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Hallucinating structure-
conditioned antibody libraries
for target-specific binders
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Antibodies are widely developed and used as therapeutics to treat cancer,

infectious disease, and inflammation. During development, initial leads

routinely undergo additional engineering to increase their target affinity.

Experimental methods for affinity maturation are expensive, laborious, and

time-consuming and rarely allow the efficient exploration of the relevant

design space. Deep learning (DL) models are transforming the field of protein

engineering and design. While several DL-based protein design methods have

shown promise, the antibody design problem is distinct, and specialized

models for antibody design are desirable. Inspired by hallucination

frameworks that leverage accurate structure prediction DL models, we

propose the FvHallucinator for designing antibody sequences, especially the

CDR loops, conditioned on an antibody structure. Such a strategy generates

targeted CDR libraries that retain the conformation of the binder and thereby

the mode of binding to the epitope on the antigen. On a benchmark set of 60

antibodies, FvHallucinator generates sequences resembling natural CDRs and

recapitulates perplexity of canonical CDR clusters. Furthermore, the

FvHallucinator designs amino acid substitutions at the VH-VL interface that

are enriched in human antibody repertoires and therapeutic antibodies. We

propose a pipeline that screens FvHallucinator designs to obtain a library

enriched in binders for an antigen of interest. We apply this pipeline to the

CDR H3 of the Trastuzumab-HER2 complex to generate in silico designs

predicted to improve upon the binding affinity and interfacial properties of

the original antibody. Thus, the FvHallucinator pipeline enables generation of

inexpensive, diverse, and targeted antibody libraries enriched in binders for

antibody affinity maturation.

KEYWORDS

affinity maturation, deep learning, artificial intelligence (AI), antibody therapeutics,
antibody libraries
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.999034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.999034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.999034/full
https://orcid.org/0000-0002-4228-0341
https://orcid.org/0000-0002-3385-9191
https://orcid.org/0000-0002-3469-5686
https://orcid.org/0000-0001-6380-2324
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.999034&domain=pdf&date_stamp=2022-10-21
mailto:jgray@jhu.edu
https://doi.org/10.3389/fimmu.2022.999034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.999034
https://www.frontiersin.org/journals/immunology


Mahajan et al. 10.3389/fimmu.2022.999034
Introduction

Antibodies recognize and bind an extremely large repertoire

of antigens via six hypervariable loop regions (H1, H2, H3, L1,

L2, L3) in their variable domain (Fv) known as the

complementarity determining regions (CDRs). The CDRs

leverage a vast sequence space to target the immensely diverse

range of antigens that challenge the immune system. CDR

diversity results from V(D)J gene recombination prior to

antigen exposure followed by somatic hypermutation after

antigen exposure (1). Hence, antibodies achieve the ability to

target a diverse range of epitopes by both diversifying the CDR

sequences prior to antigen exposure and by antigen-specific

hypermutation post antigenic exposure. The process of

evolution of an antibody to bind an antigen with higher

affinity and specificity is known as affinity maturation.

In the laboratory, affinity maturation is achieved broadly in

two steps. First, large libraries of CDR regions are diversified via

methods such as random mutagenesis, targeted mutagenesis,

and chain shuffling. Second, the libraries are screened for

expression and binding through display technologies such as

yeast or phage display. These steps are repeated until enough

“hits” are found with the desired affinity. Such approaches to

affinity maturation can be expensive and time-consuming, and

rarely allow the efficient exploration of the full design space (2).

Computational methods offer faster and inexpensive alternatives

to experimental affinity maturat ion. Convent ional

computational approaches for antibody design or affinity

maturation include rational or structure-guided design

strategies (3, 4), general protein design methods such as

FastDesign (5), and antibody-specific design methods such as

AbDesign (6) and RosettaAntibodyDesign (7) (RAbD). RAbD is

notable because it allows the design of CDR sequences and

conformations in the context of the antigen. However, RAbD

requires 10-20 hours for a single design. Further, RAbD only

samples CDR sequences from PyIgClassify (8) clusters that have

arbitrary classification cutoffs and are context (surrounding

residues) agnostic. Further, Rosetta (like other methods) has

challenges in accurate modeling of CDR H3 (9).

Deep learning (DL) models are transforming the field of

protein structure-prediction, engineering, and design (10–12).

Over the last few years, DL models have emerged as the leaders

in predicting protein structures with high accuracy, and they are

increasingly being applied to protein design (11, 13, 14). For the

purpose of protein design, DL models fall in three broad

categories, 1) Sequence generation with language models (15,

16) 2) Structure-conditioned sequence generation (17, 18), and

3) Sequence agnostic structure or backbone generation (19, 20).

Since the antibody design task is primarily focused on CDRs that

are regions of high variability and flexibility, it may require
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specialized DL models (21). An example of an antibody-specific

DL model is IgLM, a language model that generates variable-

length CDR sequence libraries conditioned on chain type and/or

species-of-origin (22). IgLM designed synthetic libraries are akin

to naïve libraries that can be further screened to obtain a lead

antibody sequence. Another antibody-specific DL model treats

the problem of antibody CDR generation as an iterative

sequence-structure prediction problem (23). It also proposes a

sequence-based affinity maturation protocol that conditions

design on known sequences of binders against a target antigen.

This approach is promising when a sufficiently large library of

sequences that bind an antigenic epitope is available.

Here, we propose a fast and versatile general DL framework

for antibody design and engineering that is aimed at shortening

the cycle of antibody library generation and affinity maturation.

Given that structural information is becomingly increasingly

abundant and accessible (11, 24), our framework [like RAbD

(7)] leverages structural information of both the antibody and

the antigen.

Our approach is inspired by the hallucination framework,

that inverts a DL model for input design. A DL model is trained

by showing it hundreds of thousands (even millions or billions

when available) of training examples to find model parameters

that minimize the error or loss on the classification we seek. The

original hallucination method, DeepDream (25), inverted very

deep image classification models by starting from arbitrary

images and adjusting the input image pixels (while keeping the

model parameters fixed) until the output layer (classification

layer) of the model recognized the input image as a face or

another pattern it was originally trained to recognize. The input

images thus obtained are known as hallucinations since these are

not real images or faces but pixel patterns that are the neural

network’s idea of a face or another pattern it was trained on.

This idea of inverting neural networks has been previously

tested with success with sequence-to-structure protein DL

models to design de novo sequence-structure pairs (12),

sequences that maximize the likelihood of a target structure

(26), protein scaffolds that can host functional motifs (27). Since,

antibody DL models are becoming increasingly complex and

accurate at predicting antibody structures (24, 28), here we aim

to investigate the potential of inverting antibody-specific DL

models to design input sequences that, according to the model,

will fold into a desired target antibody structure.

