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Increasing evidence has highlighted the critical functions of immunogenic cell
death (ICD) within many tumors. However, the therapeutic possibilities and
mechanism of utilizing ICD in melanoma are still not well investigated.
Melanoma samples involved in our study were acquired from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.
First, pan-cancer analysis of ICD systematically revealed its expression
characteristics, prognostic values, mutation information, methylation level,
pathway regulation relationship in multiple human cancers. The non-
negative matrix factorization clustering was utilized to separate the TCGA-
melanoma samples into two subtypes (i.e. C1 and C2) with different prognosis
and immune microenvironment based on the expression traits of ICD. Then,
LASSO-Cox regression analysis was utilized to determine an ICD-dependent
risk signature (ICDRS) based on the differentially expressed genes (DEGs)
between the two subtypes. Principal component analysis and t-distributed
stochastic neighbor embedding analysis of ICDRS showed that high- and low-
risk subpopulations could be clearly distinguished. Survival analysis and ROC
curves in the training, internal validation, and external validation cohorts
highlighted the accurate prognosis evaluation of ICDRS. The obvious
discrepancies of immune microenvironment between the different risk
populations might be responsible for the different prognoses of patients with
melanoma. These findings revealed the close association of ICD with prognosis
and tumor immune microenvironment. More importantly, ICDRS-based
immunotherapy response and targeted drug prediction might be beneficial
to different risk subpopulations of patients with melanoma. The innotative
ICDRS could function as a marker to determine the prognosis and tumor
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immune microenvironment in melanoma. This will aid in patient classification for
individualized melanoma treatment.
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Background

The most severe type of skin cancer is melanoma, which is
caused by a malignancy of melanocytes (1). It is late diagnosis
that leads to the poor prognosis in melanoma (2). Although
typical therapies such as surgical excision (3), immunotherapy
(4), gene therapy (5) are wildly used for melanoma patients, the
mortality of melanoma has increased steadily in the last decades,
which results in public health problems (6). Hence, there is need
to come up with sensitive approaches for accurate assessment of
clinical outcomes of melanoma patients, facilitating the
development of precision medicine.

In recent years, most immune system components have been
notified to be linked to melanoma’s genesis and progression (7,
8). Currently, PD-1, PD-L1, and CTLA-4 inhibitors which are
examples of immunotherapy medications are applied in
melanoma (9-11). However, these treatments are only effective
in a small number of patients, with a vast number of patients
having a restricted or non-existent response to treatment,
particularly as the melanoma progresses. As a result, in order
to investigate the potential predictive usefulness of immune and
immune-related indicators, extensive investigations of the
relationship between immune and melanoma are required.

The Nomenclature Committee on Cell Death (NCCD) has
developed recommendations for defining and interpreting cell
death from morphological, biochemical, and functional viewpoints
over the last decade (12). Immunogenic cell death (ICD) is a distinct
sort of cell death produced by a variety of anticancer treatment
modalities, such as radiotherapy and chemotherapeutic medicines.
In immunocompetent hosts, it entails activating the immune system
against malignancy. ICD is followed by the exposure and generation
of various molecular patterns linked to damage, which offer a strong
adjuvanticity to dying cancer cells by favoring antigen-presenting cell
recruitment and activation (13-15). Improving the immunogenicity
of tumor cells by inducing ICD is a crucial strategy for improving
cancer immunotherapy (16). However, the therapeutic possibilities
and mechanism of utilizing ICD in melanoma are still not
well investigated.

In this research, two subtypes with different prognosis and
immune environment in melanoma were identified on the basis
of ICD-related genes and an ICD-dependent risk signature
(ICDRS) was created with the differentially expressed genes
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(DEGsS) between the two melanoma subtypes. Additionally, the
relation between the signature, prognosis and immune were
further analyzed. The findings in the study illustrated that a
novel ICDRS might be utilized as a helpful marker for the
prognostic prediction and immune environment assessment
in melanoma.

Materials and methods
Data collection

The Cancer Genome Atlas (TCGA) system was established
in 2006 by the National Human Genome Institute and the
National Cancer Institute with the purpose to map cancer
genes, understand cancer’s potential pathways, and improve
the ability of preventing the advancement of cancer, making
precise diagnoses, and curing cancer (https://portal.gdc.cancer.
gov/). High-throughput microarray and next-generation
sequencing gene function data sets are archived in the Gene
Expression Omnibus (GEO), a public database that is accessible
worldwide. In the current study, the TCGA database was used to
gather mRNA expression, clinical features, single nucleotide
variation (SNV), copy number variation (CNV) and
methylation data of pan-cancer (17, 18). In addition, GEO
database was also searched to acquire mRNA expression
profiles and corresponding clinical characteristics of melanoma
transcriptome (19-21). ICD-related genes were identified based
on the literature (22). Common immune checkpoint
genes (ICGs) were identified from the review (23). The
‘c2.cp.kegg.v7.4.symbols.gmt’ file received from the Molecular
Signatures Database (MSigDB) was used to identify immune-
related pathway genes (MSigDB) (24-26).

