, we built waterfall plots by

the package “maftools” and set a standard of significant difference

as p-value<0.05.
Results

The landscape of genetic variation of
MARCH ligase regulators in HCC

We researched the roles of 11 MARCH ligases (MARCH 1–

11) in HCC. The analysis of 11 MARCH ligases showed that copy

number variation (CNV) mutations were prevalent. MARCH 4,

MARCH 6, MARCH 9, MARCH 10, and MARCH 11 revealed

widespread CNV amplification. Figure 1A shows the locations of

CNV alterations of 11 MARCH ligase genes on chromosomes. In

contrast, MARCH 1, MARCH 2, MARCH 3, MARCH 5,

MARCH 7, and MARCH 8 had prevalent CNV deletions

(Figure 1B). Further analysis demonstrated that MARCH 2–11

were significantly upregulated in HCC samples (Figure 1C, Figure

Supplement 2). The above results suggested that MARCH ligase

may play a significant role in modulating the progression of HCC.
Frontiers in Immunology 04
NMF clustering of MARCH
ligase-related patterns

According to 11 MARCH ligases in the univariate Cox

regression model, NMF clustering was used on the TCGA-

HCC cohort. K = 2 was the best clustering result based on

cophenetic coefficients (Figures 2A, B). The PCA results

illustrated the differences between the C1 and C2 patterns at

the transcriptional level of the MARCH ligases (Figure 2C).

Compared with the C1 pattern, the Kaplan–Meier analysis

suggested that the OS or progression-free survival (PFS) of the

C2 pattern was significantly longer (Figure 2D, p< 0.001;

Figure 2E, p = 0.001). Lastly, we adopted the chi-square test to

reveal the difference between the C1 and C2 patterns in the

clinicopathological characteristics. As the figure demonstrates,

the pathologic stage, T stage, and histologic grade distribution

were noticeably different in the C1 and C2 patterns (Figure 2F).

The transcription profile heatmap of 11 MARCH ligase genes

was significantly different in the C1 and C2 patterns (Figure 2G).
TIME of MARCH ligase-related patterns

To explore the biological molecular changes between the C1

and C2 patterns, we performed GSVA to explore the biological

processes among these distinct RNA processing patterns

(Figure 3A). The results showed that C1 had a significantly

higher concentration in the reactive oxygen species pathway,

oxidative phosphorylation, k-ras signaling, metabolism-related,

and INF-a/g response. However, in the PI3K–AKT–MTOR

signaling, G2/M checkpoint, DNA repair, MYC target, and

unfolded protein response pathways, C2 had a higher

concentration. The results demonstrated that MARCH ligase may

affect the prognosis of HCC patients by regulating the TIME.

Therefore, we quantified the composition of the TIME using

MCP-counter analysis to study the discrepancy in the immune-
B CA

FIGURE 1

The genetic alterations of the membrane‐associated RING‐CH (MARCH) ligase landscape in hepatocellular carcinoma (HCC). (A) The CNV
alteration location of MARCH ligase on chromosomes. (B) The CNV mutation frequency of 11 MARCH ligases was prevalent. The column
represents the alteration frequency. The deletion frequency, blue dot; the amplification frequency, pink dot. (C) Differences in the gene
expression levels of 11 MARCH ligases between normal and tumor samples. The asterisks represent statistical p-value (*p< 0.05; **p< 0.01;
***p< 0.001).
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related characteristics between C1 and C2. We found that the

infiltration rates of fibroblasts, myeloid dendritic cells, monocytic

lineage, T cells, and B cells in C1 were higher than those in C2

(Figure 3B). Because the MARCH ligases could reduce the

expression of MHC molecules, we researched the expression of

MHC molecule-related genes between the C1 and C2 patterns. The

results showed that the C1 cluster expression levels were higher

than the C2 cluster in most major MHC molecules (Figure 3C).

