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Microglia morphophysiological
diversity and its implications for
the CNS
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Manuel B. Graeber2 and Marco Morsch1*
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Microglia are mononuclear phagocytes of mesodermal origin that migrate to

the central nervous system (CNS) during the early stages of embryonic

development. After colonizing the CNS, they proliferate and remain able to

self-renew throughout life, maintaining the number of microglia around 5-12%

of the cells in the CNS parenchyma. They are considered to play key roles in

development, homeostasis and innate immunity of the CNS. Microglia are

exceptionally diverse in their morphological characteristics, actively modifying

the shape of their processes and soma in response to different stimuli. This

broad morphological spectrum of microglia responses is considered to be

closely correlated to their diverse range of functions in health and disease.

However, the morphophysiological attributes of microglia, and the structural

and functional features of microglia-neuron interactions, remain largely

unknown. Here, we assess the current knowledge of the diverse microglial

morphologies, with a focus on the correlation between microglial shape and

function. We also outline some of the current challenges, opportunities, and

future directions that will help us to tackle unanswered questions about

microglia, and to continue unravelling the mysteries of microglia, in all

its shapes.
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1 Introduction

In the first descriptions of microglia by Pıó del Rıó-Hortega

in 1919, microglial activation was depicted as the transition from

a ramified morphology (Figure 1A) in the ‘resting’ state to an

amoeboid morphology (Figure 1B) in the’activated’ state (1).

Now it is widely accepted that ramified microglia actively screen

the CNS, establish contacts with neurons and other cells, and

monitor and influence neuronal activity (2–4). However, our

understanding of microglial physiology in relation to its

morphology is still very limited, and a lack of ramification is

generally considered an indicator of microglial activation. New

genetic, molecular and pharmacological interventions,

combined with novel in vivo and ex vivo models, have begun

to describe new morphological features of microglia physiology

and its interactions with other cells, supporting the idea that

microglial morphology is highly dynamic and complex (5–7).

These studies of microglial morphophysiological heterogeneity

provide further evidence that microglia activation cannot simply
Frontiers in Immunology 02
be reduced to a structural transition from a ramified to an

amoeboid shape.

Understanding the relationship between microglial

morphology and their precise physiological roles provides

critical insights into the spatiotemporal dynamics of microglial

responses. In turn, this will lead to a greater understanding of

how microglia maintain CNS homeostasis or, on the contrary,

contribute to disease etiology. We are now aware of the crucial

involvement of microglia in synaptogenesis, synaptic plasticity,

axonal regeneration, neuronal survival and regulation of

neuronal activity, not only during development but

throughout adult life (8–15). These additional functional roles

of microglia highlight their importance far beyond their well-

known roles in CNS immunity and debris elimination.

This review summarizes the current knowledge regarding

the correlation of microglia morphology and function from the

early stages of embryonic development throughout the adult life,

in health, aging and disease. We highlight some of the specific

microglial morphological features that we consider important
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FIGURE 1

Diversity of microglial morphologies. (A) Ramified microglia are highly branched with multiple primary and secondary processes (often
considered surveillant). (B) Amoeboid microglia present with a highly rounded morphology compared to their ramified states (often with a high
phagocytic and migratory capacity). (C) Microglia can form ball-and-chain structures at the tip of their processes to phagocytose small amounts
of material (such as synapses or apoptotic bodies). (D) Hyper-ramified microglia present with increased branching of their processes (often
observed in acute and chronic stress models). (E) Microglia display bulbous budding at the end of some of their processes (considered to be
important for ATP sensing). (F) Several microglial cells form a network resembling a honeycomb (reported in response to BBB leakage).
(G) Jellyfish morphologies have been reported as a morphological transition of honeycomb microglia after extensive astrocytic death in the glia
limitans (in response to TBI). (H) Rod microglia are characterized by an elongated, narrowed soma without planar processes that can form trains
of rod microglial cells (in response to injury).
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for their functional spectrum and future classifications. We

further discuss the importance of investigating microglial

dynamics using in vivo and ex vivo approaches to better

understand the spatiotemporal changes microglia undergo in

certain conditions and throughout life.
2 Microglial biology

Microglia are myeloid phagocytes and the only innate

immune cells permanently residing in the central nervous

system (CNS). Microglia comprise between 5% and 12% of all

the cells in the murine CNS, with variable densities depending

on the CNS region studied (16). Microglia have been historically

considered as phagocytes and immune cells that react to

neuronal insult and pathological events in the CNS. However,

it has become apparent that microglia serve more functions

besides phagocytosis and the production of inflammatory

cytokines (17, 18). Many studies have provided clear evidence

that microglia play crucial physiological roles in the healthy

brain; being involved in the development of the CNS

connectivity, synaptic plasticity, monitoring of neuronal

activity, and maintaining CNS homeostasis into adult life (2,

19–21). To perform such a diverse range of functions, microglia

must sense different cues in their immediate microenvironment

and adapt their morphology to different stimuli, displaying a

plethora of cellular shapes (Figure 1). Whether microglia achieve

their functional diversity by means of their phenotypic plasticity

or through an early diversification into a heterogeneous

population of cells is still unknown. The literature states many

examples that indicate a correlation between the morphology

and function of microglia, i.e. that amoeboid microglia are

associated with phagocytosis of cellular debris (2, 22–25).

However, the lack of a standard classification of microglia

morphophysiology makes it often difficult to compare such

associations between studies. It remains unclear whether a

certain function is linked to a specific morphology, and/or

whether microglia with a certain shape are limited to a

particular role.
2.1 Microglial ontology

Unlike neurons and other glial cells (oligodendrocytes and

astrocytes), microglia are not of neuroectodermal origin.

Instead, they are myeloid cells of hematopoietic origin (2).

Microglia arise from erythromyeloid precursors generated in

the yolk sac, from where they migrate via the blood stream to the

CNS in the early stages of embryonic development (26–29).

