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Repeated vaccination against SARS-CoV-2 increases serological response in

kidney transplant recipients (KTR) with high interindividual variability. No

decision support tool exists to predict SARS-CoV-2 vaccination response to

third or fourth vaccination in KTR. We developed, internally and externally

validated five different multivariable prediction models of serological response

after the third and fourth vaccine dose against SARS-CoV-2 in previously

seronegative, COVID-19-naïve KTR. Using 20 candidate predictor variables,

we applied statistical and machine learning approaches including logistic

regression (LR), least absolute shrinkage and selection operator (LASSO)-

regularized LR, random forest, and gradient boosted regression trees. For

development and internal validation, data from 590 vaccinations were used.

External validation was performed in four independent, international validation

cohorts comprising 191, 184, 254, and 323 vaccinations, respectively. LASSO-

regularized LR performed on the whole development dataset yielded a 20- and

10-variable model, respectively. External validation showed AUC-ROC of

0.840, 0.741, 0.816, and 0.783 for the sparser 10-variable model, yielding an

overall performance 0.812. A 10-variable LASSO-regularized LRmodel predicts

vaccination response in KTR with good overall accuracy. Implemented as an

online tool, it can guide decisions whether to modulate immunosuppressive

therapy before additional active vaccination, or to perform passive
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immunization to improve protection against COVID-19 in previously

seronegative, COVID-19-naïve KTR.
KEYWORDS

kidney transplantation, COVID-19, vaccination, clinical decision support,
immunosuppression therapy
Introduction

SARS-CoV-2 vaccination offers protection from severe

coronavirus disease 2019 (COVID-19) regardless of the

causative variant for most healthy individuals. (1) In contrast,

protection in immunocompromised solid organ transplant

(SOT) recipients is limited. The serological response rate after

SARS CoV-2 vaccination in kidney transplant recipients (KTR)

after three doses of vaccine is strongly impaired in comparison

to the general population – resulting in insufficient protection

and an unacceptably high COVID-19 mortality within this

population (2, 3).

Different strategies to induce humoral protection for KTR

have been suggested, including repeated vaccination and

vaccination under adjusted immunosuppression – besides

SARS-CoV-2-specific monoclonal antibody therapy (4).

Existing data are helpful to identify factors associated with

insufficient vaccination response, but are not easily

interpretable for the single patient or vaccination (5–7).

Specifically, no tool exists to predict individual response to a

vaccination. Risk calculators can help assess the likelihood of

vaccination success in an individual and help decide between

different possible actions such as passive or active immunization

or adjustment of immunosuppressive medication. To date, no

such decision support system is available.

For this reason, we aim to develop a classification model to

predict serological response to third and fourth SARS-CoV-2

vaccinations in previously seronegative, COVID-19-naïve KTR.

The model’s implementation objective is to identify patients that
receiver operator

inhibitor; COVID-

regression trees;
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drome coronavirus

ediated rejection;

diction model for
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will likely not respond to an additional dose of vaccine, even with

changes in immunosuppressive medication, and thus benefit

most from passive immunization strategies. Using our

previously reported data of vaccination outcomes in KTR, we

develop and compare a set of prediction models based on

classical statistical methods as well as machine learning. After

selecting the most promising models, we validate the resulting

prediction models in four independent validation cohorts, and

make the result available as an online calculator.
Methods

Development cohort

Data from KTR at Charité – Universitätsmedizin Berlin,

Germany, were used to form the development cohort. Details of

the underlying patient population, as well as the assays and

cutoffs used have been previously reported (5). Briefly, KTR

received up to five doses of SARS-CoV-2 vaccine in case of

sustained lack of sufficient serological response to vaccination at

our institution, combined with either maintenance, reduction or

pausing mycophenolic acid (MPA) for fourth and fifth

vaccination. For the enzyme-linked immunosorbent assays

(ELISA) for the detection of IgG antibodies against the S1

domain of the SARS-CoV-2 spike (S) protein in serum (Anti-

SARS-CoV-2-ELISA (IgG), EUROIMMUN Medizinische

Labordiagnostika AG, Lübeck, Germany), samples with a

cutoff index ≥ 1.1 (in comparison to the previously obtained

cut-off value of the calibrator) were considered positive, samples

with a cutoff index ≥ 0.8, and < 1.1 were considered low positive,

and samples with a cutoff index <0.8 were considered negative,

as suggested by the manufacturer.

Alternatively, for the electrochemiluminescence

immunoassay (ECLIA) (Elecsys, Anti-SARS-CoV-2, Roche

Diagnostics GmbH, Mannheim, Germany) detecting human

immunoglobulins, including IgG, IgA and IgM against the

spike protein receptor binding domain (RBD), samples with ≥

264 U/ml were considered to be positive as recommended by

Caillard et al. (8, 9) Any non-zero antibody level below this

cutoff was considered low positive, with limit of detection (LoD)

being 0.4 U/mL.
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For predictive modeling, we included data on third and

fourth vaccination, since basic immunization has most likely

been performed in most KTR patients already, and since only

few patients received fifth vaccination so far.

After applying all exclusion criteria summarized in Table 1,

the development cohort comprised 590 vaccinations performed

between December 2020 and January 2022 in 424 previously

seronegative, COVID-naïve adult KTR (Figure 1). The Charité

institutional review board approved this retrospective analysis

(EA1/030/22).
Validation cohorts

We used four independent, international validation cohorts

from outpatient transplant centers at University Hospital

Düsseldorf, Germany (191 vaccinations in 137 KTR) (10, 11),

Medical University Vienna, Austria (184 vaccinations in 184

KTR) (12), Strasbourg University Hospital, France (254

vaccinations in 229 KTR) (13, 14), Hotel Dieu Nantes, France

(323 vaccinations in 269 KTR) (15). Detailed information about

the validation cohorts are presented in Items S1-Item S4 and

patient selection including outcome frequencies are summarized

separately for each validation cohort in Figures S1-S4. No

sample size calculation was applicable for this post-hoc analysis.
Outcome and predictors

The single outcome variable was a positive serological

response defined by the maximum anti-SARS-CoV-2 spike (S)
Frontiers in Immunology 03
IgG or antibody level, measured at least 14 days after vaccination

and before any further immunization event such as SARS-CoV-

2 infection, passive or active immunization. Since different

assays were used at different sites, details on the tests and the

respective cutoffs used are provided for each validation cohort in

Item S1-S4, which are summarized in Table 2. Generally, IgG or

antibody positivity was determined based on the local

laboratory’s positivity cutoff, mostly the one provided by the

manufacturer. Especially for the ECLIA Elecsys assay different

cutoffs were available and used. We chose to assess model

performance for two cutoffs for this specific assay. First, we

used the 0.8 U/mL cutoff provided by the manufacturer, yielding

highest sensitivity in detecting patients with previous COVID-

19. Second, a cutoff of 15 U/mL, which was initially suggested by

the manufacturer to exhibit a positive predictive value of more

than 99% for presence of neutralizing antibodies against the

wild-type virus, was used (12). Contrary to the manufacturer’s

designated use, our intention was to provide an alternative

positivity cutoff, below which no neutralization against

omicron variant occurs, but that is not as close to the LoD

(0.4 U/mL) as the positivity cutoff provided by the manufacturer

(0.8 U/mL). This alternative positivity cutoff definition was

needed to test the hypothesis that the absence or low number

of “low-positive” antibody levels before vaccination (below the

positivity cutoff, but above the LoD) for this assay led to low

performance in validation sets 2 and 4. While the cutoff of 15 U/

mL is somewhat arbitrary, it meets both needs. First, it increases

the percentage of low positive patients in validation set 4, and

second, patients with antibody levels <50 U/mL in this assay

show no neutralization against omicron BA.1, which most likely

applies to omicron BA.2 as well (16, 17). Hence, adjusting the
TABLE 1 Inclusion and exclusion criteria regarding vaccinations.

