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Increasing evidence has highlighted the critical functions of immunogenic cell

death (ICD) within many tumors. However, the therapeutic possibilities and

mechanism of utilizing ICD in melanoma are still not well investigated.

Melanoma samples involved in our study were acquired from The Cancer

Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.

First, pan-cancer analysis of ICD systematically revealed its expression

characteristics, prognostic values, mutation information, methylation level,

pathway regulation relationship in multiple human cancers. The non-

negative matrix factorization clustering was utilized to separate the TCGA-

melanoma samples into two subtypes (i.e. C1 and C2) with different prognosis

and immune microenvironment based on the expression traits of ICD. Then,

LASSO-Cox regression analysis was utilized to determine an ICD-dependent

risk signature (ICDRS) based on the differentially expressed genes (DEGs)

between the two subtypes. Principal component analysis and t-distributed

stochastic neighbor embedding analysis of ICDRS showed that high- and low-

risk subpopulations could be clearly distinguished. Survival analysis and ROC

curves in the training, internal validation, and external validation cohorts

highlighted the accurate prognosis evaluation of ICDRS. The obvious

discrepancies of immune microenvironment between the different risk

populations might be responsible for the different prognoses of patients with

melanoma. These findings revealed the close association of ICD with prognosis

and tumor immune microenvironment. More importantly, ICDRS-based

immunotherapy response and targeted drug prediction might be beneficial

to different risk subpopulations of patients with melanoma. The innotative

ICDRS could function as a marker to determine the prognosis and tumor
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immune microenvironment in melanoma. This will aid in patient classification for

individualized melanoma treatment.
KEYWORDS

melanoma, immunogenic cel l death, pan-cancer analysis , tumor immune
microenvironment, prognosis
Background

The most severe type of skin cancer is melanoma, which is

caused by a malignancy of melanocytes (1). It is late diagnosis

that leads to the poor prognosis in melanoma (2). Although

typical therapies such as surgical excision (3), immunotherapy

(4), gene therapy (5) are wildly used for melanoma patients, the

mortality of melanoma has increased steadily in the last decades,

which results in public health problems (6). Hence, there is need

to come up with sensitive approaches for accurate assessment of

clinical outcomes of melanoma patients, facilitating the

development of precision medicine.

In recent years, most immune system components have been

notified to be linked to melanoma’s genesis and progression (7,

8). Currently, PD-1, PD-L1, and CTLA-4 inhibitors which are

examples of immunotherapy medications are applied in

melanoma (9–11). However, these treatments are only effective

in a small number of patients, with a vast number of patients

having a restricted or non-existent response to treatment,

particularly as the melanoma progresses. As a result, in order

to investigate the potential predictive usefulness of immune and

immune-related indicators, extensive investigations of the

relationship between immune and melanoma are required.

The Nomenclature Committee on Cell Death (NCCD) has

developed recommendations for defining and interpreting cell

death from morphological, biochemical, and functional viewpoints

over the last decade (12). Immunogenic cell death (ICD) is a distinct

sort of cell death produced by a variety of anticancer treatment

modalities, such as radiotherapy and chemotherapeutic medicines.

In immunocompetent hosts, it entails activating the immune system

against malignancy. ICD is followed by the exposure and generation

of various molecular patterns linked to damage, which offer a strong

adjuvanticity to dying cancer cells by favoring antigen-presenting cell

recruitment and activation (13–15). Improving the immunogenicity

of tumor cells by inducing ICD is a crucial strategy for improving

cancer immunotherapy (16). However, the therapeutic possibilities

and mechanism of utilizing ICD in melanoma are still not

well investigated.

In this research, two subtypes with different prognosis and

immune environment in melanoma were identified on the basis

of ICD-related genes and an ICD-dependent risk signature

(ICDRS) was created with the differentially expressed genes
02
(DEGs) between the two melanoma subtypes. Additionally, the

relation between the signature, prognosis and immune were

further analyzed. The findings in the study illustrated that a

novel ICDRS might be utilized as a helpful marker for the

prognostic prediction and immune environment assessment

in melanoma.
Materials and methods

Data collection

The Cancer Genome Atlas (TCGA) system was established

in 2006 by the National Human Genome Institute and the

National Cancer Institute with the purpose to map cancer

genes, understand cancer’s potential pathways, and improve

the ability of preventing the advancement of cancer, making

precise diagnoses, and curing cancer (https://portal.gdc.cancer.

gov/). High-throughput microarray and next-generation

sequencing gene function data sets are archived in the Gene

Expression Omnibus (GEO), a public database that is accessible

worldwide. In the current study, the TCGA database was used to

gather mRNA expression, clinical features, single nucleotide

variation (SNV), copy number variation (CNV) and

methylation data of pan-cancer (17, 18). In addition, GEO

database was also searched to acquire mRNA expression

profiles and corresponding clinical characteristics of melanoma

transcriptome (19–21). ICD-related genes were identified based

on the literature (22). Common immune checkpoint

genes (ICGs) were identified from the review (23). The

‘c2.cp.kegg.v7.4.symbols.gmt’ file received from the Molecular

Signatures Database (MSigDB) was used to identify immune-

related pathway genes (MSigDB) (24–26).
Data procession

To find intersecting genes, the intersection of melanoma

mRNA expression matrix from TCGA and melanoma mRNA

expression matrix from GEO were taken. Data about crossing

genes’ expression from the TCGA and GEO were transformed to

log2(x + 1) form and batch normalized by conducting the
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“ComBat” function in the “sva” package in R. The transcriptome

data of the intersecting genes in TCGA and GEO datasets were

merged with corresponding clinical data, respectively.
Pan-cancer analysis

In recent years, various studies have been conducted to

investigate the association between ICD-related genes and

malignancies. Nonetheless, the prognostic effect, expression level,

CNV, SNV and methylation of ICD-related genes in different types

of cancers are poorly summarized. Thus, a pan-cancer assessment

about these factors of ICD-related genes was carried out using the

similar methods as the previous studies (27–32). Fold change of

expression of ICD-related genes in pan-cancer was assessed.

Univariate Cox regression analysis was performed to determine

the ICD-related genes’ prognostic importance in distinct

malignancies. CNV amplification and CNV deletion were

evaluated. SNV of each gene was accumulated and the mutation

frequency were calculated as follows: samples with SNV/all samples.

The SNV type was also summed up. The pan-cancer methylation

variation compared with normal tissue was analyzed. Additionally,

for unveiling immune-related pathways affected by ICD-related

genes, ICD scores in each sample of each cancer were computed

through single sample gene set enrichment analysis (ssGSEA).