After colonizing the CNS, the microglial precursors complete

their differentiation and microglia remain a stable CNS-resident

population, maintaining their numbers through self-renewal

(30, 31), where the signaling of the colony-stimulating factor-1
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receptor (CSF1R) is crucial for the proliferation, differentiation

and survival of mononuclear phagocytes such as macrophages,

osteoclasts and microglia (32). For instance, in the human

cortex, microglia have a median age of 4.2 years, replacing

28% of the population every year (33). In the murine cortex,

microglia have a median lifetime of more than 15 months with

approximately 50% of these cells surviving the entire lifespan of

the mouse (34). Some studies have shown that circulating

monocytes can enter the CNS during inflammation and

pathological incidents, where the blood-brain barrier (BBB)

permeability is compromised. However, these cells are

classified into a differentiated subset of cells, not contributing

to the microglial cell pool and without self-renewal capacity

(35–38).

Other types of macrophages are located at the CNS interface,

such as meningeal macrophages, perivascular macrophages and

choroid plexus macrophages (39–41). For decades these

macrophages were believed to be derived from blood-borne

monocytes, however new evidence suggests that at least some

of them also arise from yolk sac precursors, being closer to

microglia than to monocytes in their ontogeny (39).

Nevertheless, microglia and these non-parenchymal

macrophages remain distinct cell populations, with different

locations, functions and morphologies (39).
2.2 Microglial functional diversity

Microglia possess a remarkable plasticity that allow them to

perform a plethora of functions in the CNS during development,

health and disease. As immune effectors of the CNS, microglia

are well known to play crucial roles in response to injury and

infection (42). Microglia express pattern recognition receptors

(PRR) that allow them to recognize molecular patterns

associated with pathogens and tissue damage (43). Upon PRR

activation, microglia undergo a morphological- and

physiological- transformation that leads to the release of pro-

inflammatory cytokines, and the phagocytosis of pathogens and

cell debris (44, 45). Conventional descriptors of ‘microglial

activation’ include a change in functional behavior, as well as

the migration to the site of injury, retraction of processes, and

‘compacting’ the cell body into an amoeboid morphology (23,

24, 46). Many of the microglial functions and morphological

changes during the innate immune response, and in the diseased

CNS, are extensively discussed in the literature (47–52).

In addition, microglia play crucial roles during the

embryonic and postnatal development of the CNS. In rodents,

microglia display an amoeboid morphology, typical of a

phagocytic phenotype (53, 54). Accordingly, it has been shown

that microglia control cortical neuron populations through

phagocytosis of neural precursor cells (NPC) in rats and

primates (55). Also, it has been described in vivo that

microglia actively engage in phagocytosis of apoptotic cell
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bodies in the developing optic tectum and spinal cord of

zebrafish (56, 57). In mice, in utero depletion of microglia

during gestation, through CSF1R inhibition, led to the

accumulation of dead cells in the hypothalamus and a

significant increase in cell death throughout the developing

hypothalamus, probably due to the lack of microglia-mediated

elimination of apoptotic and dead cells (58). Interestingly,

manipulating microglial activation had direct effects upon both

the precursor cells population and the postnatal neuronal

population. Microglial activation enhancement led to a

decreased number of NPCs, while microglial deactivation

increased the NPCs pool of cells (55). Microglia-mediated

phagocytosis of synaptic material, known as synaptic pruning

[reviewed in (59)], is crucial for the formation of neuronal

pathways and the refining of neuronal circuits during

development (60–63), ultimately affecting axonal growth,

neuronal positioning and CNS cytoarchitecture (64).

Microglia have also been described to play key roles in the

hypothalamus, were they influence the circuitry and signaling of

the melanocortin system, responsible for the control of body

weight and food intake (58, 65, 66). Administering PLX5622, a

CSF1R-inhibitor, to pregnant mice achieved the in utero

depletion of embryonic microglia (58), having postnatal effects

upon energy balance. At postnatal day 4 (P4), pups from females

treated with PLX5622 during pregnancy showed a reduction of

45% in the number of POMC neurons (58), neurons involved in

the hypothalamic regulation of food intake through the release of

anorexigenic peptides (67). The reduction of POMC neurons in

PLX5622-exposed pups was accompanied by a significant

increase in body weight gain from P5 to P15, when compared

to pups from control females (58). These results show that

depletion of microglia during gestation can affect the

development of hypothalamic satiety circuits and have lasting

effects upon body weight gain after birth (58). Embryonic

microglia in the hypothalamus have also been shown to

respond to different stimuli during gestation (68–71). In utero

electroporation (IUE) is a procedure used to introduce plasmid

DNA into the murine embryonic CNS (72). It has been shown

that IUE induces morphological and gene expression changes in

hypothalamic microglia, concomitant with an increased cell

death in the developing hypothalamus (68). Furthermore,

embryonic microglia interaction with radial glial cells (RGC)

in the hypothalamus after IUE led to microglia-mediated

degeneration and phagocytosis of RGC (69). Further evidence

of the role of embryonic microglia during gestation has been

shown in response to maternal stressors in a gestational cold

stress model (70). In this study, cold exposure of pregnant mice

led to an increase in the secretion of CCL3 and CCL4 by a subset

of hypothalamic microglia, adjacent to neural stem cells (NSC),

in the pups (70). Interestingly, this effect was only seen in male

pups and was coincident with a decrease in the number of

oxytocin neurons in the paraventricular nucleus of the

hypothalamus (70). This effect seems to be CCL3 and CCL4-
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and differentiation of hypothalamic NSC in vitro (70).

Embryonic microglia have also been shown to be affected by

gestational exposure to bisphenol A (BPA) (71). Exposing

pregnant mice to BPA led to an increase of microglia numbers

in the hypothalamus and changes in the morphology of

microglial cells of the pups, showing higher ramification and

higher number of phagocytic cups (71). These studies highlight

the responsiveness of embryonic microglia to environmental

factors, with lasting effects into the postnatal stages. The

importance of hypothalamic microglia upon energy balance

has also been shown in adults, where the microglia-specific

disruption of leptin signaling caused hyperphagia and

accelerated body weight gain, with concomitant loss of POMC

neurons (66).