Additionally, to compare and visualize the correlative richness of 11

subpopulations of immune-infiltrating cells between the C1 cluster

and C2 cluster, we established a heatmap with ssGSEA. We

discovered that T follicular helper cells, CD4+ T cells, and NK

cells were enriched in the C1 cluster (Figure 3D). As the waterfall

plots showed, the 10 genes with the highest mutation rates in C1

were TP53 (40%), TTN (19%), MUC16 (17%), CTNNBI (16%),

FAT3 (12%), OBSCN (12%), PCLO (12%), DNAH10 (12%), RYR2
Frontiers in Immunology 05
(10%), andUSH2A (10%). In contrast, the 10 genes with the highest

mutation rates in C2 were CTNNB1 (24%), TTN (20%), TP53

(17%), MUC16 (12%), PCLO (8%), ABCA13 (8%), LRP1B (7%),

XIRP2 (6%), CACNA1E (6%), and FLG (5%) (Figure 3E). In

summary, we confirmed that C1 has more immune-

related mutations.

To further construct the MARCH ligase-related prognostic

score, we researched the DEGs between the C1 and C2 patterns.

A total of 234 differentially expressed genes were screened, of which

24 genes were downregulated and 210 genes were upregulated

(Figure Supplement 3A). We applied functional enrichment

analyses of DEGs among the C1 and C2 patterns to study the

differences in molecular GO, indicating that DEGs primarily

participated in metabolic processes, biosynthetic processes,

complement and coagulation cascades, nuclear receptor meta-

pathways, and complement cascades (Figure Supplement 3B).
B C

D

E

F

G

A

FIGURE 2

The prognostic value of C1 and C2. (A) Non-negative matrix factorization clustering of necroptosis-related patterns in the TCGA-HCC cohort.
(B) Cophenetic coefficients. Expression profile of prognosis-related MARCH ligase gene: (C) PCA and (D, E) Kaplan–Meier analysis of OS and
PFS. (F) Clinical relevance of MARCH ligase-related patterns. (G) Transcription profile heatmap of 11 prognosis-related MARCH ligase genes in
C1 and C2 (*p< 0.05; ***p< 0.001).
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Establishment of the MARCH ligase
signature in the TCGA-HCC cohort

The univariate Cox regression analysis model was obtained

based on previous research with DEGs among C1 and C2. Next,

by analyzing the LASSO Cox regression, we processed the

univariate Cox regression model to obtain the coefficient, and
Frontiers in Immunology 06
eight genes, CYP2C9, G6PD, SLC1A5, SPP1, ANXA10, CDC20,

PON1, and FTCD, were chosen based on the minimum standard

(Figures 4A, B). The quantitative indicator was obtained: risk

score = (0.08152 × G6PD expression) + (−0.02512 × CYP2C29

expression) + (0.00272 × SLC1A5 expression) + (0.05107 × SPP1

expression) + (−0.04573 × ANXA10 expression) + (0.12660 ×

CDC20 expression) + (−0.00739 × PON1 expression) +
B

C D

E

A

FIGURE 3

Correlation between MARCH ligase-related patterns and the tumor immune microenvironment (TIME). (A) Heatmap of GSVA results. (B) The
difference in TIME composition. (C) Differential expression levels of HLA-related genes between the C1 (green) and C2 (red) groups (ns = not
significant, *p< 0.05, **p< 0.01, ***p< 0.001). (D) Heatmap showing the relative abundances of 11 immune-infiltrating cell subpopulations. (E)
The 30 genes with the highest mutation rates of C1 and C2 in waterfall plots.
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(−0.03437 × FTCD expression). Next, we calculated the risk

score according to the above formula for each patient. Based on

the optimal cutoff value (cut point = 0.4380) for the risk score,

the patients were divided into a low-risk group (n = 181) and a

high-risk group (n = 180) through Kaplan–Meier analysis.