Samples with the bottom and top 30% of ICD scores were

selected into two groups respectively. Then, gene set enrichment

analysis (GSEA) and the transcriptome were utilized to explore the

difference of immune-related pathway activities caused by ICD-

related difference between high-ICD and low-ICD groups. R and

TBTools were used to conduct all of these analyses (33).
NMF clustering identification of two
subtypes of melanoma

The mRNA expression matrix of ICD-related genes in

TCGA dataset was collected to perform non-negative matrix

factorization (NMF) clustering with the adjusted number of

clusters as 2-10 by utilizing the “NMF” package in R (34). The

standard “brunet” option was selected, and 100 iterations were

performed. The most appropriate clustering number was

determined based on the NMF rank surveys and

discrimination between different cluster subtypes (35).
Comparison of the clinical traits,
survival status, tumor immune
microenvironment, and gene expression
levels between different cluster subtypes

The fisher test was employed to the compositional

discrepancies of clinical traits in different subtypes. Kaplan–Meier
Frontiers in Immunology 03
analyses were conducted to investigate the differences of disease

specific survival (DSS), overall survival (OS), and progression free

interval (PFI) in different subtypes. The wilcox test was employed to

investigate the discrepancies of tumor immune microenvironment

in different cluster subtypes after computing the ImmuneScore and

TumorPurity of each melanoma sample by utilizing the “estimate”

package in R (36). The CIBERSORT approach was employed to

compare the infiltration composition of 22 immune cells in each

melanoma sample (37, 38). The wilcox test was then implemented

to investigate the discrepancy in the immune cell infiltration and the

ICG expression levels between different subtypes (39). The ‘limma’

package in R was utilized to identify the ICD-dependent DEGs

(ICD-DEGs) between the two melanoma subtypes and FDR < 0.05

and | log 2 fold-change (FC) | > 1 were used as screening criteria.
Development and verification of a risk
signature based on ICD- DEGs

Melanoma samples from the TCGA dataset with full

transcriptome and survival data were randomly separated into

two cohorts: train and test1. Following that, all TCGA samples

were set as test2 cohort, whereas every GEO sample was included

in test3 cohort.

In train cohort, univariate Cox regression analysis was

carried out for distinguishing prognostic ICD-DEGs (screening

criteria: p < 0.05). Secondly, to minimize over-fitting and choose

relevant variables among the prognostic ICD-DEGs, least

absolute shrinkage and selection operator (LASSO) regression

analysis was employed. After that, multivariate Cox proportional

hazards regression analysis was conducted for identifying an

ICD-dependent risk signature (ICDRS) and the risk score of

each sample was determined under the help of the “predict”

function in R. Following the calculation of each sample’s risk

score in the train cohort, samples were stratified into low- and

high-risk subpopulations depending on the median value. Then,

based on the median risk score of the train cohort, the melanoma

patients in the three test cohorts were all categorized into high-

and low-risk subpopulations. The following analyses were

carried out in the train and three test cohorts for ICDRS

creation, external validation, and internal validation: (1) the

use of principal component analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE) to visualize sample

classification; (2) the use of Kaplan-Meier analysis to

investigate the discrepancies of survival status in high- and

low-risk subpopulations; (3) the use of the ‘pheatmap’ R

package to display the expression levels of the genes in the

ICDRS; (4) the use of the wilcox test for investigating the

variations of tumor immune microenvironment in low- and

high-risk subpopulations after computing the ImmuneScore and

TumorPurity of each melanoma sample utilizing transcriptome

data the “estimate” package in R; (5) the use of Pearson

correlation analysis to illustrate the correlation between
frontiersin.org
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ImmuneScore and TumorPurity and risk score; (6) the use of a

time-dependent receiver operating characteristic (ROC) curve to

verify the ICDRS diagnostic values for 0.5-year, 1-year, and 2-

year survival rates utilizing the ‘survivalROC’ package in R. (7)

combined application of survival analysis, time-dependent ROC

curve, and C-index to highlight the accuracy of our signature

comparing with another three well-established signatures [a

ferroptosis-related signature recognized by Zeng et al. (40), a

metabolism-related signature recognized by Deng et al. (41), and

a pyroptosis-related signature recognized by Wu et al. (42)].
The ICDRS-based immune-related
discrepancies in all the four cohorts

After the investigation about the discrepancies of the tumor

immune microenvironment between the low- and high-risk

subpopulations, the ICDRS-depend immune-related

discrepancies were studied in depth. First, the different

expression analysis of ICGs and ICD-related genes between

low- and high-risk subpopulations was conducted by utilizing

the wilcox test. Then, the varied infiltration of immune cells

between low- and high-risk subpopulations was analyzed after

calculating the infiltration composition of 22 immune cells in

every melanoma sample according to CIBERSORT algorithm

(37, 43). In addition, the activities of immune-related pathways

were compared with the help of the wilcox test after evaluating

the activities of these pathways according to the transcriptome

data by the single sample gene set enrichment analysis (ssGSEA)

in R (18, 44, 45).
The correlation analysis between ICDRS-
based risk score and immune-related
indicators in all the four cohorts

All the statistically different immune-related indicators in all

cohorts concurrently were studied deeply in the following

analysis. It is Pearson correlation analysis that was performed

for illustrating the relationship between ICDRS-based risk score

and immune-related indicators including the proportion of

immune cells existing in the tumor immune environment, the

expression of ICGs and ICD-related genes, and the immune-

related pathway scores.
Prediction of immunotherapy response
and potential drugs for melanoma
treatment based on ICDRS

Immunotherapy is wildly applied in melanoma. To

distinguish patients more suitable for immune checkpoint

inhibitor (ICI) treatment, the Cancer Immunome Atlas
Frontiers in Immunology 04
(TCIA), a database helping predict immunotherapy response,

was searched to downloaded immunophenoscores (IPS) of

melanoma samples in TCGA (46, 47). Subsequently,

wilcox.test was utilized to compared IPS between low- and

high-risk subpopulations in the three cohorts derived from

TCGA. Of note, IPS is a satisfied predictor for anti-PD-1 and

anti-CTLA-4 therapies. In order to investigate the potential

drugs for melanoma patients, DEGs between low- and high-

risk subpopulations were additionally explored utilizing the

‘limma’ in R and those DEGs which expressed highly in high-

risk subpopulation were identified with the filtering parameters

were FDR < 0.05 and log2 FC > 1. Then CMap database (https://

clue.io/COMMAND) was applied to predict potential drugs

which targeted highly expressed DEGs in all the four

cohorts respectively.
Results

Data procession

Figure 1 shows a flow chart with a summary of the research

process. The analysis includes 472 melanoma samples from the

TCGA database and an additional 214 melanoma samples

(GSE65904) from the GEO database. A total of 20,188

common genes were found after all of the genes from the

TCGA and GEO datasets were intersected. Notably, 37 TCGA

melanoma samples and 4 GEO melanoma samples were omitted

because their survival data was incomplete. Totally, the mRNA

expression data and survival data of 435 TCGA melanoma

samples and 210 GEO melanoma samples were merged

respectively. For the following research, 34 ICD-related genes

were included.
ICD-related genes’ mRNA expression and
prognostic significance across
cancer types