Inclusion Criteria

- Functioning kidney transplant at the time of vaccination

- Patient 18 years or older at the time of vaccination

- Third or fourth SARS-CoV-2 vaccination

- anti-SARS-CoV-2-S-protein antibodies below positivity cutoff before respective vaccination

- Follow-up anti-SARS-CoV-2-S-protein antibody measurement at least 14 days after vaccination

Exclusion Criteria

- SARS-CoV-2 vaccinations, which were performed before transplantation or after graft loss

- SARS-CoV-2 infection before the vaccination or before the measurement of the respective serological response as defined by

- Positive SARS-CoV-2 RNA PCR

- Positive anti-SARS-CoV-2-N-protein antibodies

- anti-SARS-CoV-2-S-protein antibodies above positivity cutoff before respective SARS-CoV-2 vaccination

- Monoclonal anti-SARS-CoV-2-S-protein antibody therapy before the measurement of the respective serological response

- Missing data on serological response before respective SARS-CoV-2 vaccination

- Missing data on serological response after respective SARS-CoV-2 vaccination

- Missing data on the assay used to measure serological response

- Missing data on immunosuppressive medication at the time of vaccination

- Missing lymphocyte count, eGFR, hemoglobin level
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cutoff to 15 U/mL is compatible with the objective to identify

patients without serological response to an additional vaccine

dose corresponding best with a lack of neutralizing antibodies.

Predictor variables in the data sets comprised 20 variables:

four vaccination-specific, three demographic, one comorbidity,

three transplantation-specific, five encoding medication, and

four biomarkers (Table S1). From the initial 27 candidate

predictor variables, seven were excluded during revision for

the following reasons: treatment with azathioprine, mTOR

inhibitor or rituximab in the last year were removed as

predictor variable, since each variable was present in less than

5 subjects in the development dataset. Donor-specific anti-HLA

antibodies were removed since they highly depend on mismatch

status and medication adherence in the past. Anti-HB-S
Frontiers in Immunology 04
antibodies were removed since they depend on hepatitis B

vaccination status, which was not available for most patients

in the development cohort. Treatment with mycophenolic acid

(MPA) was removed as predictor variable, since MPA dose

contained the same information and was already used. White

blood cell count was removed, since it is presumably less suitable

to predict vaccination response than lymphocyte count, which

was already a predictor variable (Table S2).
Missing data/imputation

For the development dataset, preliminary analysis showed

that neither using data from patients without lymphocyte count,
TABLE 2 Assays, as well as respective limit of detection and positivity cutoff used for each dataset.

Dataset +
Assay

Assay (manufacturer) Limit of
Detection

Positivity Cutoff

Development Anti-SARS-CoV-2 ELISA (IgG) assay (EUROIMMUN Medizinische Labordiagnostika AG, Lübeck,
Germany)

0.8 index ≥1.1 index

Development ECLIA Elecsys antibody assay (Roche Diagnostics GmbH, Mannheim, Germany) 0.4 U/mL ≥264 U/mL

Validation 1 Anti-SARS-CoV-2 QuantiVac ELISA (IgG) assay (EUROIMMUN Medizinische Labordiagnostika AG,
Lübeck, Germany)

1 BAU/mL ≥35.2 BAU/mL

Validation 2 ECLIA Elecsys antibody assay (Roche Diagnostics GmbH, Mannheim, Germany) 0.4 U/mL ≥ 0.8 U/mL or ≥15 U/
mL

Validation 3 CMIA SARS-CoV-2 IgG II Quant (Abbott, Rungis, France) 1 BAU/mL
(7 AU/mL)

≥7 BAU/mL (50 AU/
mL)

Validation 4 ECLIA Elecsys antibody assay (Roche Diagnostics GmbH, Mannheim, Germany) 0.4 U/mL ≥0.8 U/mL or ≥15 U/
mL

Validation 4 LIAISON® SARS-CoV-2 TrimericS IgG assay (Diasorin, Saluggia, Italy) 4.81 U/mL ≥33.8 BAU/mL

Validation 4 CMIA SARS-CoV-2 IgG II Quant (Abbott, Rungis, France) 7.8 AU/mL ≥50 AU/mL

Validation 4 NovaLisa SARS-CoV-2 IgG (Novatec Immundiagnostica GmbH, Dietzenbach, Germany) 1 U/mL ≥11 U/mL

Validation 4 Atellica® IM SARS-CoV-2 IgG (sCOVG) (Siemens Healthineers, Erlangen, Germany) 0.5 index ≥2.0 index
FIGURE 1

Patient flow diagram of the development cohort.
frontiersin.org
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which was the most common missing laboratory value, nor

imputation of missing laboratory values by multiple imputation

(both of which yielded higher sample size) did add predictive

accuracy for logistic regression and was therefore not followed

for the main analysis (Figure S5; Table S3). After applying all

exclusion criteria shown in Table 1, no missing values were

present in the development dataset and no imputation methods

were necessary.

For each validation set, we excluded vaccinations with

missing data on serological response, missing information

about the SARS-CoV-2 spike IgG or antibody assay used,

missing immunosuppressive medication data, or missing

estimated glomerular filtration rate (eGFR), lymphocyte count,

or hemoglobin. We imputed the remaining variables to reduce

the number of omitted cases due to missing values. Instead of

multiple imputation, we used a more pragmatic approach and

imputed either the most frequent value of the respective variable

in the development dataset in case of binary or categorical

variables, or the median (or mean) of the respective variable in

the development dataset in case of numerical variables, as

summarized in Table 3. This is the way a clinician would

handle a missing value when using the online risk calculator,

since those values are used as presets in the online calculator. In

the validation cohorts, no data originating from a time after the

respective vaccination was included to make predictions.

Alternatively, we performed multiple imputations by

chained equations employing the R package mice after pooling

all validation datasets. Performing multiple imputation

separately for each dataset was unfeasible, since for validation

set 2, no data on BMI, time on dialysis and diabetes status were

present. Pooling all validation sets and performing multiple

imputation hereafter was one possibility to avoid this problem.

To compare median/mean imputation to other possibilities

to deal with missing data, we additionally performed complete

case analysis for validation sets 1, 3, and 4.
Development and internal validation

Using the development cohort, we evaluated five models

during internal validation. To perform model validation within

the development cohort, a resampling approach was used by

assigning 590 vaccinations randomly 100 times into training and

test sets of 413 and 177 each (70:30 split). Each time,

hyperparameter tuning, if applicable, and model fitting was

performed on the respective training set, and performance

metrics were assessed on the respective test set.