Compared with the high-risk group, the OS in the low-risk

group was obviously longer (Figure 4C, p = 4 × 10−7). In

addition, to predict the OS survival rate of HCC patients, we

used ROC curves to evaluate the risk score veracity. Figure 4D

demonstrates that 0.772, 0.684, and 0.688 were the 1-, 3-, and 5-

year OS survival rates of AUC, respectively. In the high-risk

group, the ratio of deaths was elevated with risk score

(Figures 4E, F). With the risk processes, the expression of

G6PD, SLC1A5, SPP1, and CDC20 was increased, and

CYP2C9 , ANXA10 , PON1 , and FTCD expression was

negatively correlated with the risk score (Figure 4G).
MARCH ligase signature validation in the
GEO-HCC cohort

To verify the accuracy and stability of our findings, the risk

score model was further evaluated using the GEO dataset, which

included 221 HCC patients. According to the same cutoff value

(cut point = 0.4380), groups were divided into the training set

[low-risk group (n = 56) and high-risk group (n = 165)]. By

Kaplan–Meier analysis, we found that the OS of patients in the
Frontiers in Immunology 07
high-risk group was significantly poorer than that in the low-risk

group (Figure 5A, p = 1.094 × 10−2). Figure 5B demonstrates that

0.639, 0.668, and 0.665 were the 1-, 3-, and 5-year OS survival

rates of AUC, respectively. The trends of the training sets and

test sets were similar in the risk score distribution, the status of

survival, and the heatmaps of the expression profile

(Figures 5C–E).
Clinical relevance of the
MARCH ligase signature

To further analyze the clinical significance of the MARCH

ligase signature, we studied the relevance of the risk score and

clinicopathological characteristics. In the TCGA cohort, there

was a significant difference between the low- and high-risk

groups in terms of histologic grade, pathologic stage, and T

stage (Figure 6A). In the GEO cohort, there was a significant

difference between the low- and high-risk groups in the

pathologic stage and the serum alpha-fetoprotein (AFP)

content, which is a serum marker of HCC (Figure 6B). In

summary, the tendency for poor prognosis results and

advanced pathological characteristics was concentrated in the

high-risk groups. Then, to study whether risk score could be an

independent prognostic indicator of TCGA-HCC and GEO-

HCC patients, univariate and multivariate Cox regression

analyses were used. Through univariate Cox regression
B

C

D

E

F

G

A

FIGURE 4

Establishment of the MARCH ligase signature according to the training set. (A, B) LASSO Cox regression analysis. (C) Kaplan–Meier analysis
between risk score-defined groups. (D) Time-dependent ROC curve of risk score. (E) Risk score distribution. (F) Survival status heatmap. (G) The
expression profile heatmap of eight genes.
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analysis, we found that risk score and pathological stage were

also hazard factors in the TCGA cohort (Figure 6C). In the GEO

cohort, univariate Cox regression analysis indicated that risk

score was a hazard factor similar to tumor size, pathologic stage,

and cirrhosis (Figure 6D). Next, through the analysis of

multivariate Cox regression, we suggested that risk score was

an excellent independent prognostic indicator both in the

TCGA-HCC cohort [hazard ratio (HR) = 4.703 (2.585–8.556),

p< 0.001, Figure 6E] and the GEO-HCC cohort [HR = 1.959

(1.158–3.314), p = 0.012, Figure 6F].
Comparison of the MARCH ligase
signature model and other models

To further verify the accuracy of our model, we compared

our established model with four other predictive models of

precision in determining HCC prognosis: the Dai signature

prognostic model (18), the Guan signature prognostic model

(19), the Liu signature prognostic model (20), and the Shao

signature prognostic model (21). With a similar method that

established our eight-gene-based model (described above), the

relevant gene risk score in the dataset of the four models was

calculated for TCGA-HCC. To predict the OS of the low- and

high-risk groups, the Dai signature predictive model (log-rank

p< 0.001) and the Liu signature predictive model (log-rank

p = 0.004) showed significant differences; the Guan signature

predictive model and the Shao signature predictive model

showed no significant differences (Figures 7A–D). Except for
Frontiers in Immunology 08
the Dai signature, the predictive model for the 1-year survival

rate had minutely higher AUC values than our model. The 1-

year survival rate of the AUC value in the Liu signature

predictive model was the same as that in our model. The AUC

value of our model was significantly higher than that of the other

models for the 1-, 3-, and 5-year survival rates (Figures 7E–H).