First, Figure 2A shows the levels of mRNA expression of

ICD-related genes. In the heat map, IFNG indicated a clearly

elevated expression in CESC, KIRC, and GBM. IFNB1 showed a

markedly elevated expression in BRCA and BLCA, while IL6

showed an obviously decreasing expression in BRCA and BLCA.

To more vividly demonstrate the importance of variance in

mRNA expression levels, a heat map displaying -lg (pValue) was

constructed. The more intense the change of mRNA expression

in corresponding tumor, the redder the color. (Figure 2B). The

results of univariate cox regression analysis between the mRNA

expression and OS distinguished risky ICD-related genes

(HR>1, p<0.05) and protective ICD-related genes (HR<1,

p<0.05). Of note, CD4, FOXP3, CD8A, CXCR3, IFNG, PRF1,
frontiersin.org
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MYD88, ATG5, CD8B, IL1R1, TLR4, PIK3CA, TNF, CASP8,

and EIF2AK3 showed protective function in SKCM (Figure 2C).
CNV, SNV, methylation of ICD-related
genes and immune-related pathways
affected by ICD-related genes in
different types of cancers

The CNV, SNV and methylation existed in various cancers.

The summary of pan-cancer CNV suggested CNV occurred in

various cancers at high frequencies (>5%) (Figure 2D). The SNV

states of ICD-related genes were evident and attractive in UCEC.

And the PIK3CA showed higher SNV in BRCA, COAD, and

UCEC. The mutation frequency of PIK3CA SNV in UCEC reached

nearly 50% (Figure 2E). Exactly, the SNV types of PIK3CA were

mainly Missense_Mutation (Figure 2F). Of note, the PIK3CA

methylation made no sense in most cancers (Figure 2G). Indeed,

ICD-related genes might correlate to many immune-related

pathways which were shown in Figure 2H.
NMF clustering identifying of two
melanoma subtypes

According to the ICD-related genes’ expression matrix, NMF

clustering was conducted and the optimal clustering number of 2

was selected (Figure 3A). The compositional differences of clinical

traits between cluster1 and cluster2 suggests that the two subtypes
Frontiers in Immunology 05
differed statistically in many aspects such as survival status, cancer

status, and tumor stage (Figure 3B). As for the different survival

status in the two clusters, samples in cluster2 had better DSS, OS,

and PFI (Figures 3C–E).

The tumor immune microenvironment is also statistically

different. The higher ImmuneScore, which is correlated with

immune components, existed in C2. The TumorPurity in C2 is

worse than those in C1 (Figure 3F). Of note, the tumor-infiltrating

immune cells in different subtypes showed different percentages.

There were more anti-tumor immune cells in C2 such as CD8+ T

cells, activated CD4+ T memory cells, activated NK cells, and M1

macrophages. As for cancer-promoting immune cells, M2

macrophages are downregulated in C2 (Figure 3G). ICGs also

displayed discrepancies in the two cluster subtypes. Almost all the

ICGs had a higher expression in C2. It is noteworthy that common

immunotherapy targets including PD-1(PDCD1), PD-L1(CD274),

and CTLA4 were highly expressed in C2 (Figure 3H).
Investigation of ICD-DEGs and
construction of an ICDRS

In view of the statistically different survival status and tumor

immune microenvironment in the two cluster subtypes, the two

clusters can be differentiated from each other. Then 534 ICD-

DEGs between cluster1 and cluster2 were identified

(Supplementary Figure 1). The findings of the univariate Cox

regression analysis revealed that 237 of the 534 ICD-DEGs

might be used as prognostic predictors. Subsequently,
FIGURE 1

The present study’s workflow.
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collinearity among the 237 ICD-DEGs was eliminated and over-

fitting of the prognostic signature was avoided through LASSO

regression analysis (Supplementary Figures 2A, B). 3 ICD-DEGs

were selected for further multivariate Cox regression analysis

(Supplementary Figure 2C). Finally, an ICDRS was developed

using multivariate Cox proportional hazards regression analysis

incorporating 3 ICD-DEGs (i.e., GBP2, THBS4, and

APOBEC3G). The “predict” function in R was applied to

calculate risk score of each patient with melanoma in all the

four cohorts, and samples were separated into high- and low-risk
Frontiers in Immunology 06
subpopulations using the median risk score of 1.0342095 in train

as cutoff value.

PCA and T-SNE were then conducted to determine the

overall distribution of melanoma samples in low- and high-risk

subpopulations. The patients within the two subpopulations can

be effectively differentiated (Figures 4A, B). The survival analysis

illustrated samples in the two subpopulations correspond to

different survival status: OS rates were lower in the high-risk

subpopulation (p < 0.05) (Figure 4C). Then levels of expression

of these three ICD-DEGs in ICDRS are shown by a heatmap:
A B

D

E

F

G

H

C

FIGURE 2

Pan-cancer overview of ICD-related genes. The discrepancies in expression levels of ICD-related genes across pan-cancer and corresponding
paracancerous tissues (A): log2(FC), (B): -lg(pValue)). (C) Survival landscape of ICD-related genes across cancer types. (D) CNV of ICD-related
genes in various cancers. (E, F) SNV frequencies and types in pan-cancer. (G) Methylation variation of ICD-related genes in pan-cancer.
(H) Immune-related pathways affected by ICD-related genes (The redder the color, the higher the normalized enrichment score (NES); the
larger the dot, the lower the corrected p-value).
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GBP2 and APOBEC3G in high-risk subpopulation had lower

levels of expression while THBS4 had higher expression in high-

risk subpopulation compared with low-risk subpopulation

(Figure 4D). Moreover, the tumor immune microenvironment

was also statistically different in low- and high-risk

subpopulations: patients with high-risk exhibited decreased

levels of ImmuneScore but showed increased levels of

TumorPurity compared with low-risk patients (Figures 4E, F);

in addition, the ImmuneScore indicated a highly adverse

correlation with risk score (R=-0.52, P=2.8e-16) while the

TumorPurity indicated a moderately positive correlation with
Frontiers in Immunology 07
risk score (R=0.39, P=2.5e-09) (Figures 4G, H). Moreover, the