The microglial role during development goes beyond

its phagocytic capacity, being able to secrete neurotrophic

factors to promote neuronal survival, neurogenesis and

oligodendrogenesis during early postnatal development (73,

74). In mice, it has been shown that microglia directly

contribute to the survival of layer V cortical neurons through

the secretion of the trophic factor insulin-like growth factor 1

(IGF-1) during postnatal development (74). In rats, microglia

enhanced neurogenesis and oligodendrogenesis in the

subventricular zone through the secret ion of pro-

inflammatory cytokines such as IL-1b, IL-6, TNF-a and IFN-g
(73). These studies highlight the importance of microglia during

different stages of CNS development and maturation, not only

being involved in the differentiation of other cell types but also

refining the neuronal circuitry and CNS organization.

Microglial effects upon neuronal connectivity are also not

limited to the developmental stage. In the adult CNS, microglia

have been shown to engulf synaptic material in both the healthy

brain and in neurodegenerative conditions (13, 75–77). Early

ultrastructural studies described microglia-mediated

displacement of synaptic terminals, suggesting that microglia

actively participate in synaptic plasticity (78–80). More recently,

microglia have been related to the elimination of synapses

during adulthood and ageing across different regions of the

CNS (13, 14, 81, 82). These functions suggest a key role of

microglia in the modifications to the neuronal network in

response to stress (81), memory maintenance (77), or in

experience-dependent behavioral adaptation through synaptic

plasticity (13). Interestingly, microglial ablation in adult mice led

to a robust increase of the synaptic density in the hippocampus

(83). Furthermore, it has been shown that blocking microglial

BDNF (brain-derived neurotrophic factor) secretion, leads to a

reduction in the formation of cortical dendritic spines associated

with deficits in learning. This strongly suggests that microglia are

not only involved in synaptic eliminations but also in

synaptogenesis, with direct implications for learning-

dependent plasticity (84). Altogether, this data show that

microglia are involved in synaptic remodeling via both
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synaptogenesis and elimination, directly influencing

neural plasticity.
3 Morphophysiological traits
of microglia

3.1 The classic (and outdated)
two-state paradigm

The morphological plasticity of microglial cells was already

acknowledged by Rıó-Hortega in his 1919 series of papers about

microglia [reviewed in (1)]. He described the morphological

changes experienced by microglia after neuronal insult as: “The

first phenomenon observed in microglia that evidences their

distress in brain pathological processes is an increase in volume

which mainly affects their dendrites [“processes”]. Hypertrophy

[“increased cell size”] of microglial cell bodies is observed in some

cases, and a more or less active hyperplasia [“increased cell

density”] can also be observed” (1). Rıó-Hortega also referred

to the gain of migratory and phagocytic characteristics in

neurodegenerative processes: “The nomadic character of

microglia is best observed in neurodegenerative processes,

during which the apparent rest that they enjoyed in the normal

state turns into migratory and phagocytic activity” (1). This led to

the assumption that microglia exist in two different states: i)

‘Resting’, characterized by a highly ramified morphology and

limited phagocytic and migratory activity, and ii) ‘Activated’,

characterized by amoeboid shape, high motility, with phagocytic

and proliferative capacities. For most of the last century this

‘two-state paradigm’ has been widely adopted, contributing to

the misconception that microglia in the healthy brain were

functionally quiescent or dormant (85, 86). Equally, the

ramified-to-amoeboid transition observed in microglia during

infection, trauma or pathological processes was inferred as the

key criteria for microglial activation (87). Morphometric

parameters such as sphericity, volume, cell body area, number

of processes, length of processes, number of endpoints, number

of nodes or microglial process area have been extensively used in

the assessment of microglial morphology (56, 88, 89). Often

these parameters are used to measure how ramified or amoeboid

a microglial cell presents itself, using these as an indication of its

activation state.

It is now well accepted that microglia undergo a

morphological and functional transformation upon neuronal

insult. Microglia do indeed migrate to the site of lesion, perform

their phagocytic capacity to clear debris or eliminate pathogens

and adopt an amoeboid morphology (22, 90). However, it has

become evident that microglia are not dormant or quiescent in

the so-called ‘resting’ state. In vivo studies have demonstrated

that ramified microglia are quite dynamic, and their processes

are continuously moving to survey the CNS parenchyma (91,
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92). It has been convincingly demonstrated that microglia are

very active in the healthy brain, beyond their direct

immunological response patterns, playing important roles in

synaptic plasticity, neurotrophic support, myelin remodeling,

and maintaining homeostasis in the CNS (2, 4, 7). Hence, the

morphological changes that were considered for many years as

the key indicator of microglial ‘activation’ rather correspond to a

morphophysiological transition that reflects a change in

function. Further indication that the two-state paradigm fails

to accurately reflect the spectrum of microglial phenotypes is the

introduction of diverse categories of microglia functions in the

literature, including surveillant microglia, proliferating

microglia, pruning/neuromodulatory microglia, phagocytic

microglia, and inflammatory microglia (93).
3.2 Factors determining the
morphophysiological diversity
of microglia

Microglia have been historically considered a homogenous

population of cells. However, the regional, functional and

morphological diversity of neurons, as well as the highly

specialized organization of the CNS, suggest that microglial

characteristics might reflect a similar heterogeneity (16, 88).

Over the last 20 years, it has become more and more apparent

that microglia show region-specific characteristics that are also

affected by age and sex in the developing and adult CNS, as

discussed below.

3.2.1 Region
Early studies in adult mice showed variations in cell density

throughout the brain that were accompanied by diverse

morphologies of microglia depending on brain regions; with

radially orientated arborized cells found abundantly throughout

the grey matter, longitudinally branched elongated cells in the

white matter, and compact amoeboid cells found around the

circumventricular organs (16). Recent studies have also

demonstrated region-specific differences in lysosome content

and membrane properties of microglia throughout the brain (94,

95). Transcriptomic profiling of different peripheral macrophage

populations also demonstrated inter-region variability (96).