In predicting the survival of HCC patients, these results

suggested that our model possessed better accuracy.
Correlation between the TIME and
MARCH ligase signature

Next, we analyzed the relationship between the TIME and

the MARCH ligase signature. In the 361 TCGA cohort, we

analyzed the distribution in the C1 group and the C2 group of

low- and high-risk groups. The analysis showed that the low-risk

groups were almost all concentrated in C2, and the C1 group

consisted of the high-risk groups (Figure 8A). In addition,

MARCH 1–11 gene expression was also analyzed in the low-

and high-risk groups. The results showed that compared with

the low-risk group, most of the MARCH genes (MARCH 1, 3, 5,

6, 7, 9, 10, 11) were more highly expressed in the high-risk group

(Figure 8B). The above results indicated that risk score could

reflect MARCH ligase-related patterns. The cellular

underpinnings of immunotherapy are CD4+ T cells, CD8+ T

cells, NK cells, and other immune cells (22). Therefore, the study

of immune infiltrates in the TIME is the key to improving the

therapeutic response rate of HCC. Through ssGSEA, we
B

C

D

E

A

FIGURE 5

Validation of the MARCH ligase signature based on the test set. (A) Kaplan–Meier analysis between the risk score-defined groups. (B) Time-
dependent ROC curve of risk score. (C) Risk score distribution. (D) Survival status heatmap. (E) The expression profile heatmap of eight genes.
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calculated the subpopulations of different immune cells and

related functional enrichment scores to study the relationship

between immune status and risk score. According to the results

of the analysis, CD4+ T cells, CD8+ T cells, activated dendritic

cells, immature dendritic cells, and NK cells had higher levels of

infiltration in patients with high-risk scores in both datasets

(Wilcoxon test, p< 0.001) (Figures 8C, D). In the TCGA-HCC

and GEO-HCC datasets, ssGSEA indicated that the functions of

most immune-related genes were mainly enriched in the high-

risk group (Figures 8E, F). Additionally, we further explored the

immune checkpoint molecule expression among the low- and

high-risk groups in both cohorts. The results indicated that the

difference in PDCD1 expression was statistically significant in
Frontiers in Immunology 09
the low- and high-risk groups. In the TCGA dataset, there were

statistically significant differences in CTLA4 expression between

the low-risk group and the high-risk group (Figures 8G, H).
HCC single-cell subpopulations

To further verify the above results, single-cell sequencing

was conducted. After stringent quality control, we obtained

3,200 single cells. We found that the cells were organized into

12 clusters after dimension reduction through PCA (Figure

Supplement 4). The expression of the first 10 genes in each

cluster was significantly higher than that in the other clusters.
B

C D

E F

A

FIGURE 6

Independent prognostic analysis of risk score. (A) Clinical relevance of the high-risk and low-risk groups in the TCGA cohort. (B) Clinical
relevance of the high-risk and low-risk groups in the GEO cohort. Univariate (C) and multivariate (E) Cox regression analyses of risk score and
clinicopathological parameters in the TCGA cohort. Univariate (D) and multivariate (F) Cox regression analyses of risk score and
clinicopathological parameters in the GEO cohort. **p< 0.01; ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997265
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2022.997265
We categorized these clusters into HCC cells, T lymphocytes,

monocyte cells, B lymphocytes, and NK cells (Figure 9A).

Interestingly, the low-risk group had higher T lymphocytes

(13% vs. 5%) and B lymphocytes (6% vs. 2%) than the high-

risk group. Moreover, the proportion of HCC cells in the high-

risk group was significantly higher than that in the low-risk

group (90% vs. 78%) (Figure 9B). Our results indicated that risk

score can correctly reflect the TIME and may have important

clinical value in predicting the efficacy of tumor ICIs.
Relationship between the MARCH ligase
signature and somatic mutations

The accumulation of mutations often leads to the

development of tumors and TIME remodeling (23). Therefore,

we studied the distinction of somatic mutations between the

low- and high-risk groups. The top 5 genes with the highest

mutation frequencies were TIN (23%), CTNNB1 (22%), MUC16

(12%), PCLO (10%), and TP5316 (10%) in the high-risk group

(Figure 10A) and TP53 (33%), CTNNB1 (23%), TIN (16%),

MUC16 (14%), and ABCAB (9%) in the low-risk group

(Figure 10B). The results showed that the low-risk group had

more immune-related mutations. Next, we divided patients into

low- and high-TMB groups by applying the optimal TMB cutoff.