ROC curves’ area under the curve (AUC) values are 0.922, 0.763,

and 0.696 for 0.5-, 1-, and 2-year survival (Figure 4I).
Internal and external validation of the
ICDRS in melanoma

First, patients in the three test cohorts were grouped

respectively into low- and high-risk subpopulations according to

median risk score of train cohort as the unified benchmark. For the
A

B

D

E

F G

H

C

FIGURE 3

Comparison of the clinical traits, survival status, tumor immune microenvironment between different cluster subtypes obtained by NMF
clustering. (A) The optimal clustering number of 2; (B) Pie charts illustrating the clinicopathologic factors in the two molecular subtypes; (C–E)
Kaplan–Meier analyses (DSS, OS and PFI) based on the two molecular subtypes; (F) Comparison of TME components; (G) Discrepancy analysis
of tumor-infiltrating immune cells in different subtypes; and (H) Differential expression analysis of 68 immune checkpoints genes between two
molecular subtypes.(* indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p > 0.05).
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internal validation (test 1 and test2 cohorts) and the external

validation (test3 cohort), patients in the two subpopulations could

be easily distinguished from one another using T-SNE and PCA

(Figures 5A, B, 6A, B, 7A, B). Similarly, in the three test cohorts,

patients in high-risk subpopulation experienced poorer OS (all p <

0.05) (Figures 5C, 6C, and 7C). Also, the heatmaps obtained from

the three test cohorts demonstrated the presence of GBP2 and

APOBEC3G with attenuated expression while THBS4 with high

expression in the high-risk subpopulation (Figures 5D, 6D, and

7D). Likewise, the tumor immune microenvironment was
Frontiers in Immunology 08
statistically different in these three cohorts which was the same as

the results in train cohort (Figures 5E, F, 6E, F, and 7E, F).

Moreover, the ImmuneScore also showed a significant negative

relationship with risk score in test1 cohort (R=-0.4, p=1.2e-09), test2

cohort (R=-0.43, p<2.2e-16), and test3 cohort (R=-0.6, p<2.2e-16)

(Figures 5G, 6G, and 7G), while the TumorPurity also indicated a

significant positive relationship with risk score in test1 cohort

(R=0.25, p=0.00026), test2 cohort (R=0.29, p=5.2e-10), and test3

cohort (R=0.39, p=5.2e-09) (Figures 5H, 6H, and 7H). As for the

diagnostic value of risk score, the AUC values of the ROC curves
A B

D

E F

G

I

H

C

FIGURE 4

Construction of ICDRS in the train cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based risk
score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the train cohort; (D) Distribution pattern of the expression
levels of the 3 genes in the train cohort; (E, F) Comparing TME components in train cohort (*** indicates p < 0.001); (G) The correlation
between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of ROC curves in the train
cohort.
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were 0.768, 0.767, and 0.673 in the test1 cohort, 0.852, 0.762, and

0.684 in the test2 cohort, and 0.729, 0.706, and 0.730 in the test3

cohort for 0.5-, 1-, and 2-year survival, respectively (Figures 5I, 6I,

and 7I). Of note, all the results in the internal validation (test1 and

test2 cohorts) and external validation (test3 cohorts) were consistent

with those in train cohort.

What’s more, taking the ICDRS-based survival probability

discrepancy, AUC value, and C-index into consideration

simultaneously, ICDRS showed superior in prognostic value and

diagnostic accuracy compared with another three signatures

(Figure 8). On the basis of the AUC, ICDRS showed a satisfied

and stable performance in all the four cohorts. Of note, the
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discrepancies of the survival probability in different risk

subpopulations distinguished by another three signatures

sometimes showed no statistical significance. And the C-indexes

of ICDRS were higher than another three signatures and were 0.66,

0.62, 0.64, and 0.67 in the four different cohorts respectively.
The ICDRS-based immune-related
discrepancies in all the four cohorts

In v i ew of the d i ff e r ence s in tumor immune

microenvironment in low- and high- risk subpopulations,
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FIGURE 5

Internal verification of ICDRS in test1 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based
risk score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the test1 cohort; (D) Distribution pattern of the
expression levels of the 3 genes in the test1 cohort; (E, F) Comparing TME components in test1 cohort (*** indicates p < 0.001); (G) The
correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-
year in the test1 cohort.
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more in-depth exploration of immune-related discrepancies

were made in all the four cohorts in the following research.

First, the consensus discrepancy of tumor-infiltrating immune

cells in low- and high-risk subpopulations in the four cohorts

indicated that less infiltration abundance of M1 macrophages and

activated CD4+ T memory cells but more infiltration of M2

macrophages and resting CD4+ T memory cells existed in the

high-risk subpopulation (Figures 9A–D). Subsequently, the Pearson

correlation analysis showed that the proportion ofM1macrophages
Frontiers in Immunology 10
had a significant inverse relationship with risk score in train cohort

(R=-0.3, p=0.0037), test1 cohort (R=-0.22, p=0.021), test2 cohort

(R=-0.23, p=0.0016), and test3 cohort (R=-0.31, p=0.00041)

(Figure 9E); the percentage of M2 macrophages had a significant

positive relationship with risk score in train cohort (R=0.37,

p=0.00026), test1 cohort (R=0.35, p=0.00016), test2 cohort

(R=0.35, p=5.9e-07), and test3 cohort (R=0.56, p=2.2e-11)

(Figure 9F); the proportion of activated CD4+ T memory cells

had a significant inverse relationship with risk score in train cohort
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FIGURE 6

Internal verification of ICDRS in test2 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based
risk score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the test2 cohort; (D) Distribution pattern of the
expression levels of the 3 genes in the test2 cohort; (E, F) Comparing TME components in test2 cohort (*** indicates p < 0.001); (G) The
correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-
year in the test2 cohort.
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(R=-0.38, p=0.00018), test1 cohort (R=-0.3, p=0.0014), test2 cohort

(R=-0.29, p=4.4e-05), and test3 cohort (R=-0.36, p=4.6e-05)

(Figure 9G); the percentage of resting CD4+ T memory cells had

a significant positive relationship with risk score in train cohort

(R=0.3, p=0.0029), test1 cohort (R=0.26, p=0.0048), test2 cohort

(R=0 .24 , p=0 .00082) , and te s t3 cohor t (R=0 .25 ,

p=0.0049) (Figure 9H).