We adapted the trDesign (26) approach for the specific task

of generating antibody libraries conditioned on a target antibody

structure. Our framework (Figure 1), FvHallucinator, differs

from the previous hallucination frameworks in three

important aspects. First, it is developed for the variable

domains of conventional antibodies (Fv region). To estimate

the likelihood of a structure given a sequence, we use an
frontiersin.org
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antibody specific sequence-to-structure model, DeepAb (28).

DeepAb improves the prediction of CDR H3 loop structure

over conventional approaches such as RosettaAntibody (28).

Second, the framework can be applied to hallucinate sequences

that optimize the heavy and light chain interface (29), a task that

is not suitable for hallucination frameworks with models trained

on single sequences [trRosetta (30), RoseTTAFold (31)]. And

lastly, though the framework is applicable to the design of any

subset of residues in the Fv region, its main purpose is to

generate libraries of CDRs, the hypervariable loop regions that

bind the antigen. In this regard, the FvHallucinator is distinct

from and complements existing hallucination approaches that

either design full proteins that fold into a target structure or

scaffolds that host fixed functional motifs.

The FvHallucinator aims to achieve targeted, fast, high-

throughput and combinatorial sampling of the CDR sequence

space while maintaining the conformation of the original

antibody to yield a “structure-conditioned antigen-agnostic

library”. To further select antigen-specific designs, we propose

a pipeline to virtually screen the hallucinated sequences against a

target antigen. This pipeline screens for sequences that retain

binding to the antigen in the same mode as the original binder

from a large and diverse structure-conditioned hallucinated

library resulting in a “target-specific library”. We show that

such targeted exploration of the sequence space enables in silico

improvements in binding energies and other desirable antibody-

antigen interface metrics such as hydrogen bonding, shape

complementarity and buried surface area at the interface.
Frontiers in Immunology 03
Results and discussion

Structure-conditioned subsequence
generation

A framework for Fv hallucination
We aim to design sequences that fold into a desired Fv

structure by leveraging a pretrained sequence-to-structure

prediction DL model. We adapt the trDesign (26) approach

where the problem of predicting sequence given structure has

been reframed as the problem of maximizing the conditional

probability of a sequence given structure. In the case of the Fv, we

are primarily interested in designing a subset of the residues

(CDRs, VH-VL interface), so we split the sequence S into fixed

and designable positions, SF and SD. We then seek the design

subsequence SD that maximizes the conditional probability of

the sequence S given a target structure T and the fixed sequence

SF:

max
SD

 log P(S   j  T) =  max
SD

( log P(T   j S)) + max
SD

(logP Sð Þ) (1)

The logP(T|S) is maximized by minimizing the categorical

cross entropy loss of the DeepAb model (or geometric loss; LG),

for sequence S and structure T, with respect to the design

subsequence SD. The logP(S) term is constant for hallucination

guided only by geometric losses or, to sample sequences biased

toward a particular sequence or a motif, maximized by

minimizing a sequence-based loss. Alternatively, we may alter
FIGURE 1

Hallucination framework (FvHallucinator) for generating antibody Fv libraries conditioned on structure. FvHallucinator is adapted from trDesign
(26) for antibody design. An ensemble of pretrained DeepAb (28) models is used to predict the structure of a designed sequence. The error/loss
between predicted structure and target structure is minimized iteratively to arrive at a sequence that folds into the target structure as predicted
by DeepAb.
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P(S) by initializing the design subsequence with an increased

likelihood for a sequence (e.g., “Wildtype Seeding” for seeding

initial sequence with the wildtype sequence) or by initializing

from a subset of the amino acid alphabet (e.g., omitting sampling

of a particular amino acid at design positions at the time of

sequence initialization). For the full formulation, see

Methods section.

Figure 1 shows the workflow architecture. First, we

randomly initialize subsequence SD from the amino acid

alphabet. Second, we input the full sequence to the DeepAb

model to predict inter-residues distances and orientations

(geometries), a proxy for structure. Third, we calculate the

geometric loss (see methods) between the predicted structure

representation and the target structure representation and, in

some cases, additional non-geometric losses for restricting

designs to relevant sequence spaces (detailed later). Fourth, to

minimize the geometric loss, we calculate the gradient of the loss

with respect to the design subsequence (SD) with the Stochastic

Gradient Descent (SGD) optimizer and normalize the gradient

(32), resulting in an updated subsequence matrix (number of

design positions x 20) that represents the probability of each

amino acid for each design position. Finally, we reduce this

subsequence matrix to a sequence (one amino acid per design

position) by choosing the amino acid with the maximum

probability at each design position. This designed sequence is

input back to the model by returning to step two. We repeat

steps two to five until the loss is reduced to a small value to yield

a designed sequence that folds into the target structure. Forty to

sixty iterations are required to reach convergence for a single

CDR design (SI Figure 1). A single sequence design requires

under 3 mins on an NVIDIA A100 GPU, and several designs can

be generated in parallel. All design runs (50-1200 designs per

task) reported in this work were accomplished in a few hours

with little or no parallelization (1-5 GPUs). The framework

(Figure 1) is fully automated, highly versatile, and customizable

for different design objectives mostly implemented through

different priors for the design sequence (P(S) in Equation 1).
Structure-conditioned sequence design
of CDRs and the VH-VL interface

Hallucination recovers native-like sequences
on benchmark set of 60 antibodies

To test whether the FvHallucinator can recover native-like

CDR sequences corresponding to the structures it was

conditioned on, we measured the amino acid sequence

recovery (AAR) for each CDR loop on a benchmark set of 60

antibodies first introduced in the RAbD study (7). Fifty

sequences were designed each for CDRs H1, H2, L1, L2 and

L3, and 100 sequences for CDRH3 (see Methods). We calculated

AAR as the percentage of native residues recovered per designed

CDR averaged over all 50 designs.
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We expect the AARs to be limited since CDRs are surface-

exposed and evolve in the context of the antigen. Rotamer

packing methods such as Rosetta report an AAR of less than

27% for surface residues (33). Indeed, the probability of

recovering the full wildtype sequence even when sampling

directly from position specific scoring matrix of PyIgClassify

cluster that corresponds to its target structure is vanishingly

small (SI Figure 2). However, all CDR loops except H3 fold into a

small number of “canonical structures” characterized by

structural motifs conferred in part by a few key residues (34).

Therefore, we expect hallucinated sequences to recover the

residues that are crucial for target structure realization.