Further studies using RNA sequencing of microglia have also

highlighted strong regional differences. For instance, it has been

shown that the expression of genes related to the phagocytic

capacity of microglia differ between different regions in mice.

Using microglia-specific mRNA extraction, Ayata and

colleagues showed that expression of cell-clearance genes was

significantly more prominent in cerebellar microglia when

compared to striatal or cortical cells (97). The fact that the

cerebellum shows higher levels of neuronal loss compared to the

striatum or cortex, suggests that microglial phenotypes may be
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greatly determined by the surrounding microenvironment.

Another study in mice used single-cell RNA sequencing

(scRNA-seq) to investigate the regional differences of

microglia at different developmental stages (6). Interestingly,

Li and colleagues showed that early postnatal microglia located

in highly proliferative regions showed a similar gene signature to

that of degenerative disease-associated microglia. Furthermore,

the authors found that the transcriptome of microglia expressing

homeostatic genes in the adult mice was very similar regardless

of the brain region, suggesting that the regional differences may

change among different developmental stages, and that age is

also a factor relevant for microglial phenotypic differences (6).
3.2.2 Age
Microglia migrate to the CNS at the very early stages of

embryonic development and remain resident in the CNS

parenchyma with self-renewal capacity throughout life. Hence,

microglia are present during the developmental, adult, and aging

stages of the CNS, presumably playing important roles by

adapting to the different processes at different stages. The

intense phagocytic activity observed during development

correlates with the typical amoeboid morphology of

phagocytic microglia (53, 54). On the other hand, microglia in

the adult CNS show ramified morphology that is often

considered an indication of microglial maturation (12, 98).

Nonetheless, this loss of amoeboid morphology in adult

microglia does not necessarily correlate with a loss of

phagocytic activity, as many studies have described that

microglia are phagocytically active even in the ramified state

(11, 62). Furthermore, a recent study investigating microglial

heterogeneity in mice at different ages using scRNA-seq showed

that microglia display a higher transcriptomic diversity in the

developing, aged, and diseased brain, compared to the adult

microglial population (5).
3.2.3 Sex
The CNS presents a series of sex-specific characteristics

regarding its anatomy, physiology, morphology, and

epigenome (99–101). Sex-specific differences in the density,

morphology and phagocytic activity have been described

during development and in the adult mice (102), probably due

to differential hormonal surges throughout life. This sex

dimorphism not only comprises neuronal traits but also entails

differences in non-neuronal cells. One of the first studies

describing sex-specific differences in the microglial population

reported that female mice showed an increase in microglia

number, of at least 30% in the hippocampus compared to

male littermates at three different ages (103). Another study

highlighted that microglia number and morphology are affected

by sex, age, and brain region (53). Male rats showed more

deramification of microglia, the retraction of microglial

processes and microglia adopting an amoeboid shape at early
Frontiers in Immunology 06
postnatal stages while females showed an increased number of

deramified cells in juvenile and adult individuals. These

differences in microglial number and morphology were also

accompanied by differences in the gene expression of cytokines.

These data suggest that microglial morphology, and likely their

physiological state, are modulated by sex at different ages and

regions. Subsequent studies suggested that microglia might have

a relevant role in repressing the feminization of the brain, a

process characterized by changes that sexual receptivity and

maternal behavior (104). Specifically, one study described an

increase in the number of microglia present in the preoptic area

(POA) of neonatal male rats, showing a significant role of

microglia in the synaptic patterning of the POA, crucial for

masculinization of the brain and behavior (105). Interestingly,

they also reported differences in the morphology of microglial

cells in the POA, where neonatal males had twice as many

amoeboid microglia compared to female littermates.

Some studies have also reported sex-specific traits in pain

modulation directly related to microglia. For example, male mice

were reported to show a TLR4-dependent activation of microglia

during inflammation and neuropathic hypersensitivity (106).

Another study assessing sciatic nerve hypersensitivity found that

microglia were responsible for mediating hypersensitivity in male

mice, while the response in females was mediated via T-cells

(107). This difference was deemed mainly due to hormonal

differences, as castrated males lacking testosterone lost the

microglial response, while hypersensitivity was blocked by

targeting microglia in females lacking T-cells and treated with

testosterone (107). Differences in microglia-mediated pain

hypersensitivity were also reported in rats, where inhibition of

the P2X4R pathway in microglia resulted in the elimination of

hypersensitivity in male rats but not in females, despite both

displaying reactive microgliosis (108). Pharmacological

modulation of neuropathic pain was also achieved with

metformin, an antidiabetic drug, eliminating pain and

microglial ‘activation’, determined by the activation marker Iba-

1, in the spinal cord of male but not female mice (109). Dimorphic

effects of morphine between female and male rats might also be

related to sex-specific microglia differences. It has been reported

that the increased number of deramified microglia in the

periaqueductal gray is responsible for the attenuated effects of

morphine seen in female rats (110). Interestingly, this was

reversed through microglial modulation by blocking TLR4 in

females. Altogether, these studies demonstrate that microglia

might play a key role in pain modulation and that this is greatly

influenced by sex-specific differences.
3.3 Microglia morphophysiological diversity

Although most studies use the ramified-amoeboid spectrum

(Figure 2) to classify the morphology of microglial cells and

generally directly correlate the phenotypic appearance with the
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physiological response, several studies have identified alternative

morphologies (Table 1). Importantly, these studies did not find a

clear correlation between increased expression of pro- or anti-

inflammatory markers with such morphologies. This suggests

that microglia are capable of modifying and adapting their

morphology in response to stimuli unrelated to their

activation or immunological status.