Additionally, the discrepancies of ICGs’ expression in low-

and high-risk subtypes in the four cohorts showed that a total of

52 ICGs had decreasing expression in high-risk subpopulations
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(Figures 10A–D). It is 30 ICGs (HLA-A, BTLA, CD80, HLA-C,

CD27, CD40, CD86, BTN3A1, HLA-DMB, CD96, HAVCR2,

HLA-B, HLA-DMA, ICOS, HLA-DOB, LGALS9, PDCD1,

HLA-DPB1, HLA-F, HLA-DOA, HLA-DRA, HLA-E, HLA-

DQA1, IDO1, KIR2DL4, LAG3, PDCD1LG2, HLA-DPA1,

HLA-DQB1, and TIGIT) indicated a moderately inverse

relationship with risk score in the four cohorts simultaneously

(all R<-0.3, all p<0.05) (Figures 10E–H).

Next, ICD-related genes also had differences in low- and

high-risk subpopulations. A total of 17 ICD-related genes
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FIGURE 7

External verification of ICDRS in test3 cohort. (A, B) PCA and t-SNE analysis illustrated an excellent clustering performance of the ICDRS-based
risk score; (C) Kaplan–Meier survival curves for the overall survival of two risk groups in the test3 cohort; (D) Distribution pattern of the
expression levels of the 3 genes in the test3 cohort; (E, F) Comparing TME components in test3 cohort (*** indicates p < 0.001); (G) The
correlation between ImmuneScore and risk score; (H) The correlation between TumorPurity and risk score; (I) AUC values of 0.5-, 1-, and 2-
year in the test3 cohort.
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(ATG5, CASP1, CASP8, CD4, CD8A, CD8B, CXCR3, ENTPD1,

IFNG, IFNGR1, IL1B, LY96, MYD88, NLRP3, PRF1, TLR4,

TNF) had decreasing expression in high-risk subpopulation in

all the four cohorts simultaneously (Figure 11A). What’s more,

the activation of each immune-related pathway was different in

low- and high-risk subpopulations. High-risk subtype featured a

decreasing activation of immune-related pathways. There were

21 pathways showed statistical differences in the two

subpopulations in the four cohorts simultaneously

(Figure 11B). Of note, 6 ICD-related genes (CD8A, PRF1,

IFNG, CXCR3, TNF, CD8B) showed a moderately negative

correlation with risk score in the four cohorts consistently (all

R<-0.3, all p<0.05) (Figures 11C–F). And 20 of 21 statistically

different immune-related pathways (such as MHC class I and II-

mediated antigen presentation and processing, Toll-like and

NOD-like receptor signaling pathway, T cell and B cell
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receptor signaling pathway, NK cell-mediated cytotoxicity, IL-

1, IL-2, and IL-10 associated signaling pathway, PD-1 and

CTLA-4 associated pathways) showed a moderately negative

correlation with risk score in the four cohorts similarly(all R<-

0.3, all p<0.05) (Figures 11G–J).
Prediction of immunotherapy response
and potential drugs for melanoma
treatment based on ICDRS

Recent researches suggested that IPS based on immunogenicity

is helpful in immunotherapy response prediction. The response

probabilities of using anti-PD-1 antibody and anti-CTLA-4

antibody in the different ICDRS subpopulations were analyzed. It

indicated that high-risk subpolulation had lower IPS and might
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FIGURE 8

Comparative analysis of ICDRS. The comparison of AUC values, survival analysis and C-indexes between ICDRS and three additional signatures
in train (A–E), test1 (F–J), test2 (K–O), and test3 (P–T) cohorts.
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have a worse immunotherapy response (Figures 12A–C). The

upregulated target DEGs in high-risk were explored with the

criteria for filtering were FDR < 0.05 and log2 FC > 1 in all the

four cohorts respectively. In view of respective prediction of

potential drugs in the four cohorts, 31 drugs which acted on the

upregulated target DEGs were as follows: axitinib, brivanib,

cediranib, cinobufagin, dasatinib, dovitinib, ENMD-2076, GTP-

14564, HG-6-64-01, imatinib, linifanib, masitinib, midostaurin,

motesanib, nilotinib, orlistat, ouabain, pazopanib, phenylbutazone,

PD-173074, quizartinib, RHC-80267, RO-08-2750, rofecoxib,

semaxanib, sorafenib, strophanthidin, SU-11652, sunitinib,

tandutinib, and tivozanib. And the action mechanisms were

shown in Figures 12D–G.
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Discussion

Melanoma, the deadliest type of skin cancer, is a deadly

disease that is becoming more common (48). It accounts for

about 1.7 percent of all newly diagnosed primary malignant

malignancies worldwide, and melanoma patients account for

about 0.7 percent of all cancer deaths (49–51). Due to the

influence of ICD on survival in many types of tumor including

lung (52), ovarian malignancies (22), and head and neck

squamous cell carcinoma (53) and cancer therapy (54–56), it

is meaningful to explore whether ICD has a significant impact in

tumor initiation and progression and whether ICD-related

prognostic factors can be novel therapy targets in melanoma.
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FIGURE 9

The discrepancy of tumor-infiltrating immune cells in two risk subpopulations in train (A), test1 (B), test2 (C), and test3 (D) and the correlation between
ICDRS-based risk score and the proportion of immune cells in the tumor immune environment in train (E), test1 (F), test2 (G), and test3 (H). (* indicates
p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: p>0.05).
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Hence, two subtypes (C1 and C2) were classified by NMF

clustering. Based on the existence of survival and immune-related

discrepancies in C1 and C2, ICD-DEGs were identified and

utilized to construct a novel ICDRS. After internal and external

validation, a 3-gene signature, involving GBP2, THBS4, and

APOBEC3G, were unearthed. The prognostic significance of

GBP2 and APOBEC3G in melanoma has also been backed up

by other research investigations. It is reported that GBP2 exerted

anti-tumour effects by inhibiting the Wnt/b-catenin pathway in

skin cutaneous melanoma (SKCM) (57) and showed an

association with poor prognosis in SKCM when its expression
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decreased (58). APOBEC3G, as a member of the cellular

polynucleotide cytidine deaminases, catalyzes the deamination

of cytosine to uracil in single-stranded DNA (59, 60) is

significantly correlated with better prognosis when its

expression is elevated in SKCM patients (61). As for THBS4, its

potential role and prognostic performance in melanoma remains

unclear but it is linked to poor prognosis in many other cancers: it

effects the amplification and metastasis of gastric cancer positively

(62); it may facilitate invasion of tumour cells in breast cancer

(63); it accelerates HCC progression by modulating ITGB1

through FAK/PI3K/AKT pathway (64).
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FIGURE 10

The discrepancy of the expression levels of ICGs in two risk subpopulations in train (A), test1 (B), test2 (C), and test3 (D) and the correlation
between ICDRS-based risk score and the expression of ICGs in train (E), test1 (F), test2 (G), and test3 (H). (* indicates p <0.05; ** indicates p <
0.01; *** indicates p < 0.001; ns: p>0.05).
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To guarantee the comprehensive verification and broad

applicability of the prognostic signature, four cohorts (TCGA:

train, test1 and test2 cohorts; GEO: test3 cohort) were identified.