Data procession

To find intersecting genes, the intersection of melanoma
mRNA expression matrix from TCGA and melanoma mRNA
expression matrix from GEO were taken. Data about crossing
genes’ expression from the TCGA and GEO were transformed to
log2(x + 1) form and batch normalized by conducting the
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“ComBat” function in the “sva” package in R. The transcriptome
data of the intersecting genes in TCGA and GEO datasets were
merged with corresponding clinical data, respectively.

Pan-cancer analysis

In recent years, various studies have been conducted to
investigate the association between ICD-related genes and
malignancies. Nonetheless, the prognostic effect, expression level,
CNV, SNV and methylation of ICD-related genes in different types
of cancers are poorly summarized. Thus, a pan-cancer assessment
about these factors of ICD-related genes was carried out using the
similar methods as the previous studies (27-32). Fold change of
expression of ICD-related genes in pan-cancer was assessed.
Univariate Cox regression analysis was performed to determine
the ICD-related genes’ prognostic importance in distinct
malignancies. CNV amplification and CNV deletion were
evaluated. SNV of each gene was accumulated and the mutation
frequency were calculated as follows: samples with SN'V/all samples.
The SNV type was also summed up. The pan-cancer methylation
variation compared with normal tissue was analyzed. Additionally,
for unveiling immune-related pathways affected by ICD-related
genes, ICD scores in each sample of each cancer were computed
through single sample gene set enrichment analysis (ssGSEA).
Samples with the bottom and top 30% of ICD scores were
selected into two groups respectively. Then, gene set enrichment
analysis (GSEA) and the transcriptome were utilized to explore the
difference of immune-related pathway activities caused by ICD-
related difference between high-ICD and low-ICD groups. R and
TBTools were used to conduct all of these analyses (33).

NMF clustering identification of two
subtypes of melanoma

The mRNA expression matrix of ICD-related genes in
TCGA dataset was collected to perform non-negative matrix
factorization (NMF) clustering with the adjusted number of
clusters as 2-10 by utilizing the “NMF” package in R (34). The
standard “brunet” option was selected, and 100 iterations were
performed. The most appropriate clustering number was
determined based on the NMF rank surveys and
discrimination between different cluster subtypes (35).

Comparison of the clinical traits,

survival status, tumor immune
microenvironment, and gene expression
levels between different cluster subtypes

The fisher test was employed to the compositional
discrepancies of clinical traits in different subtypes. Kaplan-Meier
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analyses were conducted to investigate the differences of disease
specific survival (DSS), overall survival (OS), and progression free
interval (PFI) in different subtypes. The wilcox test was employed to
investigate the discrepancies of tumor immune microenvironment
in different cluster subtypes after computing the ImmuneScore and
TumorPurity of each melanoma sample by utilizing the “estimate”
package in R (36). The CIBERSORT approach was employed to
compare the infiltration composition of 22 immune cells in each
melanoma sample (37, 38). The wilcox test was then implemented
to investigate the discrepancy in the immune cell infiltration and the
ICG expression levels between different subtypes (39). The limma’
package in R was utilized to identify the ICD-dependent DEGs
(ICD-DEGs) between the two melanoma subtypes and FDR < 0.05
and | log 2 fold-change (FC) | > 1 were used as screening criteria.

Development and verification of a risk
signature based on ICD- DEGs

Melanoma samples from the TCGA dataset with full
transcriptome and survival data were randomly separated into
two cohorts: train and testl. Following that, all TCGA samples
were set as test2 cohort, whereas every GEO sample was included
in test3 cohort.

In train cohort, univariate Cox regression analysis was
carried out for distinguishing prognostic ICD-DEGs (screening
criteria: p < 0.05). Secondly, to minimize over-fitting and choose
relevant variables among the prognostic ICD-DEGs, least
absolute shrinkage and selection operator (LASSO) regression
analysis was employed. After that, multivariate Cox proportional
hazards regression analysis was conducted for identifying an
ICD-dependent risk signature (ICDRS) and the risk score of
each sample was determined under the help of the “predict”
function in R. Following the calculation of each sample’s risk
score in the train cohort, samples were stratified into low- and
high-risk subpopulations depending on the median value. Then,
based on the median risk score of the train cohort, the melanoma
patients in the three test cohorts were all categorized into high-
and low-risk subpopulations. The following analyses were
carried out in the train and three test cohorts for ICDRS
creation, external validation, and internal validation: (1) the
use of principal component analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) to visualize sample
classification; (2) the use of Kaplan-Meier analysis to
investigate the discrepancies of survival status in high- and
low-risk subpopulations; (3) the use of the ‘pheatmap’ R
package to display the expression levels of the genes in the
ICDRS; (4) the use of the wilcox test for investigating the
variations of tumor immune microenvironment in low- and
high-risk subpopulations after computing the ImmuneScore and
TumorPurity of each melanoma sample utilizing transcriptome
data the “estimate” package in R; (5) the use of Pearson
correlation analysis to illustrate the correlation between
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ImmuneScore and TumorPurity and risk score; (6) the use of a
time-dependent receiver operating characteristic (ROC) curve to
verify the ICDRS diagnostic values for 0.5-year, 1-year, and 2-
year survival rates utilizing the ‘survivalROC’ package in R. (7)
combined application of survival analysis, time-dependent ROC
curve, and C-index to highlight the accuracy of our signature
comparing with another three well-established signatures [a
ferroptosis-related signature recognized by Zeng et al. (40), a
metabolism-related signature recognized by Deng et al. (41), and
a pyroptosis-related signature recognized by Wu et al. (42)].