3.3.1 Microglia fulfill important roles in their
ramified state

Deramification (the transition to an amoeboid state) has

been considered an indication of microglial activation for many

decades. However, many studies have shown that microglia in

the so-called ‘resting’ state, characterized by a highly ramified

morphology (Figure 1A), are actually extremely dynamic and

active. Early evidence was provided in studies using microglia-

reporter mice and two-photon microscopy, allowing the

observation of microglia and their processes in vivo (91, 92).
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Those studies revealed that while the soma remained relatively

static with few signs of migratory behavior; microglial processes

were in constant motion, establishing transient contacts with

neurons, astrocytes and blood vessels (92). This constant and

rapid extension-contraction of the microglial processes is

thought to be part of a continuous surveillance of the CNS

microenvironment, allowing the CNS parenchyma to be

monitored every few hours (7, 92). Surface receptors allow

microglia to detect changes in the environment (82, 132) and

to monitor neuronal activity through transient contacts with

synaptic structures (7, 13). As we discuss below, the role of

ramified microglia is not limited to surveillance. It has been

shown that microglia can present with bulbous processes,

forming ball-and-chain structures (Figure 1C), which are

believed to be an indicator of phagocytosis of small amounts

of debris or tissue without transitioning to an amoeboid shape

(11). This suggests that such microglial phagocytosis of synapses

and apoptotic material might not require the loss of ramified
TABLE 1 Microglial morphologies and their reported functions.

Morphology Functional characteristics Model References

Ramified Classically considered a ‘resting’ state. Human, mouse, rat,
zebrafish

(7, 13, 57, 88, 91, 92, 111,
112)

Frequent extension/contraction of microglial processes.

Surveillance of CNS parenchyma and neuronal activity.

Neuroprotective role during excitotoxicity.

Amoeboid Classically considered an ‘activated’ state. Human, mouse, rat,
zebrafish

(16, 23, 24, 46, 53, 56, 57,
59, 113)

Transformation to amoeboid morphology in response to infection, injury and/or
pathological processes.

Phagocytically active.

Key roles in the healthy brain, eliminating debris and apoptotic cells.

Bulbous endings of microglial
processes

Transient formation of bulbous structures in the apex of microglial processes. Mouse, zebrafish (91, 114–116)

Involved in the chemotactic response to neuron-released ATP gradients.

Also involved in monitorization and control of neuronal activity.

Ball-and-chain structures Present in immunologically unchallenged microglia. Mouse, rat, macaque,
zebrafish

(11, 55, 117–121)

Phagocytically active.

Involved in the phagocytosis of apoptotic cells, neural precursors and myelin
sheaths.

Hyper-ramified Hyper-ramification of processes in response to acute and chronic stress. Mouse, rat (122–125)

Possible role in stress-related synaptic modifications.

Honeycomb Formed in response to BBB leakage after compression-TBI. Mouse (126)

Several microglia cells retract most processes, except 3-4 to form a contiguous
network.

Jellyfish Formed in response to astrocytic death after compression-TBI. Mouse (126)

Microglia extends a single non branching process.

Phagocytically active.

Rod microglia Elongated and narrowed soma. Human, mouse, rat (127–131)

Thin polar processes.

Can form multicellular ‘trains’ of several rod microglia.

Rod microglia align adjacent to injured neurons.

Described in several pathological processes.
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morphology, contrasting with observations in pathological

conditions, where phagocytosis is generally performed by

amoeboid microglia (59). Some studies have further described

ramified or hyper-ramified microglial phenotypes (Figure 1D)

that are actively engaged in other scenarios, such as the

physiological response to stress and excitotoxicity. For

instance, chronic stress resulted in a higher expression of Iba-1

and the hyper-ramification of microglia in the prefrontal cortex

of rats, correlating with an enhanced activation of neurons in

that region and impaired spatial working memory (122).

Another study used mouse organotypic hippocampal slice

cultures and showed that ramified microglia exert

neuroprotective effects upon neurons during NMDA-induced

excitotoxicity (111). Vinet and colleagues demonstrated that

some neurons in the CA3 and DG regions of the hippocampus

were resistant to excitotoxicity. This resistance was lost after

ablation of ramified microglia, severely affecting the viability of

neurons, while replenishment of microglia-free slices restored

the resistance in those regions (111). Interestingly, the results in

this study suggest not only that ramified microglia are able to

exert neuroprotective roles in pathologic processes, but also that

this function might be region-specific as other hippocampal

regions showed different responses.

3.3.2 Alternative microglial morphologies and
their function
3.3.2.1 Bulbous endings of microglial processes

As early as 2005, in one of the first in vivo studies describing

the dynamic nature of microglial processes, the authors

described that microglia extended their processes in response

to local brain injury in mice (91). Interestingly, this response was

mimicked by local ATP injections and characterized by bulbous

endings of microglial processes (Figure 1E). These observations

were confirmed in later studies where the outgrowth of

microglial processes was associated with a chemotactic

response to gradients of neuron-released ATP, through

NMDA receptors on the surface of microglial processes (114,

115). Both studies reported that the formation of these bulbous

endings was transient and was reversed when ATP application

was terminated. The role of ATP in inducing the formation of

bulbous structures in microglial processes was also described in

vivo in zebrafish (116). The authors revealed that these bulbous

microglia-neuron interactions were dependent on neuronal

Pannexin-1 hemichannel, permeable to ATP, and ATP/P2

receptors in microglia. Interestingly, they showed that

microglia were more prone to form bulbous contacts with

neurons depending on their activity, as microglial processes

preferentially moved towards neurons showing higher

frequencies of Ca2+ activity. Most importantly, they showed

that ramified microglia were able to downregulate the activity of

those neurons contacted with such bulbous structures. These

results suggest that ATP plays an essential role in signaling

between neurons and microglia, that microglia are capable of
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sensing neuronal activity, and that this activity can be modulated

via microglial bulbous processes.
3.3.2.2 Ball-and-chain structures

After the initial in vivo observation that ‘resting’ microglia

actively and constantly modify the length of their processes to

monitor the CNS parenchyma (91, 92), another study showed in

the adult murine CNS that immunologically unchallenged

ramified microglia are able to phagocytose apoptotic cells (11).