Moreover, if the algorithm is seeded to search in the vicinity

of the native sequence, we expect to achieve higher AARs as the

native residues will be retained with higher probability since the

native sequence folds into the target structure. To this end, we

also performed hallucination with “wildtype seeding” where the

starting sequence of the design region is sampled using wildtype

residue types with higher probability than random

(see Methods).

Figure 2A shows the sequence recovery on all six CDRs for

the benchmark set conditioned on the native CDR loop

conformation with (dark blue) and without (light blue)

wildtype seeding. Without wildtype seeding, AAR is lower

because the algorithm recovers only the more conserved

residues (see SI Figure 3 for AAR for all, top 50% most

conserved and top 30% most conserved residues). With

wildtype seeding, the algorithm recovers over 50% of the

wildtype residues. The AARs for all 6 CDRs with wildtype

seeding is competitive with 50-70% AAR reported for RAbD

(initialized with the wildtype sequence and amino acid sampling

restricted to PyIgClassify cluster motif of the wildtype CDR

when sampled without the antigen) (7).

To benchmark hallucination on a blind dataset, we also

obtained sequence recovery on 20 antibodies (SI Table 1)

selected from the DeepAb test set (28). The average sequence

recoveries are comparable to those obtained for the RAbD

dataset (SI Figure 4).

Designed sequences’ distribution overlaps that
of the target canonical cluster

To test whether the hallucinated sequence profiles exhibit

distributions similar to those of the known sequences that fold

into the target conformation, we obtained sequence profiles from

the PyIgClassify (8) database of CDR structure clusters. To

measure the overlap between the hallucinated sequence

profiles and the PyIgClassify sequence profiles, we calculated

the average Bhattacharyya coefficient (see Methods) over all

positions on the CDR loop between the hallucinated sequence

profiles and the PyIgClassify sequence profile of the target

cluster and non-target clusters (Figure 2B; SI Figure 5). For all

CDRs, the average Bhattacharya coefficient is about 0.2 higher

for the sequence profiles belonging to the target structure cluster
frontiersin.org
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FIGURE 2

Hallucinated, structure-conditioned sequence libraries for CDR loops and the VH-VL interface. (A) Sequence recovery on the 60 antibody RAbD
benchmark set (7) from hallucination with and without wildtype seeding. RAbD values as reported in (7) for sequence recovery without antigen.
(RAbD sequence recovery is reported separately for contact and non-contact residues. To obtain a single value per-CDR, we obtained the
weighted average of contact and non-contact sequence recovery, weighted by the number of contact and non-contact residues for each CDR
over the full dataset. Also see SI Figure 3 for AAR for all, Top 50% most conserved and Top 30% most conserved residues.) (B) Average
Bhattacharya coefficient between hallucination sequence profiles and PyIgClassify (8) sequence profiles of target and non-target clusters (with
and without wildtype seeding). Averages are over all positions on the CDR. (C) Comparison of distribution perplexity of hallucinated sequence
profiles for CDRs with PyIgClassify profile of the corresponding CDR cluster for anti-neuraminidase influenza virus antibody (35) (PDB ID: 1A14).
Wildtype CDR sequence is colored in grey. Profiles were generated with wildtype seeding (SI Figure 12 shows the same for hallucinated profiles
from runs without wildtype seeding.) (D) Hallucinated sequence profile for the VH-VL interface for humanized antibody hu225 (36) (no seeding).
(E) Distribution of FR scores for VH-VL interface designs shown in (D). A higher FR score signifies amino acid residues with higher enrichment in
human repertoires.
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than the non-target clusters i.e., hallucinated sequence profiles

have higher overlap with the known sequences that fold into the

target cluster. This trend is observed for each target antibody (see

SI Figures 6-10 for BC for each target for all six loops). Although

longer CDR H3 loops cannot always be categorized into well-

resolved clusters due to higher sequence and structural diversity,

in cases where there are multiple PyIgClassify clusters available

for the target CDR H3, the hallucinated profiles have a higher

overlap with the target cluster than the non-target clusters (SI

Figures 6-10).

CDR designs retain conserved sequence motifs
and exhibit diversity

As an example of the CDR sequence profiles generated from

hallucination (with wildtype seeding), Figure 2C shows the

sequences sampled for all six loops of the anti-neuraminidase

influenza virus antibody (35) (PDB id: 1A14; RAbD dataset) as

sequence logos. (SI Figure 11 for effect of wildtype seeding on the

hallucinated sequence profile and SI Figure 12 for sequence logos

without seeding). We juxtapose each sequence logo with the

sequence logo for the PyIgClassify cluster corresponding to the

target CDR loop structure. To compare whether hallucination

correctly captures the conservation and diversity observed in

native sequences given a target conformation, we compared the

perplexity at each position on the CDR of the hallucinated

profiles to those of the PyIgClassify target cluster (Figure 2C).

Several low (H26, H29, H32, H52A, H101, L25, L26, L29, L54,

L90, L95) and high (H31, H100, L30, L34, L53, L55, L91, L93)

perplexity positions in canonical clusters are recapitulated in

hallucinated profiles (also see SI Figure 12). However, at certain

positions, hallucination perplexities differ from PyIgClassify.

Hallucination suggests that positions H28, L27, and L28 can

be varied more than the PyIgClassify profiles suggest, and

conversely hallucination does not capture the diversity of

observed profiles at positions H52, H53, H95, H96, and L96.

In the case of the H3 residues (H95, H97, H97), hallucination

suggests that the wildtype residues are more important to the H3

conformation than the PyIgClassify profile suggests. Also, some

discrepancies between hallucinated and PyIgClassify profiles are

expected as both DeepAb and PyIgClassify profiles are only

estimates of a large and incompletely mapped sequence-

structure space.

Additionally, as a control, we hallucinated designs with

wildtype seeding but with scrambled geometric losses. These

experiments showed that incorrect geometric losses generate

random sequence sampling (SI Figure 11). In a second control

we removed the wildtype seeding. These experiments showed

increased perplexities (that is, greater variation in designs) for

most but not all positions. Several key conformation-

determining positions retained critical motif residues (e.g.,

much of H1), and the H3 perplexities were similar to those

of PyIgClassify.
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We also compared the perplexities for sequence profiles

generated from hallucinated sequences to the PyIgClassify

canonical clusters (SI Figures 13-16) for all 60 targets for all

six CDRs and found correlation between the two for all CDR

loops (~0.2 – 0.55) except CDR L2 (~ 0.0) (SI Table 2). Overall,

unseeded hallucinated profiles exhibit higher perplexity than the

PyIgClassify profiles (SI Figures 15, 16).