The ICDRS-based immune-related
discrepancies in all the four cohorts

After the investigation about the discrepancies of the tumor
immune microenvironment between the low- and high-risk
subpopulations, the ICDRS-depend immune-related
discrepancies were studied in depth. First, the different
expression analysis of ICGs and ICD-related genes between
low- and high-risk subpopulations was conducted by utilizing
the wilcox test. Then, the varied infiltration of immune cells
between low- and high-risk subpopulations was analyzed after
calculating the infiltration composition of 22 immune cells in
every melanoma sample according to CIBERSORT algorithm
(37, 43). In addition, the activities of immune-related pathways
were compared with the help of the wilcox test after evaluating
the activities of these pathways according to the transcriptome
data by the single sample gene set enrichment analysis (ssGSEA)
in R (18, 44, 45).

The correlation analysis between ICDRS-
based risk score and immune-related
indicators in all the four cohorts

All the statistically different immune-related indicators in all
cohorts concurrently were studied deeply in the following
analysis. It is Pearson correlation analysis that was performed
for illustrating the relationship between ICDRS-based risk score
and immune-related indicators including the proportion of
immune cells existing in the tumor immune environment, the
expression of ICGs and ICD-related genes, and the immune-
related pathway scores.

Prediction of immunotherapy response
and potential drugs for melanoma
treatment based on ICDRS

Immunotherapy is wildly applied in melanoma. To
distinguish patients more suitable for immune checkpoint
inhibitor (ICI) treatment, the Cancer Immunome Atlas
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(TCIA), a database helping predict immunotherapy response,
was searched to downloaded immunophenoscores (IPS) of
melanoma samples in TCGA (46, 47). Subsequently,
wilcox.test was utilized to compared IPS between low- and
high-risk subpopulations in the three cohorts derived from
TCGA. Of note, IPS is a satisfied predictor for anti-PD-1 and
anti-CTLA-4 therapies. In order to investigate the potential
drugs for melanoma patients, DEGs between low- and high-
risk subpopulations were additionally explored utilizing the
limma’ in R and those DEGs which expressed highly in high-
risk subpopulation were identified with the filtering parameters
were FDR < 0.05 and log2 FC > 1. Then CMap database (https://
clueio/COMMAND) was applied to predict potential drugs
which targeted highly expressed DEGs in all the four
cohorts respectively.

Results
Data procession

Figure 1 shows a flow chart with a summary of the research
process. The analysis includes 472 melanoma samples from the
TCGA database and an additional 214 melanoma samples
(GSE65904) from the GEO database. A total of 20,188
common genes were found after all of the genes from the
TCGA and GEO datasets were intersected. Notably, 37 TCGA
melanoma samples and 4 GEO melanoma samples were omitted
because their survival data was incomplete. Totally, the mRNA
expression data and survival data of 435 TCGA melanoma
samples and 210 GEO melanoma samples were merged
respectively. For the following research, 34 ICD-related genes
were included.

ICD-related genes’ mRNA expression and
prognostic significance across
cancer types

First, Figure 2A shows the levels of mRNA expression of
ICD-related genes. In the heat map, IFNG indicated a clearly
elevated expression in CESC, KIRC, and GBM. IFNB1 showed a
markedly elevated expression in BRCA and BLCA, while IL6
showed an obviously decreasing expression in BRCA and BLCA.
To more vividly demonstrate the importance of variance in
mRNA expression levels, a heat map displaying -Ig (pValue) was
constructed. The more intense the change of mRNA expression
in corresponding tumor, the redder the color. (Figure 2B). The
results of univariate cox regression analysis between the mRNA
expression and OS distinguished risky ICD-related genes
(HR>1, p<0.05) and protective ICD-related genes (HR<I,
p<0.05). Of note, CD4, FOXP3, CD8A, CXCR3, IFNG, PRFI,
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FIGURE 1
The present study’s workflow.