The results showed that the higher TMB value of HCC patients

was associated with lower OS (Figure 10C, p = 0.002). We

divided TCGA patients into four groups of high-TMB +

low-risk, high-TMB + high-risk, low-TMB + low-risk, and

low-TMB + high-risk based on the risk score and the optimal

TMB cutoff value. The low-TMB + low-risk group had a

significantly higher OS than the high-TMB + high-risk group

(Figure 10D, p< 0.001).
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Relationship between the MARCH ligase
signature and drug sensitivity and TACE

Chemotherapy and targeted drugs have demonstrated

clinical benefits in the treatment of advanced HCC.

Nevertheless, adverse drug reactions and resistance are still

significant obstacles to the development of drug therapy (24).

TIME and SNV are important factors in the therapeutic effect

of HCC. Therefore, it is vital to explore a reliable predictive

drug-sensitive marker to guide medication. Then, the

relationships between risk score and chemotherapy,

targeted drugs, and ICIs were calculated. Our results show

that the IC50 values of the AKT inhibitor VIII, gefitinib, and

nilotinib were higher in the high-risk group than in the low-

risk group, while the IC50 values of cisplatin and gemcitabine

were lower in the high-risk group than in the low-risk group.

However, there was no significant difference in the IC50 value

of sorafenib between the low- and high-risk groups

(Figures 11A–F). Our study also confirmed that the TIDE

score was decreased in the high-risk group (TIDE distribution

in TCGA-HCC, Figure 11G, p< 0.01). Compared with

patients in the low-risk group, patients in the high-risk

group exhibited higher scores of exclusion (Figure 11H),

whereas patients in the low-risk group expressed higher

scores of dysfunction compared with the high-risk group

(Figure 11I). In addition, the treatment response to TACE

was further analyzed between the low- and high-risk groups.

We observed that 17% of patients had non-response to TACE

in the low-risk group, and 54% of patients had non-response

to TACE in the high-risk group in the GSE104580 TACE chip

(Figure 11J). Furthermore, the TACE-responsive group had

lower scores than the TACE-non-responsive group

(Figure 11J). The GSE109211 chip was used to study the
B C D

E F G H

A

FIGURE 7

Four other prognostic models in the TCGA-HCC cohort (A–D) and time-dependent ROC curves (E–H).
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FIGURE 8

Correlation between the TIME and MARCH ligase signature. (A) The distribution of high-risk groups and low-risk groups in the C1 group and C2
group. (B) Expression of the MARCH 1–11 genes in the low-risk group and high-risk group. The ssGSEA results of different risk groups in the
TCGA cohort (C, E) and the GEO cohort (D, F). The 25 immune cell scores (C, D) and 13 immune-related functions (E, F) are shown in boxplots.
(G, H) The relationship between risk groups and immune checkpoint expression levels. Adjusted p is shown as follows: ns, not significant;
*p< 0.05; **p< 0.01; ***p< 0.001.
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sorafenib response rates between the low- and high-risk

groups. Although the low-risk group had higher response

rates than the high-risk group (36% vs. 26%), there was no

significant difference in treatment response to sorafenib
Frontiers in Immunology 12
among the low- and high-risk groups (Figure 11K). The

results showed that risk score may have important

impl icat ions for the treatment of HCC, including

chemotherapy, TACE, and ICIs.
B

C D

A

FIGURE 10

Relationship between the MARCH ligase signature and somatic mutation. Waterfall plots of 30 genes with the highest mutation rates in the
high-risk group (A) and the low-risk group (B). (C) Kaplan–Meier analysis of TMB in HCC patients. (D) Kaplan–Meier analysis of the correlation
between risk score and TMB.
BA

FIGURE 9

Single-cell sequencing. (A) t-SNE plot of 3,200 cells from 12 HCC patients showing eight major cell types. (B) The distribution of HCC cells, T
lymphocytes, monocyte cells, B lymphocytes, and NK cells in the low- and high-risk groups.
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Biological function and pathway analyses