The PyIgClassify L2 clusters (L2-8-1,2,3,4,5) have similar

conformations (SI Figure 17), suggesting that the backbone

conformation differences might be too small for the DeepAb

model/hallucination to distinguish with inter-residue distance

and orientations.

Hallucinated VH-VL interface designs
accumulate mutations enriched in human
repertoires and therapeutic antibodies

Improvements in both stability and affinity can be achieved

by optimizing the VH-VL interface (29). Hence, we applied the

FvHallucinator framework to design non-CDR VH-VL interface

residues. Another important consideration in evaluating non-

CDR designs is the likeness to human antibodies. Since

humanization of mouse antibodies remains the primary route

to therapeutic antibody development, a design method that

improves the humanness of antibodies while retaining original

contacts and structure is desired.

To evaluate the human-likeness of the hallucinated designs,

we turned to the work of Petersen et al. (37), which investigated

the amino acid preference for framework mutations in human

repertoires and FDA approved therapeutic antibodies. Petersen

et al. (37) calculated the frequency of amino acids in human

repertoires at framework positions for 25 VH genes that

represent the precursors of several FDA approved antibodies

and many of the most common VH genes. They converted these

frequencies into “FR scores”, a measure of amino acid

enrichment over the germline residue at each framework

position. They found that mutations with higher FR scores

result in lower immunogenicity and are highly enriched in

FDA approved antibodies (37). Hence, we calculated the FR

scores to evaluate the humanness of hallucination-designed

mutations at the VH-VL interface.

To evaluate the potential of hallucination in improving the

humanness of the framework residues at the VH-VL interface, we

collated a set of nine humanized antibodies and designed their

VH-VL interfaces. A significant percentage of designs exhibited

FR scores greater than the wildtype (Table 1; SI Figure 18).

Figure 2D shows the sequence profiles of the VH-VL interface

designs for the antibody hu225, a humanized version of the

mouse-derived therapeutic antibody Cetuximab (46). Figure 2E

shows the distribution of net FR scores per design (summed over

12 design positions) for 40 designs and the net FR score for the

wildtype for comparison. These data show that hallucinated

sequences have mutations that are preferentially accumulated in
frontiersin.org
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human repertoires during antibody maturation, suggesting that

hallucinated antibodies are more human-like and less

immunogenic than the starting antibody (37).
Sequence losses to restrict hallucination
to relevant sequence spaces

Many CDR sequences can fold into the same conformation.

So, when sampling with the geometric loss, the solvent exposed

residues of a CDR will sample a large and unrestricted

sequence space.

Unrestricted hallucination, guided solely by DeepAb’s

geometric loss, is apt when the goal is to sample a large and

diverse sequence space only restrained by loop conformation.

However, sometimes we seek designs close to a known sequence,

for example to retain core antigen-binding residues (Figure 3A).

To address such design objectives, we developed two restricted

modes of hallucination. In sequence-restricted hallucination, we

apply a sequence loss to sample amino acid residues close to a

given sequence. In motif-restricted hallucination, we apply a

motif loss to sample amino acid residues in specified proportions

at specified positions (e.g., 50% Y and 50% S at position 100A on

the heavy chain). These sequence-based losses are added to the

geometric loss during backpropagation to update the sequence at

the design positions (Figure 3B, see Methods).

Binding-motif restricted designs are consistent
with experimentally screened
binder sequences

To compare hallucinated designs to experimentally

generated CDR libraries, we chose a dataset of 11,300 unique

CDR H3 sequences (Trastuzumab Binder Set; TBS). To obtain

this dataset, Mason et al. (47) first constructed a single-site deep

mutational scanning (DMS) library for the CDR H3 of

Trastuzumab (trade name Herceptin) and screened them in

multiple rounds of expression and binding to HER2. This
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resulting library was highly restricted at 4 positions, namely,

H95, H99, H100 and H100A (Chothia numbered) to F/W/Y, G/

S/A, F/L/M and Y/F, respectively, while the remaining positions

varied. Mason et al. then combined this profile to generate a

combinatorial library and screened it in multiple rounds for

expression and binding to HER2. Next generation sequencing of

the binding population from the final round yielded 11,300

unique CDRH3 binders (Figure 3C) that were highly diverse at 6

out of 10 positions, suggesting that the CDR H3 may retain

binding to the antigen with little to no overlap with the wildtype

sequence (47).

To compare hallucinated designs to the TBS, we generated

designs in three separate modes –unrestricted hallucination,

sequence-restricted hallucination (with wildtype as the target

sequence) and with two different motif-restricted hallucinations.

Figure 3D shows the sequence profiles of the designs generated

from each mode. In Figure 3E, for each run, we show the joint

distribution of the minimum Levenshtein distance (LD) of the

designed sequences to the TBS sequences and the LD of the same

to the wildtype sequence.

With unrestricted hallucination, the largest fraction of

designs (Figure 3E, black box) exhibit 10% identity (LD 9)

with the wildtype yet recover 40% sequence positions of one

or more binders in the TBS. Additionally, a small fraction of

sequences exhibit about 50% sequence identity (LD 5) with the

wildtype sequence and 60% identity (LD 4) with one or

more binders.

Sequence restricted hallucination samples a sequence space

that largely retains the wildtype sequence. Most designs are

equidistant from the wildtype sequence and one or more

binders (Figure 3E).

Since the experimental library was generated with each

position restricted to the relative fractions of amino acid

residues in the DMS profile, motif-restricted hallucination is

the most comparable mode of hallucination. For the motif-

restricted hallucination, where we restricted only two (H95 and

H100A to F/W/Y and Y/F respectively) positions that form the
TABLE 1 Percentage of VH-VL hallucinated designs with improved FR scores (over wildtype) for a selected set of 9 humanized therapeutic antibodies.