MYD88, ATG5, CD8B, IL1R1, TLR4, PIK3CA, TNF, CASPS,
and EIF2AK3 showed protective function in SKCM (Figure 2C).

CNV, SNV, methylation of ICD-related
genes and immune-related pathways
affected by ICD-related genes in
different types of cancers

The CNV, SNV and methylation existed in various cancers.
The summary of pan-cancer CNV suggested CNV occurred in
various cancers at high frequencies (>5%) (Figure 2D). The SNV
states of ICD-related genes were evident and attractive in UCEC.
And the PIK3CA showed higher SNV in BRCA, COAD, and
UCEC. The mutation frequency of PIK3CA SNV in UCEC reached
nearly 50% (Figure 2E). Exactly, the SNV types of PIK3CA were
mainly Missense_Mutation (Figure 2F). Of note, the PIK3CA
methylation made no sense in most cancers (Figure 2G). Indeed,
ICD-related genes might correlate to many immune-related
pathways which were shown in Figure 2H.

NMF clustering identifying of two
melanoma subtypes

According to the ICD-related genes’ expression matrix, NMF
clustering was conducted and the optimal clustering number of 2
was selected (Figure 3A). The compositional differences of clinical
traits between clusterl and cluster2 suggests that the two subtypes
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differed statistically in many aspects such as survival status, cancer
status, and tumor stage (Figure 3B). As for the different survival
status in the two clusters, samples in cluster2 had better DSS, OS,
and PFI (Figures 3C-E).

The tumor immune microenvironment is also statistically
different. The higher ImmuneScore, which is correlated with
immune components, existed in C2. The TumorPurity in C2 is
worse than those in C1 (Figure 3F). Of note, the tumor-infiltrating
immune cells in different subtypes showed different percentages.
There were more anti-tumor immune cells in C2 such as CD8" T
cells, activated CD4" T memory cells, activated NK cells, and M1
macrophages. As for cancer-promoting immune cells, M2
macrophages are downregulated in C2 (Figure 3G). ICGs also
displayed discrepancies in the two cluster subtypes. Almost all the
ICGs had a higher expression in C2. It is noteworthy that common
immunotherapy targets including PD-1(PDCD1), PD-L1(CD274),
and CTLA4 were highly expressed in C2 (Figure 3H).

Investigation of ICD-DEGs and
construction of an ICDRS

In view of the statistically different survival status and tumor
immune microenvironment in the two cluster subtypes, the two
clusters can be differentiated from each other. Then 534 ICD-
DEGs between clusterl and cluster2 were identified
(Supplementary Figure 1). The findings of the univariate Cox
regression analysis revealed that 237 of the 534 ICD-DEGs
might be used as prognostic predictors. Subsequently,
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FIGURE 2

Pan-cancer overview of ICD-related genes. The discrepancies in expression levels of ICD-related genes across pan-cancer and corresponding
paracancerous tissues (A): log2(FC), (B): -lg(pValue)). (C) Survival landscape of ICD-related genes across cancer types. (D) CNV of ICD-related
genes in various cancers. (E, F) SNV frequencies and types in pan-cancer. (G) Methylation variation of ICD-related genes in pan-cancer.

(H) Immune-related pathways affected by ICD-related genes (The redder the color, the higher the normalized enrichment score (NES); the
larger the dot, the lower the corrected p-value).

collinearity among the 237 ICD-DEGs was eliminated and over- subpopulations using the median risk score of 1.0342095 in train
fitting of the prognostic signature was avoided through LASSO as cutoff value.

regression analysis (Supplementary Figures 2A, B). 3 ICD-DEGs PCA and T-SNE were then conducted to determine the
were selected for further multivariate Cox regression analysis overall distribution of melanoma samples in low- and high-risk
(Supplementary Figure 2C). Finally, an ICDRS was developed subpopulations. The patients within the two subpopulations can
using multivariate Cox proportional hazards regression analysis be effectively differentiated (Figures 4A, B). The survival analysis
incorporating 3 ICD-DEGs (i.e., GBP2, THBS4, and illustrated samples in the two subpopulations correspond to
APOBEC3G). The “predict” function in R was applied to different survival status: OS rates were lower in the high-risk
calculate risk score of each patient with melanoma in all the subpopulation (p < 0.05) (Figure 4C). Then levels of expression
four cohorts, and samples were separated into high- and low-risk of these three ICD-DEGs in ICDRS are shown by a heatmap:
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Comparison of the clinical traits, survival status, tumor immune microenvironment between different cluster subtypes obtained by NMF
clustering. (A) The optimal clustering number of 2; (B) Pie charts illustrating the clinicopathologic factors in the two molecular subtypes; (C—E)
Kaplan—Meier analyses (DSS, OS and PFI) based on the two molecular subtypes; (F) Comparison of TME components; (G) Discrepancy analysis
of tumor-infiltrating immune cells in different subtypes; and (H) Differential expression analysis of 68 immune checkpoints genes between two
molecular subtypes.(* indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p > 0.05).