First, as baseline, we fit a logistic regression model with all

candidate variables using the R function glm.

Second, we fit 2 logistic regression models with least absolute

shrinkage and selection operator (LASSO) regularization using

the packages caret and glmnet in R. The LASSO hyperparameter

l, which adjusts the tradeoff between model fit and model
Frontiers in Immunology 05
sparsity, was optimized for each training cohort with respect

to the area under the receiver operating curve (AUC-ROC) using

inner 5-fold cross-validation. We chose 2 different l
optimization criteria yielding 2 different models for each

training cohort: (1) maximizing AUC-ROC (termed LASSO-

Min model), and (2) penalty maximization while keeping the

AUC-ROC within one standard error of the maximum AUC-

ROC (termed LASSO-1SE model).

Third, we fit a random forest regression model using the

package randomForest in R. We optimized the hyperparameter

mtry by evaluating 15 random parameter combinations during

two repeated 5-fold cross-validations within the training set. The

value of mtry yielding the highest accuracy during cross-

validation was used to fit the random forest on the respective

training data.

Fourth, we fit a gradient boosted regression trees (GBRT)

model using the gbm package. We used a tune grid with 4*8*3*1

hyperparameter combinations (n.trees: 300, 500, 700, 900;

interaction.depth: 2, 4, 6, 8, 10, 12, 14, 16; shrinkage: 0.001,

0.01, 0.1; n.minobsinnode: 10) to optimize hyperparameters

during two repeated 5-fold cross-validations within the

training set. The combination yielding the highest normalized

discounted cumulative gain during cross-validation was used to

fit the GBRT on the respective training data.

We calculated median and mean performance during

resampling for those five developed models. To evaluate the

performance of the binary classification, we used Area Under the

Curve of the Receiver Operator Characteristic (AUC-ROC), and

confidence intervals (CI) in the resampling approach were

determined from the empirical 2.5% and 97.5% quantiles of

the performance on the 100 different test sets. Based on the

threshold determined by the optimization criterion

“closest.topleft” as provided in R package pROC (point with

the least distance to [0,1] on the ROC-curve) during ROC-

analysis, we calculated models’ sensitivity, specificity, accuracy,

positive predictive value, and negative predictive value for each

resampling step, again yielding median and empirical 95% CI.
External validation and implementation

We chose LASSO-Min and LASSO-1SE for estimation of

model coefficients in the entire development cohort, which were

then used for external validation. The relationship between the

hyperparameter l that controls model sparsity and the AUC-

ROC during inner 5-fold cross-validation is shown in Figure S6.

We assessed the decision thresholds for classification by

determining the “closest.topleft” threshold on the entire

development cohort, each for the final 10-variable and the 20-

variable model. These were used for classification during

external validation, and are also provided in the online risk

calculator after transforming them into risk probabilities

according to the formula:
frontiersin.org
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TABLE 3 Baseline characteristics of the development and validation cohorts.

Development Validation 1 Validation 2 Validation 3
(Strasbourg)

Validation 4
(Nantes)

Cutoff 0.8U/mL

Validation 4
(Nantes)

Cutoff 15U/mL

254/229 254/211 323/269

230/24 177/77 216/107

100% (254) 100% (254) 100% (323)

66 (49 - 65) 42 (31 - 93) 45 (31 - 92)

40.2% (102) 14.6% (0) 33.1% (70)

41%/59% 47%/53% 46%/54%

58 (50 - 68) 62 (52 - 69) 63 (52 - 70)

26.4 +/- 6.0 25.2 +/- 4.4 25.2 +/- 4.5

41.7% (106) 30.7% (78) 28.5% (92)

5.2 (2.2 - 10.8) 4.1 (1.9 – 9.8) 4.6 (2.1 - 11.3)

2.2 (0.6 - 4.2) 1.3 (0 - 2.9) 1.3 (0 - 2.9)

20.1% (51) 22.8% (58) 22.3% (72)

93.7% (238) 85.8% (218) 85.7% (277)

3.2% (12) 9.5% (24) 8.7% (28)

91.7% (233) 71.7% (182) 70.0% (226)

1.0 (1.0 - 1.0) 1.0 (0.0 - 1.0) 1.0 (0.0 - 1.0)

72.1% (183) 45.7% (115) 43.3% (140)

69.7% (177) 27.0% (68) 25.7% (83)

47.4 +/- 19.3 42.8 +/- 17.7 44.1 +/- 18.8

1.34 +/- 0.67 1.53 +/- 1.06 1.53 +/- 0.97

12.5 +/- 1.84 12.6 +/- 1.81 12.7 +/- 1.77

0.046 (0.019 -
0.159)

0.031 (0.013 - 0.119) 0.030 (0.011 - 0.108)

lin G; BMI, body mass index; DSA, donor-specific anti human leukocyte antigen antibodies;
alian target of rapamycin inhibitor; eGFR, estimated glomerular filtration rate; anti-HBs, anti
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(Berlin) (Düsseldorf) (Vienna)

Total vaccinations/patients 590/424 191/137 184/184

Vaccination

3rd/4th vaccinations 411/179 129/62 184/0

mRNA Vaccination 81.0% (478) 90.1% (173) 50.5% (93)

Median time since previous vaccination in days
(IQR)

65 (51-92) 86 (79 - 140) 78 (57 - 90)

Baseline SARS-CoV-2 IgG low positive 6.8% (40) 40.1% (78) 0% (0)

Demographics and Comorbidities

Female/male patients 38%/62% 32%/68% 41%/59%

Median age in years (IQR) 59 (47 - 69) 62 (54 - 68) 61 (54 - 70)

BMI in kg/m2 25.2 +/- 4.5 26.7 +/- 6.3 –

Diabetes 21.0% (124) 18.3% (35) –

Transplantation

Median transplant age in years (IQR) 7.8 (3.1 - 13.2) 4 (2.5 - 10) 4.4 (2.1 - 7.9)

Median time on dialysis in years (IQR) 3.0 (0.5 - 6.7) 3.1 (1 - 6) –

Retransplantation 4.2% (25) 12.6% (24) 23.4% (43)

Medication

CNI-based immunosuppression 87.3% (515) 95.8% (183) 91.3% (168)

Belatacept-based IS 11.2% (66) 4.2% (8) 7.6% (14)

MPA treatment 78.1% (461) 95.3% (182) 92.4% (171)

Median MPA-Dose in g MMF equivalent (IQR) 1.0 (0.5 - 1.5) 1.0 (1.0 - 1.5) 1.0 (1.0 - 2.0)

Steroid treatment 63.4% (374) 97.9% (187) 94.4% (174)

Treatment with more than 2 immunosuppressive
drugs

45.4% (268) 95.3% (182) 91.3% (168)

Laboratory values

Baseline eGFR mL/min/1.73m2 47.9 +/- 19.8 44.0 +/- 18.7 49.3 +/- 21.4

Lymphocyte count (/nL) 1.44 +/- 0.72 2.58 +/- 5.18 1.24 +/- 0.56

Hemoglobin (g/dL) 12.5 +/- 1.60 13.1 +/- 1.86 12.6 +/- 1.79

Median urine albumin-creatinine ratio in g/g (IQR) 0.030 (0.009 - 0.098) 0.034 (0.009 - 0.125) 0.035 (0.021 - 0.075)

All variables are reported as mean +/- standard deviation unless stated otherwise. IQR, interquartile range; mRNA, messenger ribonucleic acid; IgG, immunoglobu
CNI, calcineurin inhibitor; IS, immunosuppression; MPA, mycophenolic acid; MPA dose, mycophenolic acid dose; MMF, mycophenolate mofetil; mTORi, mamm
hepatitis B-surface-antigen immunoglobulin G antibodies.
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P  xtð Þ  =  1 =   1  +  exp    −  xtð Þ ð Þ
where xt is the decision threshold.