PDB ID mAb Name % Designs with improved total FR Scores

1CE1 (38) Alemtuzumab 21

6BFT (39) Bevacizumab 74

6NOV (40) Ixekizumab 24

4LLU (41) Pertuzumab 85

5WUV (42) Certolizumab 100

5B8C (43) Pembrolizumab 34

6TCS (44) Omalizumab 36

5XXY (45) Atezolizumab 93

1N8Z (36) Trastuzumab 43
A total of 60 designs were obtained for each case with no seeding. See SI Figure 13 for distribution of FR scores per target.
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core-binding motif between CDRH3 and the antigen, about 50%

of hallucinated sequences show over 60% identity with one or

more binders (Figure 3E, red line). A small fraction of

hallucinated sequences exhibits 80% sequence identity

(Figure 3E) with a binder. As expected, when we restricted all

four positions that were restricted in the DMS library (H95, H99,

H100 and H100A to F/W/Y, G/S/A, F/L/M and Y/F,

respectively), the overlap with TBS increases (Figure 3E,

rightmost panel). However, the maximum sequence identity

obtained with four restrictions is 90% (Figure 3E, red box),

considerably higher than the 40% sequence identity conferred

just from restricting the four positions. Thus, restricting
Frontiers in Immunology 08
hallucination to relevant sequence spaces yields virtual

libraries that have significant overlap with experimental

libraries and is a useful strategy to generate structure-

conditioned libraries tailored towards a desired design objective.
A pipeline for screening antigen-specific
sequences from hallucinated libraries

To enrich the hallucinated library in antigen-specific binders

and to select for desired properties such as hydrogen bonding

and high shape complementarity at the interface, the antigen-
B

C

D

E

A

FIGURE 3

Strategies for guiding hallucination to relevant sequence spaces. (A) Restricted hallucination allows restricting hallucination to relevant sequence
spaces for specific design objectives such as sampling close to the wildtype sequence or retaining motifs for binding. (B) Guiding hallucination
towards different sequence spaces via geometric losses (LG, unrestricted hallucination), geometric and motif loss (LM, motif restricted
hallucination), and geometric and sequence loss (LS, sequence restricted hallucination). (C) Trastuzumab binders dataset (TBS) from Mason et al.
(47) screening of single-site and combinatorial libraries for expression and binding. (D) Hallucinated sequences shown as sequence logos for 3
modes of hallucination for the CDR H3 loop of Trastuzumab. (E) Comparison of LDs of hallucinated sequences with different strategies with
experimentally identified binders from the TBS dataset.
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antibody structure can help. We propose a pipeline (Figure 4A)

that first hallucinates a large library of structure-conditioned

antibody sequences with or without additional restrictions. Next,

we forward fold the designed sequences with DeepAb to validate

that the sequences fold into the target structure, resulting in a

structure-conditioned, antigen-agnostic library. Then, we

virtually screen the library for antigen binding by refining a

model antibody-antigen complex using Rosetta (based on the

wildtype crystal structure) and measuring the free energy of

binding to the antigen with Rosetta’s InterfaceAnalyzer (48, 49)

resulting in a structure-conditioned, target-specific library.

Finally, we obtain the screened library by selecting the subset

of designs (screened library) that satisfies both folding and

binding thresholds. We characterize the screened library for

various interface metrics to identify top designs for

experimental characterization.

We applied the full pipeline to generate a library of CDR H3s

(positions 95 - 101) for the Trastuzumab antibody enriched in

HER2 binders. We applied the pipeline to hallucinated libraries

obtained from different hallucination modes described in the

previous section and in Figures 3D, E.

Over 50% of the designs retain target
conformation when forward folded
with DeepAb

To screen the hallucinated designs for folding, we forward

folded the designed sequences with DeepAb and measured the

RMSD of the CDR H3 loop with respect to the Trastuzumab

antibody structure used to condition hallucination. For the

motif-restricted hallucination with positions 95 and 100A

restricted, 433 of 600 hallucinated sequences retained

conformations with CDR H3 RMSD ≤ 2.0 Å (Figure 4B). For

almost all modes of hallucination explored in Figures 3D, E, over

70% of the hallucinated designs retained target conformation

(CDR H3 RMSD ≤ 2.0 Å; SI Figure 19). We also measured the

per-residue RMSD for the designed residues and found that the

solvent exposed residues show the largest deviations, whereas

the stem residues show little deviation from the target

conformation (SI Figure 20). This is also apparent from the

superposition of forward folded designs (pale green) with the

wildtype antibody (black) as shown in Figure 4B. Hence,

hallucination enables the exploration of a diverse sequence

space distinct from the wildtype sequence, while also retaining

a conformation close to the wildtype structure.

To further investigate whether the hallucinated designs fold

into the target structure, we folded them with an independent

antibody sequence to structure predictor, IgFold (24). IgFold

predicted 43.8% (54.5% with DeepAb) of unrestricted and 61.1%

(72% with DeepAb) of motif-restricted hallucinated sequences

to fold with an RMSD ≤ 2.0 Å (SI Figure 19; SI Table 3). The

percentage of designs that fold into the target structure is lower

(43.8% or 54.5%) for unrestricted hallucination than motif- and

sequence-restricted hallucination runs (>60%). This suggests
Frontiers in Immunology 09
that some regularization or sequence space restriction enriches

the hallucinated library in viable sequences.

To investigate the viability of hallucinated sequences for

therapeutic applications, we calculated various developability

metrics for the hallucinated sequences and compared them to

wildtype and experimental sequences (SI Figures 21). Overall,

hallucinated sequences exhibited favorable solubility, stability,

aggregation, and immunogenicity metrics; unrestricted mode

outperformed motif-restricted modes on solubility, stability,

hydropathy and aggregation metrics. However, motif-restricted

(based on experiments) hallucinated sequences had better

immunogenicity profiles than those obtained from unrestricted

hallucination. This suggests a trade-off between different

developability metrics.

Virtual screening recapitulates restrictions at
positions 99, 100A

To screen the hallucinated, structure-conditioned library for

antigen binding, we measured the designs’ free energy of binding

(DGbinding) with Rosetta’s InterfaceAnalyzer (49). In Figure 4C,

we show the distribution of DGbinding for hallucinations with

positions 95 and 100A motif-restricted (SI Figure 22 shows the

distributions for sequences from other modes of hallucination).

Only a small fraction of hallucinated designs exhibit a DGbinding

comparable to or better than the wildtype.

To investigate why only a small fraction of hallucinated

designs pass virtual screening, we analyzed the sequences of

designs with favorable (relative to the wildtype) and unfavorable

binding energies. Compared to the hallucinated sequence

profiles (Figure 3D), the screened libraries are more restricted

especially at positions 99 and 100A (Figure 4D). For the

unrestricted mode of hallucination, the only mode where

position 100A was not restricted, we also found that about

50% of the sequences screened for binding sampled a Tyr at

100A (Figure 4D), recapitulating experimentally observed

preference for Tyr at this position. Furthermore, for designs

from all modes of hallucination where position 99 wasn’t

explicitly restricted (Figure 4D and SI Figure 23), sequences

with favorable binding energies preferred Gly (and other smaller

residues to some extent) at this position—a preference which

also aligns with experimentally identified binders (Figure 3C).