GBP2 and APOBEC3G in high-risk subpopulation had lower
levels of expression while THBS4 had higher expression in high-

risk subpopulation compared with low-risk subpopulation

(Figure 4D). Moreover, the tumor immune microenvironment

was also statistically different in low- and high-risk
subpopulations: patients with high-risk exhibited decreased

levels of ImmuneScore but showed increased levels of

TumorPurity compared with low-risk patients (Figures 4E, F);

in addition, the ImmuneScore indicated a highly adverse
correlation with risk score (R=-0.52, P=2.8e-16) while the
TumorPurity indicated a moderately positive correlation with
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risk score (R=0.39, P=2.5e-09) (Figures 4G, H). Moreover, the
ROC curves’ area under the curve (AUC) values are 0.922, 0.763,
and 0.696 for 0.5-, 1-, and 2-year survival (Figure 4I).

Internal and external validation of the
ICDRS in melanoma

First, patients in the three test cohorts were grouped

respectively into low- and high-risk subpopulations according to
median risk score of train cohort as the unified benchmark. For the
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internal validation (test 1 and test2 cohorts) and the external
validation (test3 cohort), patients in the two subpopulations could
be easily distinguished from one another using T-SNE and PCA
(Figures 5A, B, 6A, B, 7A, B). Similarly, in the three test cohorts,
patients in high-risk subpopulation experienced poorer OS (all p <
0.05) (Figures 5C, 6C, and 7C). Also, the heatmaps obtained from
the three test cohorts demonstrated the presence of GBP2 and
APOBEC3G with attenuated expression while THBS4 with high
expression in the high-risk subpopulation (Figures 5D, 6D, and
7D). Likewise, the tumor immune microenvironment was
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statistically different in these three cohorts which was the same as
the results in train cohort (Figures 5E, F, 6E, F, and 7E, F).
Moreover, the ImmuneScore also showed a significant negative
relationship with risk score in testl cohort (R=-0.4, p=1.2e-09), test2
cohort (R=-0.43, p<2.2e-16), and test3 cohort (R=-0.6, p<2.2e-16)
(Figures 5G, 6G, and 7G), while the TumorPurity also indicated a
significant positive relationship with risk score in testl cohort
(R=0.25, p=0.00026), test2 cohort (R=0.29, p=52e-10), and test3
cohort (R=0.39, p=5.2e-09) (Figures 5H, 6H, and 7H). As for the
diagnostic value of risk score, the AUC values of the ROC curves
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FIGURE 5

Internal verification of ICDRS in testl cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based
risk score; (C) Kaplan—Meier survival curves for the overall survival of two risk groups in the testl cohort; (D) Distribution pattern of the
expression levels of the 3 genes in the testl cohort; (E, F) Comparing TME components in testl cohort (*** indicates p < 0.001); (G) The
correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-

year in the testl cohort.

were 0.768, 0.767, and 0.673 in the testl cohort, 0.852, 0.762, and
0.684 in the test2 cohort, and 0.729, 0.706, and 0.730 in the test3
cohort for 0.5-, 1-, and 2-year survival, respectively (Figures 5I, 61,
and 71). Of note, all the results in the internal validation (testl and
test2 cohorts) and external validation (test3 cohorts) were consistent
with those in train cohort.

What’s more, taking the ICDRS-based survival probability
discrepancy, AUC value, and C-index into consideration
simultaneously, ICDRS showed superior in prognostic value and
diagnostic accuracy compared with another three signatures
(Figure 8). On the basis of the AUC, ICDRS showed a satisfied
and stable performance in all the four cohorts. Of note, the
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discrepancies of the survival probability in different risk
subpopulations distinguished by another three signatures
sometimes showed no statistical significance. And the C-indexes
of ICDRS were higher than another three signatures and were 0.66,
0.62, 0.64, and 0.67 in the four different cohorts respectively.

The ICDRS-based immune-related
discrepancies in all the four cohorts

In view of the differences in tumor immune

microenvironment in low- and high- risk subpopulations,

frontiersin.org


https://doi.org/10.3389/fimmu.2022.998653
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ren et al. 10.3389/fimmu.2022.998653