It’s worth noting that the internal validation cohort (test1 and test2

cohorts) and external validation cohort (test3 cohort) coexisted. It is

the 3-gene signature that contributes to the differentiation of

patients to low- and high-risk subpopulations. In all the four

cohorts, our signature showed consistently satisfactory

performance: (1) patients in the different risk subpopulations

might be plainly discriminated from one another; (2) patients in

the high-risk subpopulation have a dismal prognosis; (3) the
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signature-related tumor immune microenvironments in low- and

high-risk subpopulations are statistically different; (4) ImmuneScore

had a significant inverse relationship with risk score while the

TumorPurity had a strong favorable relationship with risk score; (5)

the diagnostic values of the signature for 0.5-year, 1-year, and 2-year

survival rates were satisfactory; (6) ICDRS showed superior in

prognostic value and diagnostic accuracy compared with another

three well-recognized signatures.

As for the following in-depth investigation of the ICDRS-based

immune-related discrepancies, it has been discovered that more

infiltration of M2 macrophages but less infiltration of M1
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FIGURE 11

(A) The discrepancy of the expression levels of ICD-related genes in high- and low-risk subpopulations in train, test1, test2, and test3; (B) The
discrepancy of the activity of the immune-related pathways in two risk subpopulations in train, test1, test2, and test3; The correlation between
ICDRS-based risk score and the expression of ICD-related genes in train (C), test1 (D), test2 (E), and test3 (F); The correlation between ICDRS-
based risk score and immune-related pathway scores in train (C), test1 (D), test2 (E), and test3 (F). The correlation between ICDRSbased risk
score and immune-related pathway scores in train (G), test1 (H), test2 (I), and test3 (J). (* indicates p <0.05; ** indicates p < 0.01; *** indicates
p < 0.001; ns: p>0.05).
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macrophages existed in the high-risk subpopulation. Of note,

proinflammatory M1 macrophages have the ability to

phagocytose tumor cells, whereas anti-inflammatory M2

macrophages facilitate tumor development and invasion (65–67).

Consequently, the discrepancies of these immune cell infiltration

may result in a dismal prognosis of patients in high-risk

subpopulation. Additionally, the inverse relationship between risk

score and 30 ICGs suggest immune checkpoint inhibitor therapy

could be more efficient for low-risk patients. And the negative
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correlation between 6 ICD-related genes (CD8A, PRF1, IFNG,

CXCR3, TNF, CD8B) and risk score and the protective function

of these 6 genes in SKCM indicates that drugs targeting these genes

may be a novel treatment method in melanoma. Moreover, many

immune-related pathways had different activities in the two

subpopulations with different risk, and their activities were

negatively linked with risk score. All of these differences could be

the cause of differing prognoses and could be used as

immunotherapy targets.
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FIGURE 12

Immunotherapy response prediction in train (A), test1 (B), test2 (C); Potential drugs targeted the upregulated DEGs in high-risk for melanoma
treatment based on ICDRS in train (D), test1 (E), test2 (F), and test3 (G).
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Finally, ICDRS-based immunotherapy response prediction

suggested that low-risk subpopulation may benefit from anti-

PD-1 and anti-CTLA-4 therapies. And the potential drugs

targeted DEGs between the different risk populations were

explored. Due to the increasing expression in high-risk

subpopulation, these drugs might be effective for the high-

risk populations.

This study has some limitations that should be

acknowledged. To begin, the ICDRS was created with a small

sample of melanoma patients from the TCGA and GEO

databases. To confirm the predictive significance of this

prognostic signature, a large-scale prospective clinical research

is required. Besides, the ICDRS was generated solely through

bioinformatic research, and further basic investigations are

required to corroborate the conclusions.
Conclusions

We successfully separated the TCGA-melanoma samples

into two subtypes on the basis of the expression of the ICD-

related genes and developed a prognostic ICDRS involving 3

genes (i.e., GBP2, THBS4, and APOBEC3G) based on the DEGs

between the two subtypes. The ICDRS exhibited good diagnostic

values and correlated with different tumor immune

microenvironment in train cohort, internal validation cohorts

(test1 and test2 cohorts) and external validation cohort (test3

cohort). As a result, the ICDRS, based on the expression of three

ICD-dependent DEGs, might be applied to determine the

prognosis, the infiltration of M1/M2 macrophages, the

expression levels of ICGs and ICD-related genes, as well as the

functioning of immune-related pathways in melanoma. This will

aid in patient classification for tailored melanoma treatment.
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26. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database (MSigDB) hallmark gene set collection. Cell syst
(2015) 1(6):417–25. doi: 10.1016/j.cels.2015.12.004

27. Yuan Q, Deng D, Pan C, Ren J, Wei T, Wu Z, et al. Integration of
transcriptomics, proteomics, and metabolomics data to reveal HER2-associated
metabolic heterogeneity in gastric cancer with response to immunotherapy and
neoadjuvant chemotherapy. Front Immunol (2022) 13:951137. doi: 10.3389/
fimmu.2022.951137

28. Zhang Y, Chen M, Liu M, Xu Y, Wu G. Glycolysis-related genes serve as
potential prognostic biomarkers in clear cell renal cell carcinoma. Oxid Med Cell
longevity (2021) 2021:6699808. doi: 10.1155/2021/6699808

29. Che X, Qi X, Xu Y, Wang Q, Wu G. Genomic and transcriptome analysis to
identify the role of the mTOR pathway in kidney renal clear cell carcinoma and its
potential therapeutic significance. Oxid Med Cell longevity (2021) 2021:6613151.
doi: 10.1155/2021/6613151