This narrowing of preference at positions 99 and 100A is

antigen-driven as the hallucinated library (antigen-agnostic)

sampled a broad range of amino acid residues at these

positions (Figure 3D) whereas the antigen-screened library

reduced these positions to a small set of amino acid

residues (Figure 4D).

To understand the structural basis of this preference, we

visualized the structures of favorable designs (almost always with

Gly) and unfavorable designs (without Gly) at position 99

(Figure 4C). The substitution of Gly with other residues

(especially larger residues such as Ile) resulted in steric

hindrance pushing the antigen away from the paratope leading
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FIGURE 4

Application of hallucination pipeline to generate large number of unique designs with improved binding as characterized by various interface
metrics. (A) A pipeline for screening the hallucinated library for folding into the target structure and binding the target epitope. The screened
library is characterized in silico for interfacial metrics to select designs for experimental testing. (B) Comparison of structure of forward folded
hallucinated sequences with wildtype structure: (Left) Randomly selected forward folded structures of hallucinated designs (green) with DeepAb
superposed with wildtype structure (black). (Right) The distribution of the H3 RMSD of the designs with respect to the wildtype. Dashed line at
RMSD = 2 Å marks the threshold for selecting designs that fold into the wildtype structure. RMSDs were calculated on all heavy atom backbone
residues (N, CA, C) excluding (O) consistent with RMSD reported in DeepAb (28). Distribution is shown for the motif-restricted hallucination I
(95, 100A restricted) from Figures 3D, E. (C) Distribution of screened binding free energies against HER2 for the designs. The dashed line is the
binding free energy of the wildtype Trastuzumab antibody. Popouts: (Left) Representative design with G at position 99 that exhibits binding
energies better than or comparable to the wildtype. (Right) Representative design with an I at position 99 that exhibits binding energies
significantly worse than the wildtype. (D) Sequence logos of screened libraries for the unrestricted hallucination and motif-restricted
hallucination I (95 and 100A restricted). The unrestricted designs show strong preference for residues G and Y at positions 99 and 100A
respectively. The motif-restricted (95 and 100A) mode additionally confirms the preference for Gly at position 99. Both restrictions (at positions
99 and 100A) are also observed in experiments. (E) Comparison of distributions of binding free energies for designs from two motif-restricted
hallucinations: (gray) Motif-restricted hallucination with positions 95, 99, 100, 100A restricted to experimentally observed preferences, and
(orange) motif-restricted hallucination with positions 99 and 100A restricted to hallucination-pipeline derived preferences from (D). Popout:
Sequence logo for the screened library for designs from the latter hallucination. (F) Interface metrics for virtually screened designs from motif-
restricted hallucination (99 and 100A restricted). A significant fraction of designs exhibit metrics better than the wildtype (boxed quadrant); top
25 designs (selected by binding free energy) highlighted in orange.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2022.999034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mahajan et al. 10.3389/fimmu.2022.999034
to significant loss in binding energy. Here, the Rosetta binding

energies proved to be useful in deciphering the structural context

for the preference of Gly at position 99, showing that it can be

advantageous to combine physics-based approaches such as

Rosetta with DL frameworks.
Pipeline reveals a less restricted sequence
space than experiments, amenable to further
improvement in affinity

In Figure 4D, we show the sequence logos of the screened

libraries for the unrestricted and motif restricted (positions 95

and 100A restricted) modes of hallucination. The screened

sequences show amino acid restrictions primarily at positions

99 and 100A, suggesting that the CDR H3 may be able to retain

binding to HER2 with fewer restrictions (two) than those

inferred from single-site DMS experiments (four). One

possible explanation is that while DMS explores a single-

site substitution space, scanning one position at a time and

retaining the wildtype sequence at all other positions,

hallucination explores a combinatorial space designing all

positions simultaneously constrained only by geometry (and

or sequence/motif). Hence, DMS may limit the sequence space

too close to the starting sequence and miss out on a potentially

larger sequence space available to the CDR H3 that may be

amenable to binding HER2.

To test this hypothesis computationally, we hallucinated

designs with restrictions at positions 99 and 100A only,

derived from the virtual screening of unrestricted library.

Next, we calculated the binding free energy for this less-

restricted library (Figure 4E, orange bars). Remarkably, this

scheme of hallucination yielded a library that was highly

enriched in binders. Over 50% of the designs exhibited

binding energies comparable or better than the wildtype

(dashed line). Moreover, 27% designs exhibit lower binding

free energies than the wildtype (DDGbinding≤-2.5 REU). On the

other hand, for DMS based hallucinated designs (restricted at 95,

99, 100 and 100A), only 11% designs exhibit lower binding free

energies while 74% exhibit binding energies identical to the

wildtype (|DDGbinding|≤2.5 REU; Figure 4E; grey bars peak at the

wildtype binding energy). These calculated binding energies

qualitatively align with the experimental affinity measurements

from Mason et al., as most of the tested designs exhibited

affinities comparable to or lower than the wildtype (47).

Indeed, only one of the thirty experimentally characterized

binders exhibited affinity with slight improvement over the

wildtype, suggesting that a DMS restricted library may limit

the potential for improving affinity over the starting/

wildtype sequence.

In summary, in silico tests suggest that hallucination may be

applied to obtain less restricted sequences of CDR H3s (and

other CDRs) that can bind HER2 (and other antigens) with

improved affinities.
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Top designs exhibit favorable interface and
developability metrics

We further characterized the antibody-antigen interfaces of

the screened libraries. Specifically, we calculated the shape

complementarity, the number of hydrogen bonds and the

total, and polar buried surface area at the antibody-antigen

interface. In Figure 4F, we show the distribution of these

metrics as a function of calculated free energy of binding.

We find many designs improve interface metrics (wildtype

shown as dashed lines) with a greater number of hydrogen

bonds, larger buried surface area at the interface and higher

shape complementarity.

To investigate the feasibility of screened designs as

therapeutics, we calculated developability-related metrics for

the screened libraries (SI Figure 24). Like unrestricted

hallucination, the screened library (motif-restricted 99, 100A)

exhibits favorable solubility, aggregation, and stability metrics. A

significant percentage of designs screened for binding and

folding (20%) exhibit favorable immunogenicity metrics as well.
Conclusion

Antibody affinity maturation is a laborious, expensive, time-

consuming, and routine task in the therapeutic antibody

development pipeline. Affinity maturation is primarily

centered on generating libraries of CDR regions followed by

screening for expression and binding. Even a relatively short

CDR H3 loop of 10 residues has a combinatorial design space of

2010. Such a large sequence space is difficult to sample or screen

with most experimental or computational methods. As an

alternative, we present a DL framework, FvHallucinator, to

generate sequence libraries conditioned on the structure and

partial sequence of a known antibody that can be further

screened for stability, affinity, and other desired properties.