A Risk - high - I isk - high - I E F
~high - ~high - .
isk - high - low Risk - high ~low risk Whigh low risk  Whigh @ low
4000 212 woak
09
2000
2 £
ER o3
E &
) L B ~200 0.0
4 “20 -10 010 20 high low high low
tSNEI risk risk
G
R=-0.43, p<2.2¢-16
Risk — Highrisk 2500
~~ Low risk 2
S
» 075 2
= =
3 £
£ E
= 0s0- ~2500
E]
2
£
5
v
~5000
025-
0 H 10
0.00- H RiskScore
0123456789100112131415161718192021222324252627282930
) 16
Time(years)
R=029, p=5.2¢-10
Number at risk
= = 20914611189 725546373026191512109 555432 1111111110 > 12
B —— 2261651401103 77655854 4644363225 171615118 8 76 6 4 4 3322 1 0 g
01234567809101112131415161718192021222324252627282930 ‘g
Time(years) g 08
Number of censoring
54 04
52 |
=) iIIJI (180 1 A | | |1 4
0123456789101112131415161718192021222324252627282930 5 : n
Time(years) 1 RiskScore
o ] ———
D |
P 12 risk type g 4
10 mhigh
GBP2 8 Wlow B
6 z 3
4 Z
i z
2 I
a
=]
Ve
— —yeal 0.
APOBEC3G 2 2-Year AUC:0.684
. . . T T :
00 02 04 06 08 10
1-Specificity
FIGURE 6
Internal verification of ICDRS in test2 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based
risk score; (C) Kaplan—Meier survival curves for the overall survival of two risk groups in the test2 cohort; (D) Distribution pattern of the
expression levels of the 3 genes in the test2 cohort; (E, F) Comparing TME components in test2 cohort (*** indicates p < 0.001); (G) The
correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-
year in the test2 cohort.

more in-depth exploration of immune-related discrepancies
were made in all the four cohorts in the following research.
First, the consensus discrepancy of tumor-infiltrating immune
cells in low- and high-risk subpopulations in the four cohorts
indicated that less infiltration abundance of M1 macrophages and
activated CD4+ T memory cells but more infiltration of M2
macrophages and resting CD4+ T memory cells existed in the
high-risk subpopulation (Figures 9A-D). Subsequently, the Pearson
correlation analysis showed that the proportion of M1 macrophages

Frontiers in Immunology

had a significant inverse relationship with risk score in train cohort
(R=-0.3, p=0.0037), testl cohort (R=-0.22, p=0.021), test2 cohort
(R=-0.23, p=0.0016), and test3 cohort (R=-0.31, p=0.00041)
(Figure 9E); the percentage of M2 macrophages had a significant
positive relationship with risk score in train cohort (R=0.37,
p=0.00026), testl cohort (R=0.35, p=0.00016), test2 cohort
(R=0.35, p=5.9¢-07), and test3 cohort (R=0.56, p=2.2e-11)
(Figure 9F); the proportion of activated CD4+ T memory cells
had a significant inverse relationship with risk score in train cohort
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FIGURE 7

External verification of ICDRS in test3 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based
risk score; (C) Kaplan—Meier survival curves for the overall survival of two risk groups in the test3 cohort; (D) Distribution pattern of the
expression levels of the 3 genes in the test3 cohort; (E, F) Comparing TME components in test3 cohort (*** indicates p < 0.001); (G) The
correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-

year in the test3 cohort.

(R=-0.38, p=0.00018), testl cohort (R=-0.3, p=0.0014), test2 cohort
(R=-0.29, p=4.4e-05), and test3 cohort (R=-0.36, p=4.6e-05)
(Figure 9G); the percentage of resting CD4+ T memory cells had
a significant positive relationship with risk score in train cohort
(R=0.3, p=0.0029), testl cohort (R=0.26, p=0.0048), test2 cohort
(R=0.24, p=0.00082), and test3 cohort (R=0.25,
p=0.0049) (Figure 9H).

Additionally, the discrepancies of ICGs™ expression in low-
and high-risk subtypes in the four cohorts showed that a total of
52 ICGs had decreasing expression in high-risk subpopulations
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(Figures 10A-D). It is 30 ICGs (HLA-A, BTLA, CD80, HLA-C,
CD27, CD40, CD86, BTN3A1, HLA-DMB, CD96, HAVCR2,
HLA-B, HLA-DMA, ICOS, HLA-DOB, LGALS9, PDCDI,
HLA-DPB1, HLA-F, HLA-DOA, HLA-DRA, HLA-E, HLA-
DQAI, IDO1, KIR2DL4, LAG3, PDCDI1LG2, HLA-DPAI,
HLA-DQBI, and TIGIT) indicated a moderately inverse
relationship with risk score in the four cohorts simultaneously
(all R<-0.3, all p<0.05) (Figures 10E-H).

Next, ICD-related genes also had differences in low- and
high-risk subpopulations. A total of 17 ICD-related genes
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FIGURE 8

Comparative analysis of ICDRS. The comparison of AUC values, survival analysis and C-indexes between ICDRS and three additional signatures
in train (A—E), testl (F-J), test2 (K—0), and test3 (P-T) cohorts.