For external validation, we calculated the aforementioned

performance metrics on each validation cohort separately.

Furthermore, 95% CIs in the external validation cohorts were

determined by performing 1000-fold ordinary nonparametric

percentile bootstrap, as the empirical 2.5%, and 97.5% quantiles

of AUC, sensitivity, specificity, accuracy, positive predictive

value, and negative predictive value based on the thresholds

determined within the development cohort.

Additionally, we fitted LR, RF and GBRT on the

development dataset and performed external validation after

pooling all validation datasets. Decision thresholds for LR and

GBRT were determined within the development cohort as

described above, and decision threshold for RF was 0.5.

To make the prediction models publicly available, we created

an online tool implementing the LASSO logistic regression

models used for external validation, which can be assessed at

https://www.tx-vaccine.com. For patients who meet one or more

of the exclusion criteria, the risk calculator should not be used.

Statistical analysis was performed using R studio v.1.2.5042

and R version 4.1.2 (2021-11-01). The underlying code was

made available at https://github.com/BilginOsmanodja/tx-

vaccine. The datasets can be made available on request from

the corresponding author.

This article was prepared according to the transparent

reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) statement and we provided a

checklist in the supplement (18).
Results

In total, 590 vaccinations (411 third vaccinations, and 179

fourth vaccinations) were used for development and internal

validation, which is summarized together with outcome

frequencies and reasons for exclusion in Figure 1.

Baseline characteristics of patients in the development and

validation datasets including summary statistics of all variables

are shown in Table 3.
Model development and
internal validation

Using the resampling approach outlined above, we fit five

different models on each training set and evaluated their

performance on the respective unseen test set during 100

resampling steps.

A logistic regression model employing all candidate variables

served as a baseline. Using the two different l optimization

criteria outlined in “Methods”, the LASSO-Min and LASSO-1SE

models were fitted. Additionally, two tree-based machine-
Frontiers in Immunology 07
learning approaches were studied - random forest (RF) and

gradient boosted regression trees (GBRT).

LASSO logistic regression selected in the majority of

resampling runs 20, and 10 out of 20 potential predictors to

yield the LASSO-Min and LASSO-1SE models, respectively. The

regression coefficients, their variances, and the selection

frequency of the predictors are shown in Figure 2 and Figure S7.

Figure 3 compares AUC-ROC of the 5 models on the unseen

test sets during 100 resampling steps, and Table 4 summarizes

mean, and median performance metrics as well as 95%

confidence intervals determined from empirical 2.5% and

97.5% quantiles during internal validation. Thresholds for

binary classification were determined on the respective test set

during each resampling step by performing ROC-analysis.

With respect to AUC-ROC, the LASSO-Min model - 0.831

(0.784 - 0.879) and the baseline logistic regression model - 0.831

(0.786 - 0.879) showed best performance during internal

validation. Since the sparser LASSO-1SE model showed

comparable predictive performance of 0.817 (0.742 - 0.873)

with fewer variables, we chose to analyze both, LASSO-Min

and LASSO-1SE regularized logistic regression models in depth

during external validation.
Model specification

Final risk equations were obtained by fitting LASSO-Min,

and LASSO-1SE models on the complete development dataset,

yielding a 20-variable and one 10-variable risk equation

respectively. The intercept and regression coefficients of the

final LASSO logistic regression models are shown in Table 5.

Risk equations are provided in Items S5 and S6, and are

implemented as an online tool available at https://www.tx-

vaccine.com.
External validation

After applying all exclusion criteria and performing

imputation of missing variables, we evaluated both risk

equations in the four independent validation datasets. Since

predictive performance during external validation was

comparable for both models, in the following we report on the

sparser 10-variable model. Results of external validation of the

20-variable model are summarized in Table S4 and Figure S7.

AUC-ROC of the sparser 10-variable model during external

validation was 0.840 (0.777 - 0.897) for validation set 1, 0.719

(0.641 - 0.790) for validation set 2, 0.816 (0.763 - 0.862) for

validation set 3, and 0.696 (0.629 - 0.758) for validation set 4,

yielding an AUC-ROC of 0.754 (0.722 - 0.784) when merging all

validation sets (Figure 4). Sensitivity, specificity, accuracy,

positive predictive value, and negative predictive value using

the thresholds determined during ROC-analysis in the
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development dataset are summarized in Table 6. The decision

thresholds used for external validation are also provided in the

online risk calculator to guide physicians’ decision as well in

Items S5 and S6.
Implementation and cutoff definition

Performance in the validations sets 2 and 4 was poorer than

in the development as well as in the other two validation sets. We

suspected the positivity cutoff of 0.8 U/mL provided by the

manufacturer for the ECLIA Elecsys assay as one main reason.

Since it is close to the LoD (0.4 U/mL), no or small fraction of

“low positive” antibody levels (values above the LoD and below

positivity cutoff) before vaccination are present in both

validations sets (Table 3), which is different to both other

validation sets and the development dataset. Since a low

positive antibody level before vaccination is an important

predictor of serological response (Table 5), we adjusted the

positivity cutoff to 15 U/mL arbitrarily for two reasons. First,

to test the hypothesis that cutoff definition is a reason for lower

performance. Second, to provide data that an implementation of

this model is feasible independent of the assay used. Our

proposed implementation strategy for the prediction model is
Frontiers in Immunology 08
to identify patients, who will not respond to an additional

vaccine dose, and to offer those patients passive immunization.

Hence, using any other cutoff below which no neutralization

against omicron occurs, is compatible with this strategy under

the circumstances of omicron-dominance. We arbitrarily use an

alternative positivity cutoff of 15 U/mL for this respective assay,

since it has already been proposed by the manufacturer before.

When adjusting the cutoff to 15 U/mL for the ECLIA Elecsys

assay, AUC-ROC increased to 0.741 (0.663 - 0.808) for

validation set 2, and 0.783 (0.730 - 0.828) for validation set 4,

yielding an overall AUC-ROC of 0.812 (0.784 - 0.836) after

merging all validation sets. With the decision threshold assessed

in the development dataset, the negative predictive value is 0.75

(0.713 - 0.784).