The FvHallucinator provides a computational approach to

sample the full combinatorial space available to a CDR loop

only restricted by a target geometry or conformation.

With FvHallucinator, we have extended the existing

hallucination-based framework for protein design to the

specific problem of the design of the antibody variable

domain. While the previous hallucination frameworks have

been aimed at designing protein scaffolds, our framework

tackles the challenging task of generating highly variable

subsequences for the CDR regions of antibodies that

participate in antigen recognition.

On a benchmark set of 60 antibodies, for all six CDRs, the

FvHallucinator designs native-like CDR sequences with high

sequence recovery (≥ 50%) when seeded with the wildtype

sequence. The FvHallucinator designs the heavy and light

chain interface with mutations enriched in human repertoires.

To guide hallucination to relevant sequence spaces when

prior knowledge is available from experiments or easily inferred
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through structural analysis, we developed sequence-based losses.

We demonstrated the efficacy of such restricted modes in

generating sequence libraries on a large dataset of HER2

binders. In a restricted hallucination with only two positions

restricted, over 50% of the designs exhibited ≥ 60% sequence

identity with the binders, while a small fraction of designs

exhibited 80% sequence identity with experimentally

identified binders.

We further developed a pipeline that combines sequence

libraries with physics-based models for screening for antigen

binders. We tested our pipeline on the HER2 dataset and

found that the pipeline recapitulates key residues for HER2

binding. We also show that the pipeline enables the in

silico generation of diverse screened libraries that can access

significant improvements in the predicted affinity over the

starting antibody.

Compared to antibody-specific language-based models for

CDR sequence design such as IgLM (22) and the CDR manifold

sampler (50), the FvHallucinator pipeline enables targeted and

controlled antibody subsequence design. Such a strategy could

possibly lead to better and more predictable outcomes in the lab

(51). And while we obtain reasonable developability

characteristics for the hallucinated and screened libraries, our

method does not explicitly design for humanness like the work

by Amimeur et al. (52) that is trained to generate human-like

antibody libraries. We could include developability-focused

losses in the future to address this limitation.

Alternatively, it is possible to generate antibody libraries for

an antigen of interest from DL models that are trained on

antigen-specific antibody libraries from high-throughput

screening experiments (47, 53). Such models can be seen as

hybrid strategies combining experimentally generated high-

throughput libraries with in silico predictions distinct from

more general approaches such as those described in this work.

While we present comparison of hallucinated sequences

with over 480 CDR loops (80 target antibodies; six CDR loops

per target), PyIgClassify canonical clusters that represent

distributions over all known CDR structures and an

experimental CDR H3 library for the Trastuzumab antibody,

further experimental verification is needed to prove that these

results are useful. With the fast pace of deep-learning research in

protein design, these computational findings reveal the promise

of hallucination towards the fast and cheap in silico generation of

diverse, structure-conditioned antibody libraries enriched in

binders. The FvHallucinator framework is versatile and easily

extendable to designing libraries conditioned on grafted loop

conformations. Furthermore, the pipeline can be modified to

screen for other engineering goals such as stability

and developability.
Frontiers in Immunology 12
Methods

Design approach

Like Anishchenko et al. (12) (Hallucination) and Norn et al.

(26) (trDesign), we aim to design sequences that fold into a

desired structure using a pre-trained sequence-to-structure deep

learning model. The problem of predicting sequence given

structure can be stated as the problem of maximizing the

probability of a sequence (S) given target structure (T). Using

Bayes theorem:

P(S   j  T)   =   P(T   j   SÞP Sð Þ=P Tð Þ
We split the sequence S into subsets of positions SD to be

designed and SF to be fixed. To maximize P(S|T), we maximize

the product P(T|S)P(S) with respect to SD with T and SF fixed:

max
SD

P(S   j  T) =  max
SD

P(T   j   S)P Sð Þ

Since logarithm is a monotonically increasing function, we

can apply it to equation 1b, and maximize the logarithm of P(S|T)

to obtain Equation 1.

max
SD

 log P(S   j  T) =  max
SD

( log P(T   j S)) + max
SD

(logP Sð Þ) (1)
Geometric losses

In Equation 1, we estimate P(T | S) with an ensemble of pre-

trained DeepAb models (28) that predict the probability of a

target structure geometry (approximated by CA, CB, N, O

distances and orientations).

During a hallucination run, to maximize log P(T | S), we

minimize the categorical cross entropy loss (LG) of the pre-

trained DeepAb model with respect to the design subsequence,

SD. We restrict loss calculation to pairs of residues with CA atoms

within 10 Å of each other (32). The cutoff value is chosen based

on that used in the DeepAb study for variant prediction (28).

Thus, the objective function for minimizing geometric losses

with respect to the design subsequence, SD, can be written as,

min
SD

(LG) = min
SD

−  
1
2C o

X= dCA ,  dCB ,dN−O ,  q,f, wf g
o
k=C

k=1

log pX=T Sð Þ
" #

(1)

where, pX=T(S) is DeepAb’s predicted probability of the target

geometric label X ∈ {dCA, dCB, dN−O, q, f, w} for sequence S and
C is the number of contacts under 10 Å:

C =  oj∈Soi∈SD
dij(d

CA
ij ≤   10   Å)
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Sequence-based losses

To maximize log (P(S)) in Equation 1, we define different

priors for the sequence (P(S)) that are then reframed as sequence

losses and minimized with respect to the design subsequence, SD.
No sequence loss
In unrestricted hallucination, we simply set P(S) = 1 in

Equation 1 resulting in a sequence loss of zero.
Sequence loss
In sequence-restricted hallucination, we maximize P(S) such

that categorical cross entropy loss of the designed amino acid (zi)

at design position i is minimized with respect to the amino acid

residue in the wildtype sequence at design position i, z0i .

LS =  oi∈D log (pzi=z0i Þ;

where D is the set of positions to be designed.
Motif or PSSM loss
In motif-restricted hallucination, we maximize the term P(S)

such that the KL divergence (DKL) between the amino acid

distribution of the designed sequence (SD) at the subset of motif

positions M and the target distribution is minimized:

LM =  DKL   =   o
i  ∈ℳ

o
AA
q0i,AAlog q0i,AA=pi, AA Þ;

�

where q0i,AA is the target/motif amino acid distribution at

position i, pi,AA is hallucinated amino acid distribution at

position i, and ℳ is subset of design positions at which the

motif is specified.