(ATGS5, CASP1, CASP8, CD4, CD8A, CD8B, CXCR3, ENTPDI,
IENG, IFNGRI, IL1B, LY96, MYDS88, NLRP3, PRF1, TLR4,
TNF) had decreasing expression in high-risk subpopulation in

all the four cohorts simultaneously (Figure 11A). What’s more,

the activation of each immune-related pathway was different in

low- and high-risk subpopulations. High-risk subtype featured a

decreasing activation of immune-related pathways. There were

21 pathways showed statistical differences in the two

subpopulations in the four cohorts simultaneously
(Figure 11B). Of note, 6 ICD-related genes (CD8A, PRF1,
IFNG, CXCR3, TNF, CD8B) showed a moderately negative
correlation with risk score in the four cohorts consistently (all
R<-0.3, all p<0.05) (Figures 11C-F). And 20 of 21 statistically
different immune-related pathways (such as MHC class I and II-

mediated antigen presentation and processing, Toll-like and

NOD-like receptor signaling pathway, T cell and B cell
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receptor signaling pathway,

NK cell-mediated cytotoxicity, IL-

1, IL-2, and IL-10 associated signaling pathway, PD-1 and

CTLA-4 associated pathways) showed a moderately negative

correlation with risk score in the four cohorts similarly(all R<-
0.3, all p<0.05) (Figures 11G-J).

Prediction of immunotherapy response
and potential drugs for melanoma
treatment based on ICDRS

Recent researches suggested that IPS based on immunogenicity

is helpful in immunotherapy response prediction. The response
probabilities of using anti-PD-1 antibody and anti-CTLA-4
antibody in the different ICDRS subpopulations were analyzed. It
indicated that high-risk subpolulation had lower IPS and might
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FIGURE 9

The discrepancy of tumor-infiltrating immune cells in two risk subpopulations in train (A), testl (B), test2 (C), and test3 (D) and the correlation between
ICDRS-based risk score and the proportion of immune cells in the tumor immune environment in train (E), testl (F), test2 (G), and test3 (H). (* indicates

p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p>0.05).

have a worse immunotherapy response (Figures 12A-C). The
upregulated target DEGs in high-risk were explored with the
criteria for filtering were FDR < 0.05 and log2 FC > 1 in all the
four cohorts respectively. In view of respective prediction of
potential drugs in the four cohorts, 31 drugs which acted on the
upregulated target DEGs were as follows: axitinib, brivanib,
cediranib, cinobufagin, dasatinib, dovitinib, ENMD-2076, GTP-
14564, HG-6-64-01, imatinib, linifanib, masitinib, midostaurin,
motesanib, nilotinib, orlistat, ouabain, pazopanib, phenylbutazone,
PD-173074, quizartinib, RHC-80267, RO-08-2750, rofecoxib,
semaxanib, sorafenib, strophanthidin, SU-11652, sunitinib,
tandutinib, and tivozanib. And the action mechanisms were
shown in Figures 12D-G.
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Discussion

Melanoma, the deadliest type of skin cancer, is a deadly
disease that is becoming more common (48). It accounts for
about 1.7 percent of all newly diagnosed primary malignant
malignancies worldwide, and melanoma patients account for
about 0.7 percent of all cancer deaths (49-51). Due to the
influence of ICD on survival in many types of tumor including
lung (52), ovarian malignancies (22), and head and neck
squamous cell carcinoma (53) and cancer therapy (54-56), it
is meaningful to explore whether ICD has a significant impact in
tumor initiation and progression and whether ICD-related
prognostic factors can be novel therapy targets in melanoma.
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The discrepancy of the expression levels of ICGs in two risk subpopulations in train (A), testl (B), test2 (C), and test3 (D) and the correlation
between ICDRS-based risk score and the expression of ICGs in train (E), testl (F), test2 (G), and test3 (H). (* indicates p <0.05; ** indicates p <

0.01; *** indicates p < 0.001; ns: p>0.05).

Hence, two subtypes (C1 and C2) were classified by NMF
clustering. Based on the existence of survival and immune-related
discrepancies in Cl1 and C2, ICD-DEGs were identified and
utilized to construct a novel ICDRS. After internal and external
validation, a 3-gene signature, involving GBP2, THBS4, and
APOBEC3G, were unearthed. The prognostic significance of
GBP2 and APOBEC3G in melanoma has also been backed up
by other research investigations. It is reported that GBP2 exerted
anti-tumour effects by inhibiting the Wnt/B-catenin pathway in
skin cutaneous melanoma (SKCM) (57) and showed an

association with poor prognosis in SKCM when its expression

Frontiers in Immunology

decreased (58). APOBEC3G, as a member of the cellular
polynucleotide cytidine deaminases, catalyzes the deamination
of cytosine to uracil in single-stranded DNA (59, 60) is
significantly correlated with better prognosis when its
expression is elevated in SKCM patients (61). As for THBS4, its
potential role and prognostic performance in melanoma remains
unclear but it is linked to poor prognosis in many other cancers: it
effects the amplification and metastasis of gastric cancer positively
(62); it may facilitate invasion of tumour cells in breast cancer
(63); it accelerates HCC progression by modulating ITGB1