30. Wu G, Xu Y, Zhang H, Ruan Z, Zhang P, Wang Z, et al. A new prognostic
risk model based on autophagy-related genes in kidney renal clear cell carcinoma.
Bioengineered. (2021) 12(1):7805–19. doi: 10.1080/21655979.2021.1976050
Frontiers in Immunology 18
31. Che X, Qi X, Xu Y, Wang Q, Wu G. Using genomic and transcriptome
analyses to identify the role of the oxidative stress pathway in renal clear cell
carcinoma and its potential therapeutic significance.Oxid Med Cell longevity (2021)
2021:5561124. doi: 10.1155/2021/5561124

32. Qi X, Che X, Li Q, Wang Q, Wu G. Potential application of pyroptosis in
kidney renal clear cell carcinoma immunotherapy and targeted therapy. Front
Pharmacol (2022) 13:918647. doi: 10.3389/fphar.2022.918647

33. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An
integrative toolkit developed for interactive analyses of big biological data. Mol
Plant (2020) 13(8):1194–202. doi: 10.1016/j.molp.2020.06.009

34. Wang J, Ren J, Liu J, Zhang L, Yuan Q, Dong B. Identification and
verification of the ferroptosis- and pyroptosis-associated prognostic signature for
low-grade glioma. Bosnian J basic Med Sci (2022). doi: 10.17305/bjbms.2021.6888

35. Miao Y, Yuan Q, Wang C, Feng X, Ren J, Wang C. Comprehensive
characterization of RNA-binding proteins in colon adenocarcinoma identifies a
novel prognostic signature for predicting clinical outcomes and immunotherapy
responses based on machine learning. Combinatorial Chem High throughput
screening (2022). doi: 10.2174/1386207325666220404125228

36. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour
purity. Nat Commun (2015) 6:8971. doi: 10.1038/ncomms9971

37. Ding F, Li J, Zhang Y, Wang C, Yu Y. Identifying a novel endoplasmic
reticulum-related prognostic model for hepatocellular carcinomas. Oxid Med Cell
longevity (2022) 2022:8248355. doi: 10.1155/2022/8248355

38. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

39. Yuan Q, Ren J, Wang Z, Ji L, Deng D, Shang D. Identification of the real hub
gene and construction of a novel prognostic signature for pancreatic
adenocarcinoma based on the weighted gene Co-expression network analysis
and least absolute shrinkage and selection operator algorithms. Front Genet
(2021) 12:692953. doi: 10.3389/fgene.2021.692953

40. Zeng N, Ma L, Cheng Y, Xia Q, Li Y, Chen Y, et al. Construction of a
ferroptosis-related gene signature for predicting survival and immune
microenvironment in melanoma patients. Int J Gen Med (2021) 14:6423–38. doi:
10.2147/IJGM.S327348

41. Zeng F, Su J, Peng C, Liao M, Zhao S, Guo Y, et al. Prognostic implications
of metabolism related gene signature in cutaneous melanoma. Front Oncol (2020)
10:1710. doi: 10.3389/fonc.2020.01710

42. Wu Z, Chen L, Jin C, Xu J, Zhang X, Yao Y. A novel pyroptosis-associated
gene signature for immune status and prognosis of cutaneous melanoma. PeerJ.
(2021) 9:e12304. doi: 10.7717/peerj.12304

43. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol (2019) 37(7):773–82. doi: 10.1038/s41587-019-0114-2

44. Hu J, Yu A, Othmane B, Qiu D, Li H, Li C, et al. Siglec15 shapes a non-
inflamed tumor microenvironment and predicts the molecular subtype in bladder
cancer. Theranostics. (2021) 11(7):3089–108. doi: 10.7150/thno.53649

45. ZhuangW, SunH, Zhang S, Zhou Y,WengW,WuB, et al. An immunogenomic
signature for molecular classification in hepatocellular carcinoma. Mol Ther Nucleic
Acids (2021) 25:105–15. doi: 10.1016/j.omtn.2021.06.024

46. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Sci
(New York NY) (2015) 350(6257):207–11. doi: 10.1126/science.aad0095

47. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al.
Genomic and transcriptomic features of response to anti-PD-1 therapy in
metastatic melanoma. Cell. (2016) 165(1):35–44. doi: 10.1016/j.cell.2016.02.065

48. Sanchez JA, Robinson WA. Malignant melanoma. Annu Rev Med (1993)
44:335–42. doi: 10.1146/annurev.me.44.020193.002003

49. Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy.
Signal transduct targeted Ther (2021) 6(1):424. doi: 10.1038/s41392-021-00827-6

50. Lo JA, Fisher DE. The melanoma revolution: From UV carcinogenesis to a
new era in therapeutics. Sci (New York NY) (2014) 346(6212):945–9. doi: 10.1126/
science.1253735

51. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R,
Hauschild A, et al. Melanoma. Lancet (London England) (2018) 392(10151):971–
84. doi: 10.1016/S0140-6736(18)31559-9

52. Liu P, Zhao L, Pol J, Levesque S, Petrazzuolo A, Pfirschke C, et al.
Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat
Commun (2019) 10(1):1486. doi: 10.1038/s41467-019-09415-3

53. Wang X, Wu S, Liu F, Ke D, Wang X, Pan D, et al. An immunogenic cell
death-related classification predicts prognosis and response to immunotherapy in
head and neck squamous cell carcinoma. Front Immunol (2021) 12:781466. doi:
10.3389/fimmu.2021.781466
frontiersin.org

https://doi.org/10.1007/s11864-019-0607-8
https://doi.org/10.1007/s11864-019-0607-8
https://doi.org/10.2217/imt-2017-0143
https://doi.org/10.1155/2020/9235638
https://doi.org/10.1038/s41418-017-0012-4
https://doi.org/10.1002/1878-0261.12851
https://doi.org/10.1038/s41419-020-03221-2
https://doi.org/10.3389/fimmu.2021.705361
https://doi.org/10.1039/d1cc04604g
https://doi.org/10.1186/s12920-022-01312-x
https://doi.org/10.1080/21623945.2022.2064956
https://doi.org/10.18632/oncotarget.3655
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1080/2162402X.2015.1069938
https://doi.org/10.1093/bib/bbaa176
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.3389/fimmu.2022.951137
https://doi.org/10.3389/fimmu.2022.951137
https://doi.org/10.1155/2021/6699808
https://doi.org/10.1155/2021/6613151
https://doi.org/10.1080/21655979.2021.1976050
https://doi.org/10.1155/2021/5561124
https://doi.org/10.3389/fphar.2022.918647
https://doi.org/10.1016/j.molp.2020.06.009
https://doi.org/10.17305/bjbms.2021.6888
https://doi.org/10.2174/1386207325666220404125228
https://doi.org/10.1038/ncomms9971
https://doi.org/10.1155/2022/8248355
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3389/fgene.2021.692953
https://doi.org/10.2147/IJGM.S327348
https://doi.org/10.3389/fonc.2020.01710
https://doi.org/10.7717/peerj.12304
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.7150/thno.53649
https://doi.org/10.1016/j.omtn.2021.06.024
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1146/annurev.me.44.020193.002003
https://doi.org/10.1038/s41392-021-00827-6
https://doi.org/10.1126/science.1253735
https://doi.org/10.1126/science.1253735
https://doi.org/10.1016/S0140-6736(18)31559-9
https://doi.org/10.1038/s41467-019-09415-3
https://doi.org/10.3389/fimmu.2021.781466
https://doi.org/10.3389/fimmu.2022.998653
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2022.998653
54. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele
P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Canc (2012) 12
(12):860–75. doi: 10.1038/nrc3380