Geometric and sequence losses may be weighted to match

their magnitudes with weights wG, wS, and wM:

L = wGLG + wSLS + wMLM :

All weights are set to one by default.
Design sequence initialization and
wildtype seeding

Each element (ai,AA) of the design subsequence matrix

(number of design positions x 20 amino acids) is initialized

with a random number from a uniform probability distribution.

When wildtype seeding is enabled, at each position i in the

design subsequence matrix, the probability of the amino acid at

the same position in the wildtype sequence, AAwt
i , is skewed as

follows:

ai,AA = r + 0:5d AA = AAwt
i

� �
Frontiers in Immunology 13
Finally, the amino acid (AA0
i ) initialized at design position i,

is the amino acid with the maximum probability at design

position i (argmax) in the normalized (softmax) design

subsequence matrix, i.e.,

AA0
i = argmaxAA softmaxAA ai, AA

� �� �
:

Sequence recovery on RAbD dataset

For sequence recovery benchmark on RAbD dataset (7), we

generated 50 designs each for CDRs H1, H2, L1, L2 and L3 and

100 designs for CDR H3. Each hallucination was run with

default settings (geometric loss only). Cysteine is disallowed at

all positions by sampling from a reduced amino acid alphabet

(see next section).
Sampling from reduced amino
acid alphabet

To sample from a reduced set of amino acids (e.g., to design

out cysteine or proline), we initialize from a reduced alphabet

and set the gradient of the loss with respect sequence equal to

zero for the unwanted amino acid residues at a l l

design positions.
Comparison between designed
sequences and PyIgClassify clusters

We compared the distribution of designed sequences for

CDR regions to the sequence profiles of PyIgClassify (8) clusters

by calculating the Bhattacharya coefficient (BC) and the

Bhattacharya distance (BD) at each design position. BC is a

measure of the overlap between two statistical samples and the

BD is a symmetric measure of the distance between

two distributions.

We converted both the designed sequences and the relevant

PyIgClassify cluster into PSSMs, p and q respectively. Only non-

starred (usually clusters with significant number of known

structures) PyIgClassify clusters were analyzed. For each

position i, we calculated the BC as oAA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAAi qAAi

q
over all

amino acids and BD as − log(oAA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAAi qAAi

q
). To calculate the

average BC (or BD) for a CDR sequence, we averaged the BC (or

BD) over all positions i. To avoid infinite values for BD, we

replaced all zero-valued arguments in the calculation of BD with

a small number (10-6).

For CDR H3 loops of lengths 17, 19 and higher, there is only

one non-starred PyIgClassify cluster, hence, for CDR H3 targets

with these lengths, no data is reported in Figure 2B and SI
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Figures 5-10 for the non-target clusters. For all other CDR H3

targets, there is at least one, non-starred canonical cluster

available in the PyIgClassify database.
Calculation of perplexity

The perplexity of a distribution p(x) such as each residue

position of a PyIgClassify cluster sequence profile or a

hallucinated sequence profile was calculated as:

PP(p(x)) = 2−oAA
p(x)log2p(x)
Hallucination of VH-VL interface

For data reported in Table 1, we generated 60 hallucinated

sequences per antibody without wildtype seeding. Germline gene

ids were obtained with ANARCI (54). Cysteine is disallowed at

all positions by sampling from a reduced amino acid alphabet.
Hallucination for CDR H3
of Trastuzumab

Each hallucination was run with default settings with

additional sequence-based losses. Ten positions on CDR H3

(H95 – H101; Chothia numbered) were designed [to match

experiments (47)] in each case. Cysteine is disallowed at all

positions by sampling from a reduced amino acid alphabet. For

motif-restricted hallucination, the weight for the motif-loss (wM)

was set to 100. For sequence-restricted hallucination, the weight

for the sequence loss (wS) was set to 25. For each hallucination

run, we generated between 600 and 1,200 designs. More

specifically, for data reported in Figures 3D, E, we generated

600 sequences for unrestricted, sequence restricted, and motif

restricted (II) hallucination and 1200 sequences for the motif-

restricted hallucination (I).
Folding sequences with DeepAb

We follow Ruffolo et al. (28) to fold designed sequences with

DeepAb and Ruffolo et al. (24) to fold sequences with IgFold.
Calculation of free energy of binding and
interface metrics with Rosetta

The free energy of binding was calculated using the

InterfaceAnalyzer (49) application in PyRosetta (55). We

assumed that the designed antibody retains the wildtype
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binding mode i.e., the epitope and paratope geometries are

similar to the wildtype complex. That is, we simply threaded

the designed sequences on the crystal structure of the complex

and packed the side chains at the antibody-antigen interface with

FastRelax. For each designed sequence, we generated 5 decoys

and selected the decoy with the lowest free energy of binding

(reported as dG_separated by InterfaceAnalyzer). The number

of decoys (tested 2-25) did not significantly change the lowest

free energy of binding.
Calculation of developability metrics

The intrinsic solubility of the designed residues (padded with

10 residues on either end) was calculated with CamSol (56, 57).

The aggregation propensity (Spatial Aggregation Propensity

score) of the designed residues from the folded structures of the

Fv from DeepAb with PyRosetta (55) as described in Lauer et al.

(58) with a neighborhood radius of 5 Å around the

designed residues.

The instability index (59), hydropathy score (60) and charge

of the designed sequences was calculated with BioPython (61)

similar to Akbar et al. (53) For instability index calculation, we

used the full heavy chain of the antibody in accordance with the

method described in Guruprasad et al. (59).

For charge calculation, we used the sequence of the full Fv

similar to Mason et al. (47) and for hydropathy score (60)

(grand average hydropathy or GRAVY score) calculation, we

used the designed sequences padded with 10 residues each on

either side.

We estimated the immunogenicity of 15-mer peptides from

the hallucinated sequences (padded with 10 residues on either

end) with the NetMHCIIpan (62) tool for 26MHC class II alleles

estimated to represent 98% of the population in a manner

similar to Mason et al. (47)
Trastuzumab Dataset

We obtained the Trastuzumab binders’ dataset (11,300

sequences) from the Github repository (https://github.com/

dahjan/DMS_opt) from Mason et al. (47) For plotting the

binders sequence logo in Figure 3B, we converted the

sequences to a position specific scoring matrix. For plotting

the DMS logo in Figure 3B, we obtained the single-site DMS data

directly from the authors.
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study is available at https://github.com/RosettaCommons/

FvHallucinator under the Rosetta DL license (https://github.com/

RosettaCommons/Rosetta-DL).
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