The authors described a novel phenomenon in hippocampal

sections of 1 month-old mice, where some microglial processes

adopted a so-called ball-and-chain structure, in which a

spherical phagocytic pouch (ball) was formed at the tip of a

microglial terminal branch (chain) during apoptotic clearance

(Figure 1C). Other studies also described this morphological

type of interaction during early development. In the postnatal

(P13) mouse subventricular zone (SVZ), microglia engulfed

apoptotic dividing cells by forming phagocytic cups at the tip

of the processes (117). In macaque, microglia phagocytosed

neural precursor cells in the developing neocortex (E80),

through enveloping the cell with a phagocytic structure

formed in the distal portion of one of its processes, forming a

ball-and-chain structure (55). More recently, a study in rats

described that ball-and-chain structures were prominent in early

post-developmental SVZ (P10) (118). Interestingly, these

structures were also abundant in later stages (P40) in rats

exposed to neonatal hypoxia-ischemia surgery, suggesting that

they might also be implicated in the response to long-lasting

effects of perinatal neuronal challenges. Ball-and-chain

structures were also observed in ramified microglia in the

developing cerebellar cortex of rats (119). Even though the

authors do not explicitly use the ball-and-chain terminology, a

recent in vivo study found that microglia phagocytose myelin

sheaths during the development of the optic tectum and spinal

cord of juvenile zebrafish, in a fashion that resembles the ball-

and-chain structure (120). They reported that phagocytic events,

identified through calcium signaling, led to the phagocytosis of

portions of myelin sheaths. Interestingly their images show

elongated microglia with short processes that in some cases

showed a phagocytic pouch at their tips, resembling the ball-

and-chain morphology. This process was regulated by neuronal

activity, with microglia engulfing more myelin when neuronal

activity was reduced or suppressed (120). Microglial

phagocytosis through ball-and-chain structures has also been

shown to be involved in the masculinization of social behavior in

juvenile rats (121). Microglia in the developing amygdala of male

rats have been shown to have an increased phagocytic activity

compared to female juveniles during the first postnatal week

(121). The microglia formed ball-and-chain structures that

consequently engulfed and phagocytose newborn astrocytes, a

process that was testosterone-induced and dependent on

endocannabinoid signaling (121). Moreover, phagocytosis of
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997786
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Vidal-Itriago et al. 10.3389/fimmu.2022.997786
the newborn astrocytes by ball-and-chain structures was

complement-dependent, since blocking complement receptor 3

(CR3) signaling increased astrocytic survival and prevented

social masculinization (121).

3.3.2.3 Hyper-ramified microglia

Ramified morphology of microglia (Figure 1A) has been

considered for many decades as an indication of quiescence or a

‘resting’ state. However, recent studies in rodents have described a

process of microglial hyper-ramification (Figure 1D) in response to

acute and chronic stress. A study in rats described a non-injury-

related hyper-ramification of microglia in the medial prefrontal

cortex in response to chronic stress (122, 123). The authors reported

that after chronic restraint stress, microglia presented higher

ramification through an increase in the branching points of its

processes. This hyper-ramification was accompanied by an

upregulation of b1integrin, a protein that has been implicated in

promoting microglial ramification. This effect was rescued after the

administration of minocycline, a microglial inhibitor. Another

study, using the chronic despair model (CDM) to induce stress-

related depressive-like behavior in mice, observed a change in

microglial morphology characterized by longer processes and

increased branching in wild-type mice (124). Interestingly,

CX3CR1-deficient mice showed enhanced resistance to the effects

of CDM in regard to microglial morphology, and the

administration of the anti-depressant venlafaxine reversed the

hyper-ramification of microglia in the wild-type mice. These

results suggest that the fractalkine-CX3CR1 axis might be

involved in the neuron-microglia signaling during stress-induced

depression. Furthermore, the authors reported that the

administration of venlafaxine increased the expression of synaptic

plasticity marker Arc/Arg 3.1 in wild-type mice but not in

CX3CR1-deficient mice, suggesting that potential synaptic

modifications are happening in response to stress. A recent study

using a mouse model of post-traumatic stress disorder (PTSD)

reported long-lasting fear response, decreased locomotor activity,

and impaired behavior accompanied by an increased number of

hyper-ramified microglia and loss of dendritic spines in a region-

specific manner (125). Overall, these results suggest that microglial

hyper-ramification can be a stress/depression-specific response that

might also be implicated in synaptic modifications.

3.3.2.4 Honeycomb and jellyfish microglia

Other microglia morphologies have been reported in

response to neuronal injury and glia limitans rupture after

traumatic brain injury (TBI) in mice (126). The glia limitans is

a layer of astrocytes endfeet processes that separate the CNS

parenchyma and the perivascular space, just beneath the BBB

(133). After thinning of the murine skull, a model of

compression-mediated TBI, the authors reported leakage

from the BBB through to the CNS parenchyma, mainly due
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to astrocytic death in the glia limitans (126) In response to this

phenomenon, microglia retracted most of their processes

except for two or three, forming a contiguous and highly

connected network resembling a honeycomb structure

(Figure 1F). Interestingly, this seemed to be a coordinated

response of several microglial cells that surrounded surviving

astrocytes to prevent further disruption of the glia limitans.

The same study also reported a morphological transformation

of honeycomb microglia into a shape that resembled a jellyfish,

by the extension of a single, non-branching process (126)

(Figure 1G). This transition from honeycomb to jellyfish-

shaped microglia was observed in response to astrocytic

death, likely suggesting the formation of a phagocytic cup.

These structures were directly related to ATP-mediated

microglial activation through the P2RY12 pathway. When

the ast rocyt ic re lease of ATP was inhibi ted with

carbenoxolone, honeycomb and jellyfish structures were

inhibited, and microglia remained ramified. These findings

may suggest that honeycomb and jellyfish microglia are

contributing to maintenance of the BBB integrity after TBI.

A role of microglia in BBB integrity after brain injury was also

demonstrated in mice, where photoablation of microglia and

the inhibition of P2RY12 both resulted in the impairment of

BBB closure (134). Inhibition of microglia through P2RY6

antagonism likewise resulted in increased parenchymal cell

death 12 hours after compression injury (126).
3.3.2.5 Rod microglia

Until recent years, ramified and amoeboid morphologies

have been the predominant morphological descriptors of

microglia. However, already in 1899 Franz Nissl described

cells with rod-like shape (“Stäbchenzellen”) in the post-

mortem brain of patients with general paresis of the insane.