55. Lu J, Liu X, Liao YP, Wang X, Ahmed A, Jiang W, et al. Breast cancer
chemo-immunotherapy through liposomal delivery of an immunogenic cell death
stimulus plus interference in the IDO-1 pathway. ACS nano (2018) 12(11):11041–
61. doi: 10.1021/acsnano.8b05189

56. Deng H, Yang W, Zhou Z, Tian R, Lin L, Ma Y, et al. Targeted scavenging of
extracellular ROS relieves suppressive immunogenic cell death. Nat Commun
(2020) 11(1):4951. doi: 10.1038/s41467-020-18745-6

57. Ji G, Luo B, Chen L, Shen G, Tian T. GBP2 is a favorable prognostic marker
of skin cutaneous melanoma and affects its progression via the wnt/b-catenin
pathway. Ann Clin Lab sci (2021) 51(6):772–82.

58. Zhang S, Chen K, Zhao Z, Zhang X, Xu L, Liu T, et al. Lower expression of
GBP2 associated with less immune cell infiltration and poor prognosis in skin
cutaneous melanoma (SKCM). J immunother (2022) 45(6):274–283. doi: 10.1097/
CJI.0000000000000421

59. Kitamura S, Ode H, Iwatani Y. Structural features of antiviral APOBEC3
proteins are linked to their functional activities. Front Microbiol (2011) 2:258. doi:
10.3389/fmicb.2011.00258

60. Okada A, Iwatani Y. APOBEC3G-mediated G-to-A hypermutation of the
HIV-1 genome: The missing link in antiviral molecular mechanisms. Front
Microbiol (2016) 7:2027. doi: 10.3389/fmicb.2016.02027
Frontiers in Immunology 19
61. Han W, Xu J, Shen GL. Prognostic implication and functional annotations
of APOBEC3G expression in patients with melanoma. J Canc (2020) 11(17):5245–
56. doi: 10.7150/jca.46383

62. Chen X, Huang Y, Wang Y, Wu Q, Hong S, Huang Z. THBS4 predicts poor
outcomes and promotes proliferation and metastasis in gastric cancer. J Physiol
Biochem (2019) 75(1):117–23. doi: 10.1007/s13105-019-00665-9

63. McCart Reed AE, Song S, Kutasovic JR, Reid LE, Valle JM, Vargas AC, et al.
Thrombospondin-4 expression is activated during the stromal response to invasive
breast cancer. Virchows Archiv an Int J pathol (2013) 463(4):535–45. doi: 10.1007/
s00428-013-1468-3

64. Guo D, Zhang D, Ren M, Lu G, Zhang X, He S, et al. THBS4 promotes
HCC progression by regulating ITGB1 via FAK/PI3K/AKT pathway. FASEB J
Off Publ Fed Am Soc Exp Biol (2020) 34(8):10668–81. doi: 10.1096/fj.202000
043R

65. Najafi M, Hashemi Goradel N, Farhood B, Salehi E, Nashtaei MS,
Khanlarkhani N, et al. Macrophage polarity in cancer: A review. J Cell Biochem
(2019) 120(3):2756–65. doi: 10.1002/jcb.27646

66. Mills CD, Lenz LL, Harris RA. A breakthrough: Macrophage-directed
cancer immunotherapy. Cancer Res (2016) 76(3):513–6. doi: 10.1158/0008-
5472.CAN-15-1737

67. Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages
for cancer immunotherapy and drug delivery. Adv materials (Deerfield Beach Fla)
(2020) 32(40):e2002054. doi: 10.1002/adma.202002054
frontiersin.org

https://doi.org/10.1038/nrc3380
https://doi.org/10.1021/acsnano.8b05189
https://doi.org/10.1038/s41467-020-18745-6
https://doi.org/10.1097/CJI.0000000000000421
https://doi.org/10.1097/CJI.0000000000000421
https://doi.org/10.3389/fmicb.2011.00258
https://doi.org/10.3389/fmicb.2016.02027
https://doi.org/10.7150/jca.46383
https://doi.org/10.1007/s13105-019-00665-9
https://doi.org/10.1007/s00428-013-1468-3
https://doi.org/10.1007/s00428-013-1468-3
https://doi.org/10.1096/fj.202000043R
https://doi.org/10.1096/fj.202000043R
https://doi.org/10.1002/jcb.27646
https://doi.org/10.1158/0008-5472.CAN-15-1737
https://doi.org/10.1158/0008-5472.CAN-15-1737
https://doi.org/10.1002/adma.202002054
https://doi.org/10.3389/fimmu.2022.998653
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Comprehensive characterisation of immunogenic cell death in melanoma revealing the association with prognosis and tumor immune microenvironment
	Background
	Materials and methods
	Data collection
	Data procession
	Pan-cancer analysis
	NMF clustering identification of two subtypes of melanoma
	Comparison of the clinical traits, survival status, tumor immune microenvironment, and gene expression levels between different cluster subtypes
	Development and verification of a risk signature based on ICD- DEGs
	The ICDRS-based immune-related discrepancies in all the four cohorts
	The correlation analysis between ICDRS-based risk score and immune-related indicators in all the four cohorts
	Prediction of immunotherapy response and potential drugs for melanoma treatment based on ICDRS

	Results
	Data procession
	ICD-related genes’ mRNA expression and prognostic significance across cancer types
	CNV, SNV, methylation of ICD-related genes and immune-related pathways affected by ICD-related genes in different types of cancers
	NMF clustering identifying of two melanoma subtypes
	Investigation of ICD-DEGs and construction of an ICDRS
	Internal and external validation of the ICDRS in melanoma
	The ICDRS-based immune-related discrepancies in all the four cohorts
	Prediction of immunotherapy response and potential drugs for melanoma treatment based on ICDRS

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