Neither complete case analysis nor multiple imputation in

the pooled validation cohort led to relevant differences in

predictive performance for the 20-variable and 10-variable

LASSO LR models (Table 6; Table S4).
Tree-based models

Next, we assessed model performance of all 5 models in the

pooled validation set, using both the cutoff of 0.8 U/mL and 15 U/
FIGURE 2

Estimated coefficients of the LASSO-1SE models summarized across 100 subsampling runs for unstandardized variables. Numbers on the right
indicate the selection frequency (in percent) for the respective variable in 100 subsampling runs. Variables are ordered from top to bottom
according to the selection frequency.
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mL for the Elecsys assay, respectively (Figure 5). For the 15 U/mL

cutoff, GBRT showed AUC-ROC of 0.823 (0.795 - 0.849), which

was slightly better than LR 0.819 (0.791 - 0.847) and the LASSO-

Min model 0.817 (0.790 - 0.845). The LASSO-1SE model with

0.812 (0.784 - 0.836) was still better than the RF model - 0.801

(0.771 - 0.828). All results are summarized in Table 7. Analysis of

feature importance for the tree-based models revealed that for the

RF model, low positive antibody titer, MPA dose, belatacept

treatment, vaccination number, and transplant age were the five
Frontiers in Immunology 09
most important variables, while diabetes, time since vaccination

and sex were the least important variables. For the GBRT model,

MPA dose, low positive antibody titer, eGFR, lymphocyte count

and transplant age were the most important variables, while

diabetes, CNI treatment, and mRNA-based vaccine were the

least important variables. When comparing the 10 most

important variables from RF or GBRT to the LASSO-1SE

model, RF as well as GBRT had 8 out of 10 variables in

common with the 10-variable LASSO-1SE model (Table 8).
0.75

0.80

0.85

0.90

LR (lympho) LASSO−Min LR (lympho) LASSO−1SE LR (lympho) GBRT (lympho) RF (lympho)
class

au
c

FIGURE 3

Predictive performance of the developed models (AUC) in internal validation. Each point represents the AUC-ROC during 1 out of 100
resampling steps. Horizontal lines within the box depict the median and the upper and lower horizontal lines depict upper and lower quartiles,
respectively. LR - logistic regression, LASSO-Min LR - least absolute shrinkage and selection operator regularized logistic regression with lambda
hyperparameter optimized to yield maximum AUC-ROC within an inner 5-fold cross validation in the training set. LASSO-1SE - least absolute
shrinkage and selection operator regularized logistic regression with lambda hyperparameter increased from lambda-min, so that AUC-ROC
stays within one standard error within an inner 5-fold cross validation in the training set. GBRT - gradient boosted regression trees. RF - random
forest. lympho – including lymphocyte count as predictor variable.
TABLE 4 Performance of five different models during internal validation.

Model
Type

Mean/Median
AUC (95%CI)

Mean/Median Sens
(95%CI)

Mean/Median
Spec

(95%CI)

Mean/Median Acc
(95%CI)

Mean/Median
PPV (95%CI)

Mean/Median
NPV (95%CI)

Logistic
Regression

0.831/
0.831 (0.786 - 0.879)

0.760/
0.765 (0.651 - 0.839)

0.787/
0.786 (0.700 - 0.870)

0.777/
0.777 (0.715 - 0.819)

0.671/
0.671 (0.566 - 0.785)

0.852/
0.852 (0.787 - 0.900)

LASSO-Min 0.829/
0.831 (0.784 - 0.879)

0.762/
0.762 (0.672 - 0.852)

0.782/
0.782 (0.693 - 0.880)

0.774/
0.774 (0.712 - 0.825)

0.671/
0.667 (0.562 - 0.778)

0.850/
0.850 (0.792 - 0.902)

LASSO-1SE 0.814/
0.817 (0.742 - 0.873)

0.734/
0.736 (0.619 - 0.837)

0.779/
0.780 (0.664 - 0.884)

0.762/
0.763 (0.692 - 0.831)

0.661/
0.659 (0.562 - 0.800)

0.836/
0.839 (0.780 - 0.901)

Random
Forest

0.789/
0.787 (0.717 - 0.848)

0.503
0.503 (0.394 - 0.615)

0.898/
0.897 (0.832 - 0.960)

0.753/
0.757 (0.695 - 0.808)

0.744/
0.737 (0.600 - 0.877)

0.758/
0.764 (0.682 - 0.820)

GBM 0.802/
0.800 (0.741 - 0.864)

0.730
0.729 (0.625 - 0.833)

0.767/
0.768 (0.666 - 0.862)

0.753/
0.751 (0.686 - 0.822)

0.646/
0.646 (0.538 - 0.760)

0.832/
0.831 (0.765 - 0.886)
AUC-ROC, as well as sensitivity (Sens), specificity (Spec), accuracy (Acc.), positive predictive value (PPV), negative predictive value (NPV) in the test set based on the best threshold during
ROC-analysis. Mean, median and empirical 95% CI are derived from 100 resampling steps for each metric.
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To assess how variable selection based on feature importance

influences model performance, we selected the 10 most

important variables for both RF and GBRT, retrained the

models and performed external validation in the pooled

validation dataset. Both, the 10-variable RF and the 10-variable

GBRT yielded the same AUC-ROC during external validation as

the respective 20-variable models - 0.823 (0.795 - 0.849) for

GBRT, and 0.801 (0.771 - 0.828) for RF.
Discussion

In this article, we present the development, internal and

external validation of a 10-variable LASSO regularized logistic

regression model for prediction of serological response to the

third and fourth dose of SARS-CoV-2 vaccine in previously

seronegative, COVID-19-naïve KTR.
Frontiers in Immunology 10
It shows good discrimination of KTR exhibiting serological

response both in a rigorous resampling approach in the

development cohort and in four independent validation

cohorts with an overall AUC-ROC of 0.812, and a negative

predictive value of 0.75 based on a decision threshold established

within the development dataset. Available online as a risk

calculator at https://www.tx-vaccine.com and embedded into

the proposed implementation strategy, it can assist physicians

in choosing between different immunization strategies, namely,

additional vaccination with or without adaption of

immunosuppressive therapy, or pre-exposure prophylaxis with

monoclonal anti-SARS-CoV-2-(S) antibodies.

While this is the first, online available risk calculator to

predict seroconversion in response to third and fourth

vacc inat ion , there are a l ready models pred ic t ing

seroconversion after two vaccine doses.

Frölke et al. describe a sparse 6-variable model, where

increased age, lower lymphocyte count, lower estimated

glomerular filtration rate (eGFR), shorter time after

transplantation, not using steroids and the use of

mycophenolate mofetil/mycophenolic acid (MMF/MPA) are

predictors of non-seroconversion (with a cutoff of 10 BAU/

mL). This is completely in line with our own findings. The

performance in the development (n=215) and rather small

validation cohort (n=73) are promising (AUC-ROC 0.83 and

0.84, respectively). In a larger, second validation cohort, for

which an adapted model without lymphocyte count was used,

the performance drops to AUC-ROC 0.75, which emphasizes

that lymphocyte count is an important predictor (19). Still, this

model is easy to use, and shows apparently more stable

performance than the other model available, which is provided

by Alejo et al. They use a gradient boosting algorithm, and

identified mycophenolate mofetil (MMF) use, shorter time since

transplant, and older age as strongest predictors of non-

seroconversion, which is in line with our findings as well.