through FAK/PI3K/AKT pathway (64).
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(A) The discrepancy of the expression levels of ICD-related genes in high- and low-risk subpopulations in train, testl, test2, and test3; (B) The
discrepancy of the activity of the immune-related pathways in two risk subpopulations in train, testl, test2, and test3; The correlation between
ICDRS-based risk score and the expression of ICD-related genes in train (C), testl (D), test2 (E), and test3 (F); The correlation between ICDRS-
based risk score and immune-related pathway scores in train (C), testl (D), test2 (E), and test3 (F). The correlation between ICDRSbased risk

score and immune-related pathway scores in train (G), testl (H), test2 (1), and test3 (J). (* indicates p <0.05; ** indicates p < 0.01; *** indicates

p < 0.001; ns: p>0.05).

To guarantee the comprehensive verification and broad
applicability of the prognostic signature, four cohorts (TCGA:
train, testl and test2 cohorts; GEO: test3 cohort) were identified.
It’s worth noting that the internal validation cohort (testl and test2
cohorts) and external validation cohort (test3 cohort) coexisted. It is
the 3-gene signature that contributes to the differentiation of
patients to low- and high-risk subpopulations. In all the four
cohorts, our signature showed consistently satisfactory
performance: (1) patients in the different risk subpopulations
might be plainly discriminated from one another; (2) patients in
the high-risk subpopulation have a dismal prognosis; (3) the

Frontiers in Immunology

signature-related tumor immune microenvironments in low- and
high-risk subpopulations are statistically different; (4) ImmuneScore
had a significant inverse relationship with risk score while the
TumorPurity had a strong favorable relationship with risk score; (5)
the diagnostic values of the signature for 0.5-year, 1-year, and 2-year
survival rates were satisfactory; (6) ICDRS showed superior in
prognostic value and diagnostic accuracy compared with another
three well-recognized signatures.

As for the following in-depth investigation of the ICDRS-based
immune-related discrepancies, it has been discovered that more
infiltration of M2 macrophages but less infiltration of Ml
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FIGURE 12

Immunotherapy response prediction in train (A), testl (B), test2 (C); Potential drugs targeted the upregulated DEGs in high-risk for melanoma

treatment based on ICDRS in train (D), testl (E), test2 (F), and test3 (G).

macrophages existed in the high-risk subpopulation. Of note,
proinflammatory M1 macrophages have the ability to
phagocytose tumor cells, whereas anti-inflammatory M2
macrophages facilitate tumor development and invasion (65-67).
Consequently, the discrepancies of these immune cell infiltration
may result in a dismal prognosis of patients in high-risk
subpopulation. Additionally, the inverse relationship between risk
score and 30 ICGs suggest immune checkpoint inhibitor therapy
could be more efficient for low-risk patients. And the negative
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correlation between 6 ICD-related genes (CD8A, PRF1, IFNG,
CXCR3, TNF, CD8B) and risk score and the protective function
of these 6 genes in SKCM indicates that drugs targeting these genes
may be a novel treatment method in melanoma. Moreover, many
immune-related pathways had different activities in the two
subpopulations with different risk, and their activities were
negatively linked with risk score. All of these differences could be
the cause of differing prognoses and could be used as
immunotherapy targets.
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Finally, ICDRS-based immunotherapy response prediction
suggested that low-risk subpopulation may benefit from anti-
PD-1 and anti-CTLA-4 therapies. And the potential drugs
targeted DEGs between the different risk populations were
explored. Due to the increasing expression in high-risk
subpopulation, these drugs might be effective for the high-
risk populations.

This study has some limitations that should be
acknowledged. To begin, the ICDRS was created with a small
sample of melanoma patients from the TCGA and GEO
databases. To confirm the predictive significance of this
prognostic signature, a large-scale prospective clinical research
is required. Besides, the ICDRS was generated solely through
bioinformatic research, and further basic investigations are
required to corroborate the conclusions.

Conclusions

We successfully separated the TCGA-melanoma samples
into two subtypes on the basis of the expression of the ICD-
related genes and developed a prognostic ICDRS involving 3
genes (i.e., GBP2, THBS4, and APOBEC3G) based on the DEGs
between the two subtypes. The ICDRS exhibited good diagnostic
values and correlated with different tumor immune
microenvironment in train cohort, internal validation cohorts
(testl and test2 cohorts) and external validation cohort (test3
cohort). As a result, the ICDRS, based on the expression of three
ICD-dependent DEGs, might be applied to determine the
prognosis, the infiltration of M1/M2 macrophages, the
expression levels of ICGs and ICD-related genes, as well as the
functioning of immune-related pathways in melanoma. This will
aid in patient classification for tailored melanoma treatment.
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