These cells are now recognized to be a differentiated morphology

of ‘activated’ microglia, commonly referred to as rod microglia

(127, 128, 135) (Figure 1H). Later studies from Ramón y Cajal,

Rıó-Hortega, Achúcarro and Alzheimer helped to establish rod

microglia as a neuropathological marker of general paresis,

cerebral atrophy and multiple sclerosis (128, 135). Further

post-mortem studies during the first half of the 20th century

showed rod microglia in the cortex of patients with malaria,

Alzheimer’s disease, multiple sclerosis, epilepsy, and encephalitis

(135). More recent studies defined rod microglia as cells with

elongated and narrowed soma, with polarized thin processes

mainly in the apical and basal ends of the cell due to the

retraction of planar processes (128, 129). The authors observed

the morphological transition of microglia adopting a rod-like

shape after diffuse brain injury in rats, starting at 1-day post-

injury and being prominent at 7 days post-injury (128). Similar

results were observed after optic nerve transection in rats, where

the presence of rod microglia was prevalent in the retina starting
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at 7 days after injury and becoming more evident between 14

and 21 days after the nerve transection, with more than 80% of

the retinal microglia displaying a rod-like shape (130).

A study of human post-mortem brain samples revealed a

correlation between age and the presence of rod microglia in the

hippocampus and cerebral cortex (131), suggesting age as a

possible factor. The authors also found an increased number of

rod microglia in the parietal cortex of samples from patients with

Alzheimer’s disease. Interestingly, no correlation was found

between the history of traumatic brain injury and the presence

of rod microglia, suggesting that the appearance of rod microglia

after an acute brain injury might resolve after an undetermined

period of time (131). Rod microglia have been usually described

to adopt specific orientations and being adjacent to dendrites

and axons of injured neurons (22, 128–130), suggesting a

possible neuroprotective role by creating a barrier to protect

uninjured neurons (129). Furthermore, it has been described

that rod microglia align to each other after brain injury and optic

nerve transection, forming structures resembling trains of rod

microglia (Figure 1H) (128–130), suggesting a coordinated

response of multiple rod microglial cells.
4 Discussion

It is remarkable that Pıó del Rıó-Hortega’s conclusions about

the dynamic nature of microglia are still valid today considering

his observations were based on static examinations of the CNS

(1). In 1919, Rıó-Hortega already mentioned the mesodermal

origin of microglia and the correlation existing between

morphology and microglial function, noting the ability of

these cells to change their shape in response to different

stimuli. However, being the only phagocyte resident in the

CNS parenchyma, microglia were almost exclusively labeled to

be responsible for the initiation and resolution of

‘neuroinflammatory’ reactions. Thus, it is not surprising that

other roles of microglia, especially in the healthy CNS, were

overlooked. Microglial dynamics have generated significant

interest in the field of neurological research, arguably due to

technological advances that, for example, allowed in vivo

visualizations of ‘resting’ microglia under minimally invasive

condition (91, 92). Under near-physiological conditions, these in

vivo observations transformed the field by demonstrating the

dynamic nature of unchallenged microglia that were considered

dormant or quiescent for many years. These observations helped

to understand that microglia are not only active in response to

pathological changes in the CNS when they adopt an amoeboid

shape and increase their phagocytic activity, but that ramified

microglia also play very important roles in maintaining CNS

homeostasis without losing their ramified morphology.

The use of post-mortem human tissue from brain donors has

been especially useful in studying microglial function in

neuropathology, including different psychiatric and
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neurodegenerative disorders (93, 136–139). Post-mortem studies

provide a unique opportunity to correlate a characteristic

microgl ia l morphology to different disease stages ,

neuropathological hallmarks and other clinical parameters such

as disease severity and duration (140). However, variations of

clinical and autopsy-related parameters between cases can impact

microglial morphology for histological studies, potentially

complicating some interpretation of the results. Also, studying

the implications of microglia in non-diseased brains and during

the onset and early stages of diseases has been difficult, mainly due

to the scarce availability of such tissue (140). Post-mortem studies

in animal models have likewise contributed to our understanding

of processes such as microgliosis, the proliferation of reactive

microglia in response to acute CNS injury and aging (141), or

microglia-mediated synaptic modifications (78, 87). For instance,

studies using rats undergoing facial nerve axotomy were crucial to

reveal the role of microglia in synaptic plasticity through a process

called synaptic stripping (78, 113), where microglia have been

shown to selectively displace synapses from injured neurons (142).

This led to a renewed interest in microglial function, which has

since become a highly debated topic in glial biology and

neuroscience because of its important implications in CNS

homeostasis, disease outcomes, and even potential therapeutic

interventions (1).

In vivo studies of microglial responses have revealed

unprecedented insights into the behavior, physiology, and

spectrum of these cells. It has become apparent that such

visualization models can be instrumental in deciphering the

diverse spectrum of microglia phenotypes and physiology. In

recent years, many studies have investigated the dynamic

nature of microglial physiology in both the healthy and

diseased brain, from the early stages of embryonic

development throughout the adult brain and aging, using in

vivo and ex vivo animal models (111, 143–145). These

approaches have, for instance, clarified the ontogeny of

microglia in mice (26) and zebrafish (29), revealed the role of

microglia in eliminating apoptotic cells in zebrafish during

development (146) and in the developed CNS (56), identified

microglia-mediated synaptic modifications in mice (7, 147), or

the microglial proliferation in animal models of disease and

aging (34, 148). More recently, the appearance of new

molecular techniques, and in particular single-cell RNA

sequencing, has made it possible to define new roles and new

subpopulations of microglia, such as a recovery-related

subpopulation in a mouse model of nerve injury (149), and

microglial subpopulations expressing different transcriptional

profiles in mice depending on the region, age, or disease

state (5).