To explore the biological molecular changes among the low-

and high-risk groups, we performed GSVA to explore the

biological processes among these distinct RNA processing

patterns (Figure 12). The low-risk groups were significantly

enriched in metabolism-related processes, including heme
Frontiers in Immunology 13
metabolism, fatty acid metabolism, adipogenesis, peroxisome,

bile acid metabolism, xenobiotic metabolism, pancreas beta cells,

K-ras signaling, coagulation, and myogenesis. However,

carcinogenic activation and related signaling pathways, such as

DNA repair, MYC targets, mTORC1 signaling, unfolded protein

response, mitotic spindle, G2/M checkpoint, E2F targets, and

protein secretion, were significantly enriched in the high-risk
B C

D E F

G H I

J K

A

FIGURE 11

Therapeutic benefit of risk score. (A–F) Correlation between the MARCH ligase signature and IC50 values of chemotherapy and targeted drugs,
including (A) AKT inhibitor VIII, (B) gefitinib, (C) cisplatin, (D) nilotinib, (E) gemcitabine, and (F) sorafenib. (G) The relative distribution of TIDE was
compared between the low- and high-risk groups. (H) The relative distribution of exclusion was compared between the low- and high-risk
groups. (I) The relative distribution of dysfunction was compared between the low- and high-risk groups. (J) The distribution of the transarterial
chemoembolization (TACE)-responsive group versus the TACE-non-responsive group in the low- and high-risk groups and the relative
distribution of risk score in the TACE-responsive group versus the TACE-non-responsive group. (K) The distribution of the TACE-responsive
group versus the sorafenib-non-responsive group in the low- and high-risk groups and the relative distribution of risk score in the sorafenib-
responsive group versus the sorafenib-non-responsive group. **p< 0.01; ***p< 0.001.
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group. As mentioned above, the results showed the obvious

distinction between the low- and high-risk groups in

biological function.
Quantitative real-time polymerase chain
reaction

To further verify the expression of risk genes in HCC,

quantitative real-time polymerase chain reaction (qRT-PCR)

was used to analyze the expression of MARCH ligase-related

genes (G6PD, SLC1A5, SPP1, and CDC20). We verified the

mRNA expression levels in 20 HCC and paracancerous tissues.

The results showed that the expression of G6PD, SPP1, and

CDC20 in HCC tissues was higher than that in paracancerous

tissues, while the expression of CYP2C9 and ANXA10 was lower

than that in paracancerous tissues (Figure 13). The qRT-PCR

results are mostly consistent with the group according to

risk score.
Discussion

Because of its high incidence rate and poor prognosis, HCC

is regarded as one of the most malignant types of liver cancer

(25). Therefore, finding predictive prognostic biomarkers for

HCC to improve the clinical outcomes of HCC patients is of

great significance. It has been reported that MARCH ligases play

critical roles in tumor progression (26). Thus, a comprehensive

analysis of the clinical significance, immune infiltration, and

biological role of MARCH ligases can provide a new direction

for the clinical treatment and research on HCC.

Through NMF algorithm clustering, we identified two

MARCH ligase-related patterns. Compared with the C2
Frontiers in Immunology 14
pattern, the C1 pattern indicated a poor OS or PFS

probability. Moreover, the ratio of HCC patients with

advanced T stages had higher levels in the C1 pattern. In

addition, distinct immune cell infiltration and biological

pathway enrichment were shown in these two MARCH ligase-

related patterns. In the TCGA-HCC cohort, we found that the

C1 pattern had more immune-related mutations and major

MHC molecules. Recent studies have shown that the

expression of HLA class I molecules in tumor cells is often

associated with tumor escape from the immune system (27). A

lack of HLA class I expression in tumor cells can have a negative

impact on immunotherapy (28). These results indicate that

MARCH ligase may affect the development of HCC by

regulating the expression of MHC molecules in HCC. The

evidence above certified that the MARCH ligase may play a

significant role in regulating the immune landscape of HCC.