Since the model shows good predictive performance on the

development dataset (AUC-ROC 0.79), but poor performance in

an external validation cohort (AUC-ROC 0.67), it can be

suspected that the model is overfitted (20). This is further

supported when using the online tool the authors provide at

http://www.transplantmodels.com/covidvaccine/, where small

changes, e.g. in patient age, show great changes in vaccine

response probability. Another reason for worse performance

could be that not only kidney transplant recipients are included.

Therefore, not only is the cohort more heterogeneous, but

important predictors such as eGFR are missing.

Our own data show that GBRT can achieve comparable

performance in internal and external validation, when

overfitting is limited by hyperparameter tuning within the

development cohort. Nevertheless, since the GBRT model did

not substantially outperform LASSO logistic regression models,

but is more complex and less transparent, we chose not to

implement the GBRT model in the online calculator. These
TABLE 5 Final intercept and coefficients of the 20-variable (LASSO-
Min), and 10-variable (LASSO-1SE) logistic regression model fitted
on the entire development dataset, both of which are used for
external validation.

20-variable
(LASSO-Min)

model

10-variable
(LASSO-1SE)

model

Intercept -2.907032206 -1.358548

Baseline SARS-CoV-2
IgG low positive (0/1)

3.413655483 1.772485

Third vaccination (0/1) -0.671750504 -0.4788165

Female sex (0/1) -0.307158368 –

Age (years) -0.012892171 –

BMI in kg/m2 0.056292146 –

mRNA Vaccination (0/1) 0.296683923 –

Retransplantation (0/1) 1.320981616 –

Transplant age in years 0.074864392 0.02209966

Dialysis years -0.074359667 -0.00005349

Diabetes (0/1) 0.227499203 –

Steroid (0/1) -0.424257945 –

Belatacept (0/1) -3.041854350 -0.5589842

CNI (0/1) -0.938666068 –

MPA-Dose in g MMF
equivalent

-1.421484726 -0.6303523

More than 2
immunosuppressants (0/
1)

-0.184866365 -0.2549875

Days since previous
vaccination

-0.003676502 –

Baseline eGFR mL/min/
1.73m2

0.025117386 0.009467306

Lymphocyte count (/nL) 0.469212486 0.2598442

Hemoglobin (g/dL) 0.206815906 0.0554962

Albuminuria (g/g
creatinine)

-0.269263716 –
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findings are in line with the statistical literature showing no

benefit of machine learning methods over logistic regression for

clinical prediction models (21).

From a biomedical point of view, serological response is only

one half of immune response to vaccination and is

complemented by T-cell response. However, neutralizing anti-

SARS-CoV-2-(S) antibodies are pathophysiologically and

epidemiologically established to offer protection from severe

disease (9, 22), which is also supported by the protection

offered by monoclonal antibodies against SARS-CoV-2 applied

for prophylaxis and treatment (23, 24).

Yet, after the emergence of the omicron variants, neutralization

antibody levels against omicron variant show 25.7-fold to 58.1-fold

reduction in sera of healthy vaccinated subjects in comparison to

wild-type (25). Consequently, antibody levels that ensure

neutralization, increased from >264 U/mL for alpha variant (8, 9)

to >2000 U/mL for omicron (16), making the interpretation of

antibody levels more difficult than before.

Despite these uncertainties, it seems intolerable to leave

patients without any humoral protection whatsoever. Hence,

in patients without serological response to basic immunization,

physicians and patients need to decide between additional active

vaccination with or without adapting immunosuppressive

medication, and pre-exposure prophylaxis with monoclonal

antibodies (26).
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Since negative predictive value was above 0.75, when

merging all validation sets, we suggest the following

implementation strategy: for patients, who are likely not to

respond to additional SARS-CoV-2 vaccination according to

the prediction model, pre-exposure prophylaxis with

monoclonal antibodies exhibiting neutralizing capacity against

omicron BA.4/5 should be administered to ensure timely

protection (27–30). In patients, who are likely to respond

according to the prediction model, there is still a chance that

these patients will not reach antibody levels, which ensure

neutralizing capacity against omicron variants. For these

patients, both, repeated vaccination and monoclonal antibody

prophylaxis are feasible and should in our view be chosen

depending on the risk for severe disease course.
Strengths and limitations

We provide a rigorously developed and validated prediction

model, which is provided as an online risk calculator to support

kidney transplant physicians when deciding upon the

immunization strategy for their patients. Especially, the

estimated effects of adaptions in immunosuppressive

medication can be evaluated, e.g. reducing or pausing MPA

dose, or switching from belatacept to calcineurin inhibitor.
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FIGURE 4

Predictive performance (AUC-ROC) of the 10-variable model in external validation. Each point represents the AUC-ROC in 1 out of 1000
bootstrap samples. Horizontal lines within the box depict the median and the upper and lower horizontal lines depict upper and lower quartiles,
respectively. To assess the impact of the mean/median imputation method chosen, we also provide model performance when performing
complete case analysis (cc) for validation sets 1, 3, and 4. For validation set 2, due to missing variable “Dialysis years” for all patients, no complete
case analysis could be performed. Additionally, we performed multiple imputation (MI) in the pooled validation datasets (all) and assessed model
performance here as well. Val – Validation cohort, 10-var – 10-variable model, all – all validation sets pooled, cc – complete case analysis, MI –
multiple imputation.
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While belatacept treatment and MPA dose have been

reported as negative predictors of serological vaccine response

throughout the literature (10), it is still unclear, whether

modulation of immunosuppression, and especially pausing

MPA can increase serological response to SARS-CoV-2

vaccination, since most data originate from observational or

small non-randomized controlled trials (5, 31–33).

Since the data from the development cohort indicate that

pausing MPA increases serological response to fourth

vaccination, this hypothetical benefit is introduced into the
Frontiers in Immunology 12
mode l . Henc e , i f u s ed t o gu i d e modu l a t i on o f

immunosuppression and specifically pausing MPA, the

calculator must be used with caution, since the hypothetical

effect on serological response comes at a potential risk of anti-

HLA antibody formation and rejection.

Additionally, predictions can be suspected to be less accurate

in cohorts, where no modulation of immunosuppression are

performed around fourth vaccination.

Regarding the general sparsity of data on vaccine response to

third and fourth dose in KTR, we analyze extensive datasets for
TABLE 6 Performance of the 10-variable model during external validation.