Many of these findings have illustrated various forms of

interactions between microglia and other cells, interactions that

differ from the classic ramified/amoeboid paradigm. These

studies not only describe unique microglial morphologies, but

also demonstrate that the classical associations (‘ramified’
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equating ‘resting’ microglia; ‘amoeboid’ equating ‘active’

microglia) are not appropriate in many cases (Figure 1). One

of the first in vivo studies of microglia in mice already described

the formation of a unique type of bulbous structures at the tips of

microglial processes (Figure 1E) in response to neuronal damage

and injections of ATP (91). This was later confirmed by other

studies in mice (114, 115) and zebrafish (116). These structures

appear to be closely related to the chemotactic attraction of

microglia by ATP and, as observed in zebrafish, might be also

involved in the regulation of neuronal activity (116). Other

studies have also highlighted that branched microglia can be

phagocytically active. One of the most observed microglia

morphologies under physiological conditions is the ball-and-

chain structure (Figure 1C), first described ex vivo in adult mice

hippocampal sections (11). These structures have also been

observed in the developing hippocampus of mice (117), the

developing cerebral cortex of macaques (55), in the developing

cerebellum in the rat (119), after neonatal hypoxia-ischemia also

in rats (118), and remodeling myelin sheaths in zebrafish (120).

Several features of these ball-and-chain structures remain

unknown, for example whether this phagocytic structure arises

exclusively when microglia are immunologically ‘inactive’ (i.e.,

in the absence of pathogens in the CNS or BBB disruption), or

whether the volume of the phagocytosed material is a

contributing factor. Another example where branched

microglia are phagocytically active is the process of

trogocytosis, where tiny pouches form on the surface of

microglial processes to eliminate presynaptic structures in

mice (147). The retraction of microglial processes has often

been considered as indicative of microglial activation. However,

some studies have described that microglia can adopt a hyper-

ramified morphology in response to stress (122, 123). Other

studies of murine models of chronic stress and PTSD correlated

microglial hyper-ramification with long-lasting behavioral and

motor impairment accompanied by synaptic modifications

(124, 125).

Some studies have not only observed unique microglial

morphologies but have also described that microglia can form

multicellular networks with a very well-defined structure. Such is

the case for the trains of rod-shaped microglia (Figure 1H) formed

in close relationship with neuronal structures after diffuse brain

injury in rats (128), or the arrangement of microglial cells forming

a structure reminiscent of a honeycomb (Figure 1F) after TBI in

mice (126). This suggests that microglia can orchestrate a joint

and coordinated response to CNS insults. It will be interesting to

see future studies further unravel our understanding of inter-glia

and inter-cellular communication in the CNS, such as the

microglia-mediated activation of astrocytes and neuronal

degeneration (150). Identifying the molecules and signaling

pathways that trigger such inter-cellular responses or intra-

cellular morphophysiological transformations will undoubtedly

help us to understand the cues leading tomicroglial differentiation

(morphologically and functionally).
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Thus, it seems clear that the extraordinary heterogeneity and

diversity of microglial cells requires the reconsideration of the

outdated dogma of their different activation states being linked

to one particular morphology. The classical paradigm of

microglia depicts their morphology and activation as

correlated and on a linear spectrum — with ramified microglia

being non-activated on one end and the amoeboid morphology

reflecting activated microglia on the other end (Figure 2A). This

paradigm does not account for the great variety of microglia

morphologies seen in the CNS and does not encompass the

emerging evidence of much more diverse morphophysiological

correlations. Certainly, microglial responses are extremely

complex and diverse, making it difficult to establish exact

correlations between microglial functions and specific

morphologies. It is therefore important for researchers to

assess microglial dynamics, taking into account the

spatiotemporal changes of both microglial morphology

and function.

Species-specific traits of microglia are also important when

accounting for variation between microglia morphophysiologies.

Despite sharing a highly conserved transcriptome, several

studies have already highlighted gene expression differences

between human and murine microglia (151–153). Another

example is the expression of a surface lectin in microglia,

Siglec-11, that seems to be unique to the human brain (154).

Torres-Platas and colleagues performed a morphometric

analysis of cortical microglia in both humans and mice (88).

The most evident differences between mice and human

microglia arise from the proportion of the different

morphologies described and the shape of the cell bodies.

Mouse cortex showed a higher proportion of ramified

microglia (≥90%) with microglial somata being highly

heterogeneous in their shape, while in human cortex ramified

microglia represented 43% of all cells and the cell bodies were

classified either as rounded or amoeboid (88). Specifically,

ramified, amoeboid and rod morphologies have been described

in multiple species, including humans and mice, and highlighted

in this review (Table 1). Notably, these are considered classical

microglial morphologies, all being described in the first half of

the 20th century. It will be interesting to study human microglia

by taking into account more recently described morphologies

and avoiding the ramified-amoeboid linear spectrum, allowing a

more accurate comparison between different species in

the future.

For future studies, we suggest the usage of a continuous

multi-spectrum (Figure 2B) for microglia morphologies and

functions. Such a spectrum accounts for the variety of

functional states for each microglia morphology and

emphasizes their capacity to alter their ‘activation’ status,

independently of their morphological pattern (e.g. it is not

clear whether microglia can be ‘locked in’ in a morphological

or functional state). Overall, it seems sensible for the field to

develop context-specific ways to investigate microglial
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997786
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Vidal-Itriago et al. 10.3389/fimmu.2022.997786
activation, beyond simply quantifying the ramification or

sphericity of these cells. More standardized ways of describing

the shapes that microglia can adopt and clearly associate them to

particular functions will facilitate the comparison of different
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microglial responses in different settings and scenarios. In vivo

studies of microglial dynamics may help to better define the

morphological transitions of microglia and their interactions

with other cells in the future.
A

B

FIGURE 2

Spectrums of microglial activation. (A) Classical or ‘linear spectrum’ of microglial activation where ramified microglia are considered non-activated/
resting, and amoeboid microglia are considered fully activated. Other microglial morphologies would reflect an intermediate state. (B) Proposed
‘multi-spectrum’ that reflects changes in microglial morphologies and function in a radial pattern, with context-dependent microglial activation.
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