Next, we studied the DEGs between the C1 and C2 patterns.

We established a prognostic signature (risk score) to evaluate

and quantify HCC individuals, including eight MARCH ligase-

related genes (CYP2C9, G6PD, SLC1A5, SPP1, ANXA10, CDC20,

PON1, and FTCD) in the TCGA-HCC cohort. Based on the

defined risk score, HCC patients were divided into high- and

low-risk groups, and a series of analyses were performed.

According to survival analysis, patients in the high-risk group

had a worse OS than those in the low-risk group, suggesting that

risk score is relevant to tumor progression or poor prognosis

events. It was also proven in a separate external GEO-HCC

cohort. Through the analysis of univariate Cox regression and

multivariate Cox regression, we proved that risk score was an

excellent independent prognostic indicator both in the TCGA-

HCC cohort and in the GEO-HCC cohort. CYP2C9 is a drug-

metabolizing enzyme gene (DME gene) that regulates cell

growth, apoptosis, differentiation, and homeostasis and is

involved in hepatocarcinogenesis (29). Previous studies
FIGURE 12

Heatmap showing GSVA scores of the hallmark gene sets for the five defined RNA processing patterns.
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revealed that G6PD is a key energy metabolism gene for HCC

and contributes to tumor proliferation, migration, and invasion

(30, 31). SLC1A5 is highly associated with the infiltration of

tumor immune cells. Its expression can be a reliable prognostic

biomarker in numerous cancers, especially in HCC (32). SPP1

promotes the migration of HCC cells (33). ANXA10 is related to

the malignant phenotype of liver cells (34). CDC20 assumes

crucial functions of cells in the anaphase of mitosis (35), and its

expression is upregulated in HCC (36). PON1 not only can

reduce the inhibition of leukocyte adhesion and chronic

inflammation of vascular walls (especially macrophages and

monocytes) but also participate in cell cholesterol synthesis

(37) and result in tumor invasion/metastasis (38). The FTCD

gene is downregulated in HCC tumor tissues. Therefore, as a

reliable diagnostic biomarker, it distinguishes between early

HCC and benign tumors (39).

To further verify the above results, qRT-PCR was conducted.

The results showed that the expression of G6PD, SPP1, and

CDC20 in HCC tissues was increased compared with that in

paracancerous tissues, while the expression of CYP2C9 and

ANXA10 was decreased compared with that in paracancerous

tissues. The results are mostly consistent with the group

according to risk score. However, the SLC1A5 and FTCD

genes showed no significant difference. This lack of

significance may be related to the small sample size and the

expression of the protein that is not parallel to the mRNA.

It has been demonstrated that CD4+ T cells (40), CD8+ T

cells (41), and NK cells (42) in HCC are protective factors. In

addition, significantly reduced infiltration of CD4+ T cells, CD8+

T cells, and NK cells may trigger tumor immune evasion and

ultimately lead to the progression, high recurrence, and poor
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prognosis of HCC based on their functions (43). Moreover,

CD4+ T cells, CD8+ T cells, and NK cells are important cells in

immunotherapy. CD4+ T cells are a key contributor to PD-L1/

PD-1 blockade immunotherapy efficacy (44). Activated CD8+

cytotoxic T cells can release IFN-g. Upon IFN-g stimulation, PD-

L1 is expressed on tumor cells (45). NK cells contribute to the

effects of PD-1/PD-L1 blockade along with cytotoxic T cells (46).

Interestingly, we found that patients in both the TCGA dataset

and the GEO dataset with low-risk scores had lower CD4+ T-cell,

CD8+ T-cell, and NK-cell infiltration levels than patients with

high-risk scores in the immune microenvironment.

Furthermore, the single-cell sequencing results showed that

the low-risk group had higher T lymphocytes and B

lymphocytes than the high-risk group. These results suggest

that risk score may affect the prognosis of patients via the TIME.

Research has indicated that cancer patients are more likely to

obtain long-term and effective responses from immunotherapy

with high TMB (47, 48). In our research, the high-risk group had

a higher TMB than the low-risk group, which we also confirmed

in the TCGA dataset and the GEO dataset. However, compared

with the high-risk group, patients in the low-risk group had

more immune-related mutations. This is consistent with the

results of immune infiltration mentioned above.