Model Type AUC point
estimate (95%

CI)

Sens point
estimate (95%

CI)

Spec point
estimate (95%

CI)

Acc point
estimate (95%

CI)

PPV point
estimate (95%

CI)

NPV point
estimate (95%

CI)

Validation 1
10-variable

0.840 (0.777 - 0.897) 0.769 (0.667 - 0.868) 0.675 (0.589 - 0.758) 0.707 (0.639 - 0.775) 0.551 (0.448 - 0.653) 0.852 (0.774 - 0.913)

Validation 1
10-variable
(complete case)

0.848 (0.781 - 0.905) 0.754 (0.636 - 0.865) 0.696 (0.614 - 0.778) 0.715 (0.642 - 0.782) 0.535 (0.423 - 0.657) 0.857 (0.785 - 0.922)

Validation 2
10-variable
(cutoff 0.8 U/mL)

0.719 (0.641 - 0.790) 0.127 (0.051- 0.214) 0.933 (0.881 - 0.972) 0.630 (0.560 - 0.696) 0.533 (0.286 - 0.750) 0.640 (0.565 - 0.707)

Validation 2
10-variable
(cutoff 15 U/mL)

0.741 (0.663 - 0.808) 0.128 (0.029 - 0.243) 0.917 (0.869 - 0.959) 0.750 (0.685 - 0.804) 0.286 (0.091 - 0.522) 0.798 (0.736 - 0.853)

Validation 3
10-variable

0.816 (0.763 - 0.862) 0.715 (0.639 - 0.791) 0.738 (0.655 - 0.814) 0.727 (0.672 - 0.783) 0.721 (0.638 - 0.802) 0.733 (0.652 - 0.805)

Validation 3
10-variable
(complete case)

0.818 (0.763 - 0.870) 0.707 (0.624 - 0.781) 0.736 (0.662 - 0.815) 0.720 (0.665 - 0.776) 0.719 (0.645 - 0.794) 0.725 (0.648 - 0.797)

Validation 4
10-variable
(cutoff 0.8 U/mL)

0.696 (0.629 - 0.758) 0.634 (0.556 - 0.707) 0.626 (0.538 - 0.716) 0.630 (0.575 - 0.693) 0.710 (0.630 - 0.780) 0.544 (0.462 - 0.632)

Validation 4
10-variable (cutoff 0.8 U/mL
– cc)

0.692 (0.622 - 0.758) 0.633 (0.559 - 0.709) 0.625 (0.525 - 0.717) 0.630 (0.571 - 0.689) 0.708 (0.633 - 0.784) 0.539 (0.448 - 0.631)

Validation 4
10-variable
(cutoff 15 U/mL)

0.783 (0.730 - 0.828) 0.775 (0.718 - 0.828) 0.603 (0.513 - 0.680) 0.709 (0.656 - 0.759) 0.761 (0.703 - 0.814) 0.622 (0.534 - 0.708)

Validation 4
10-variable (cutoff 15 U/mL –

cc)

0.781 (0.725 - 0.825) 0.775 (0.714 - 0.833) 0.602 (0.520 - 0.695) 0.708 (0.658 - 0.755) 0.760 (0.701 - 0.815) 0.623 (0.531 - 0.701)

Overall performance
10-variable

0.754 (0.722 -
0.784)

0.593 (0.545 -
0.641)

0.743 (0.705 -
0.777)

0.673 (0.641 -
0.706)

0.666 (0.617 -
0.711)

0.679 (0.637 -
0.720)

Overall performance
10-variable (MI)

0.754 (0.722 - 0.784) 0.593 (0.545 - 0.641) 0.743 (0.705 - 0.777) 0.673 (0.641 - 0.706) 0.666 (0.617 - 0.711) 0.679 (0.637 -
0.720)

Overall performance
10-variable
(cutoff 15 U/mL)

0.812 (0.784 -
0.836)

0.698 (0.654 -
0.737)

0.741 (0.702 -
0.775)

0.722 (0.691 -
0.749)

0.687 (0.642 -
0.727)

0.750 (0.713 -
0.784)

Overall performance
10-variable
(cutoff 15 U/mL – MI)

0.812 (0.784 - 0.836) 0.698 (0.654 - 0.737) 0.741 (0.702 - 0.775) 0.722 (0.691 - 0.749) 0.687 (0.642 - 0.727) 0.750 (0.713 - 0.784)
AUC-ROC, as well as sensitivity (Sens), specificity (Spec), accuracy (Acc.), positive predictive value (PPV), negative predictive value (NPV) assessed on each validation set. To assess the
impact of the mean/median imputation method chosen, we also provide model performance during complete case analysis for validation sets 1, 3, and 4. For validation set 2, due to missing
variable “Dialysis years” for all patients, no complete case analysis could be performed. Additionally, we performed multiple imputation in the pooled validation datasets and assessed model
performance here as well. The threshold was derived during ROC-analysis on the development dataset. To provide 95% CI, empirical 2.5% and 97.5% quantiles of the respective metric are
provided after performing a 1000-fold nonparametric ordinary bootstrapping with each validation set. Overall performance in the pooled validation sets are bold-faced. cc - complete case
analysis. MI – multiple imputation.
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development and validation, and hereby provide representative

evaluation of real-life model performance. While performance of

the 20-variable model was slightly better, it is also more

impractical due to more variables, which is why we chose to

report mainly on the sparser 10-variable model. The same

applies for the 20-variable GBRT model, which was not

implemented in the online calculator. When compared to

other models reported for this purpose, it is the first to predict
Frontiers in Immunology 13
serological response to third and fourth vaccination, and shows

the most promising performance during external validation.

Several limitations have to be considered: first, this model only

predicts serological response and does not include information

about T-cell response. However, we have shown before that more

than 85% of KTR have SARS-CoV-2 specific CD4+ T-cell

response after three vaccinations, which was not increased by

fourth vaccination, while serological response rates increase with
0.68
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0.84
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FIGURE 5

Predictive performance of the 10-variable, 20-variable LASSO logistic regression, logistic regression (LR), random forest (RF) and gradient
boosted regression tree (GBRT) models on the pooled validation set comprised of all 4 validation sets with cutoff 0.8 U/mL and 15 U/mL for the
Elecsys assay. 10-var – 10-variable LASSO LR model, 20-var – 20-variable LASSO LR model, all – all validation sets pooled.
TABLE 7 Performance of all five different models during external validation on the pooled validation datasets.

Model Type AUC Sens Spec Acc PPV NPV

Logistic Regression
0.8 U/mL

0.765 (0.734 - 0.797) 0.711 (0.668 - 0.753) 0.648 (0.605 - 0.690) 0.677 0.646 - 0.708) 0.634 0.594 - 0.677) 0.721 (0.680 - 0.762)

20-variable LASSO LR 0.8 U/mL 0.763 (0.731 - 0.794) 0.691 (0.646 - 0.735) 0.666 (0.623 - 0.709) 0.677 0.647 - 0.710) 0.641 0.597 - 0.684) 0.714 (0.672 - 0.756)

10-variable LASSO LR 0.8 U/mL 0.754 (0.722 - 0.784) 0.593 (0.545 - 0.641) 0.743 (0.705 - 0.777) 0.673 0.641 - 0.706) 0.666 0.617 - 0.711) 0.679 (0.637 - 0.720)

Random Forest
0.8 U/mL

0.736 (0.704 - 0.769) 0.537 (0.489 - 0.585) 0.812 (0.778 - 0.846) 0.684 (0.653 - 0.716) 0.712 (0.662 - 0.758) 0.670 (0.662 - 0.758)

GBRT
0.8 U/mL

0.774 (0.741 - 0.802) 0.650 (0.603 - 0.695) 0.737 (0.697 - 0.775) 0.695 (0.666 - 0.727) 0.681 (0.633 - 0.726) 0.710 (0.669 - 0.749)