ICIs, chemotherapy, and TACE are effective clinical

strategies for treating advanced HCC. In this study, we

confirmed that the IC50 values of the AKT inhibitor VIII,

gefitinib, and nilotinib were higher in the high-risk group than

in the low-risk group, while the IC50 values of cisplatin and

gemcitabine were lower in the high-risk group than in the low-

risk group. The above results demonstrated that risk score is an

important biomarker to assess immune status. Thus, we sought
FIGURE 13

Validation of mRNA expression by real-time PCR. mRNA expression of eight genes associated with MARCH ligase in 20 HCC tissues and
paracancerous tissues. ns, not statistically significant; **p< 0.01; ***p< 0.001.
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to further investigate the response rate to ICIs of risk score based

on the TIDE score. The high-risk group had a lower TIDE score,

which suggested that the high-risk group may have a higher

response to ICI treatment. The findings above suggest that

patients in the low-risk group may benefit more from the

therapeutic regimens of TACE. Taken together, we believe that

risk score may have important guiding significance for HCC

treatment, including chemotherapy, immunotherapy,

and TACE.

In addition, we performed GSVA and confirmed the

result that the low-risk group was related to metabolism,

and the high-risk group was relevant to carcinogenic

activation-related signaling pathways, such as DNA repair,

mTORC1 signaling, and UPR. Interestingly, all of these

signaling pathways contribute to the progression of HCC.

DNA repair (49), mTORC1 signaling (50), and UPR (51) are

associated with unique characteristics and worse survival in

HCC patients. DNA repair, a mechanism that allows cells to

live longer, can lead to the accumulation of genetic lesions

that can lead to the formation of cancer (52). Aberrant

activation of MTORC1 signaling via enhanced cell survival

and metastasis results in tumorigenesis and cancer

progression (53). The UPR signaling pathway has been

recognized to promote tumor cell proliferation by limiting

oxidation DNA damage (54), and the UPR promotes HCC

immune escape by transferring specific miRNAs to infiltrated

macrophages in the tumor microenvironment (55). In

addition, according to the GeneCards database (https://

www.genecards.org/), MARCH E3 ligases are mainly

located in the ER and mitochondria. Therefore, it was

suggested that the expression of MARCH E3 ligases may be

regulated by various tumor-related stresses. The results in

this work point to future directions of the study.

Collectively, by comprehensively evaluating the molecular,

cellular, and clinical characteristics of HCC patients, risk score

can quantify and individualize the phenotypes of HCC patients.

The risk score may have important implications for the selection

of ICIs, chemotherapy, and TACE strategies for HCC patients.

However, our study still has limitations that need to be further

refined. As a retrospective study, multicenter, large-sample sizes,

and prospective studies are required to confirm our results

further. Moreover, further experimental studies are needed to

refine our understanding of the relationship between MARCH

ligases and HCC.
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SUPPLEMENTARY FIGURE 1

Flow chart of our study.
Frontiers in Immunology 17
SUPPLEMENTARY FIGURE 2

mRNA expression of MARCH ligases in 40 HCC tissues and paracancerous
tissues in the TCGA-HCC cohort. ns not statistically significant,

** p < 0.01, *** p < 0.001.

SUPPLEMENTARY FIGURE 3

(A) Heatmap of DEGs between the C1 and C2 patterns. (B) Functional
enrichment analyses of DEGs between C1 and C2 patterns.

SUPPLEMENTARY FIGURE 4

(A) Gene expression levels in each cell of the 4 samples were in the range of
50-9000, and the distribution was relatively uniform. At the same time, we

found that the percentage of mitochondrial genes was almost 0. (B) Cells are
evenly distributed in the four samples, and the number of genes is positively

correlated with the expression level of genes, with a correlation of 0.8. (C)We
selected 300 hypervariable genes from all the genes, which are in red, and the

first 10 genes were flagged. (D) After dimension reduction through PCA, we

found that the cells were clustered into 12 clusters.
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