Logistic Regression
15 U/mL

0.819 (0.791 - 0.847) 0.790 (0.751 - 0.829) 0.638 (0.600 - 0.679) 0.707 (0.676 - 0.736) 0.642 (0.596 - 0.680) 0.788 (0.750 - 0.827)

20-variable LASSO LR 15 U/mL 0.817 (0.790 - 0.845) 0.780 (0.740 - 0.821) 0.664 (0.624 - 0.704) 0.716 (0.687 - 0.746) 0.655 (0.610 - 0.695) 0.787 (0.748 - 0.826)

10-variable LASSO LR 15 U/mL 0.812 (0.784 - 0.836) 0.698 (0.654 - 0.737) 0.741 (0.702 - 0.775) 0.722 (0.691 - 0.749) 0.687 (0.642 - 0.727) 0.750 (0.713 - 0.784)

Random Forest
15 U/mL

0.801 (0.771 - 0.828) 0.651 (0.605 - 0.695) 0.809 (0.776 - 0.840) 0.737 (0.709 - 0.765) 0.735 (0.692 - 0.777) 0.739 (0.703 - 0.773)

GBRT 15 U/mL 0.823 (0.795 - 0.849) 0.745 (0.705 - 0.788) 0.731 (0.695 - 0.767) 0.737 (0.708 - 0.765) 0.693 (0.649 - 0.732) 0.779 (0.742 - 0.815)
AUC-ROC, as well as sensitivity (Sens), specificity (Spec), accuracy (Acc.), positive predictive value (PPV), negative predictive value (NPV) assessed on the pooled validation set, once
employing the cutoff of 0.8 U/mL and once employing the cutoff of 15 U/mL for the Elecsys assay. The decision threshold was derived during ROC-analysis on the development dataset. To
provide 95% CI, empirical 2.5% and 97.5% quantiles of the respective metric are provided after performing a 1000-fold nonparametric ordinary bootstrapping with each validation set.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Osmanodja et al. 10.3389/fimmu.2022.997343
additional vaccinations (4, 5). This is the rationale, why especially

serological response rate can and should be increased to improve

protection from SARS-CoV-2 infection in KTR.

Since evidence of antibody level cutoffs that ensure

neutralization of or protection from omicron is sparse, we

chose not to make any predictions for this endpoint. Instead,

we provide an implementation strategy that makes best use of

the model ’s prediction without making far-reaching

assumptions about protective antibody levels against omicron.

Still, one major limitation becomes evident for validation

sets 2 and 4, where predictive performance was only moderate

when using the positivity cutoff of 0.8 U/mL for the ECLIA

Elecsys assay. As outlined above, increasing the positivity cutoff

to 15 U/mL is compatible with the proposed implementation,

and leads to improved performance for two reasons.

First, since the cutoffs in the development dataset were based

on protective levels against alpha variant for the ECLIA Elecsys

assay (264 U/mL), predictive performance is expectably poorer

when predicting positivity with a 0.8 U/mL cutoff. Second, with a

cutoff of 0.8 U/mL for the ECLIA Elecsys assay, only few patients

have low positive antibody levels before vaccination (above LoD,

but below the positivity cutoff). Since this is an important

predictor in both models and provides important information

about the actual immunological status, loss of performance
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can be expected when this information is missing. This is

further supported by the fact that after adapting the cutoff

from 0.8 U/mL to 15 U/mL, in validation set 2, where all

pre-vaccination antibody levels were below 0.4 U/mL, the

performance only increased slightly (AUC-ROC 0.719 to

0.741), but in validation set 4, where the percentage of low

positive patients increased from 14.6% (most of which were

due to the other assays used in this dataset) to 33.1%, the

performance increased markedly (AUC-ROC 0.696 to 0.783).

On the contrary, since the percentage of low positive

antibody levels in the development dataset is 6.8%,

performance in cohorts, where this rate is close to 100%, could

potentially worsen as well.

Other possible reasons for different performance are the

study design of validation set 2, which was a randomized clinical

trial, with outcome assessment between days 29 and 42, whereas

in the development and other validation sets, the maximum

antibody level after the respective vaccination was chosen,

independent of the time passed. Additionally, validation set 2

was the one with the highest proportion of adenoviral vaccine,

which however, did not show any difference in serological

response in the respective trial (12).

Worth discussing is the mean/median imputation method

used, which ensures that performance assessed during external
TABLE 8 Comparison of feature importance of random forest (RF), gradient boosted regression trees (GBRT), and variable selection in the LASSO-
1SE model.

Random Forest – Mean Decrease
Accuracy

GBRT – Relative Influ-
ence

LASSO-1SE model (10-vari-
ables)

Baseline SARS-CoV-2 IgG low positive
(0/1)

39.216473 10.94581396 1.772485

MPA-Dose in g MMF equivalent 30.188770 16.56390709 -0.6303523

Transplant age in years 10.848819 9.45975758 0.02209966

Third vaccination (0/1) 21.775882 5.43038673 -0.4788165

Baseline eGFR mL/min/1.73m2 9.018273 10.35407127 0.009467306

Lymphocyte count (/nL) 6.344629 9.46973950 0.2598442

Belatacept (0/1) 23.579373 5.16012305 -0.5589842

More than 2 immunosuppressants (0/1) 10.293539 1.76980409 -0.2549875

Hemoglobin (g/dL) 4.199420 7.10326964 0.0554962

Dialysis years 4.356144 5.42538246 -0.00005349

CNI (0/1) 8.862467 0.04204069 –

mRNA Vaccination (0/1) 5.530626 0.13629129 –

Days since previous vaccination -2.417074 5.73285303 –

BMI in kg/m2 1.249847 5.42081191 –

Albuminuria (g/g creatinine) 3.941902 2.16932962 –

Retransplantation (0/1) 1.992805 0.69025148 –

Steroid (0/1) 4.321701 0.18964166 –

Age (years) 1.641021 3.50130734 –

Female sex (0/1) -2.429416 0.40048841 –

Diabetes (0/1) -1.571995 0.03472919 –
The feature importance of the random forest (RF) model was assessed by calculating mean decrease in accuracy. For GBRT, relative influence is shown. Variables for RF and GBRT are
highlighted according to their importance in green (1-5), light green (6-10), yellow (11-15), and red (16-20).
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validation is comparable to real-life performance of the risk

calculator provided. We show that neither performing complete

case analysis nor multiple imputation in the validation cohorts

substantially changes predictive performance.

Other limitations arise from the different immunization

strategies used, which lead to different seroconversion rates

and have influence on model performance as well.

Last, some immunosuppressive regimens have low

frequency below 1% in the development cohort (such as

rituximab, mTOR inhibitor, and azathioprine treatment),

which limits applicability for these patients.
Conclusion

We provide the first, online available calculator to predict

vaccine response to third or fourth vaccination in previously

seronegative, COVID-19-naïve KTR. It can guide decisions

whether to modulate immunosuppressive therapy before

additional active vaccination, or to perform passive

immunization to improve protection against COVID-19.
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