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Up to now, coronavirus disease 2019 (COVID-19) is still affecting worldwide

due to its highly infectious nature anrapid spread. Diabetic kidney disease (DKD)

is an independent risk factor for severe COVID-19 outcomes, and they have a

certain correlation in some aspects. Particularly, the activated renin–

angiotensin–aldosterone system, chronic inflammation, endothelial

dysfunction, and hypercoagulation state play an important role in the

underlying mechanism linking COVID-19 to DKD. The dipeptidyl peptidase-4

inhibitor is considered a potential therapy for COVID-19 and has similarly

shown organ protection in DKD. In addition, neuropilin-1 as an alternative

pathway for angiotensin-converting enzyme 2 also contributes to severe acute

respiratory syndrome coronavirus 2 entering the host cells, and its decreased

expression can affect podocyte migration and adhesion. Here, we review the

pathogenesis and current evidence of the interaction of DKD and COVID-19, as

well as focus on elevated blood glucose following vaccination and its possible

mechanism. Grasping the pathophysiology of DKD patients with COVID-19 is

of great clinical significance for the formulation of therapeutic strategies.
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Abbreviations: ACE2, angiotensin-converting enzyme 2; AGEs, advanced glycation end products; Ang II,

angiotensin II; Ang 1-7, angiotensin 1-7; ARDS, acute respiratory syndrome; AT1R, AT1 receptor;

COVID-19, coronavirus disease 2019; CRP, C-reactive protein; DKA, diabetic ketoacidosis; DKD,

diabetic kidney disease; DPP4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide-1; HD,

hemodialysis; ICU, intensive care unit; IL-6, interleukin-6; MDA5, melanoma differentiation‐associated

protein 5; NETs, neutrophil extracellular traps; NO, nitric oxide; NRP-1, neuropilin-1; RAAS, renin–

angiotensin–aldosterone system; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; T1DM,

type 1 diabetes; T2DM, type 2 diabetes; TNF-a, tumor necrosis factor-a; vWF, von Willebrand factor.
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Introduction

The outbreak of the coronavirus disease 2019 (COVID-19)

in Wuhan, China, in December 2019 is undoubtedly a serious

blow to global health security and economic development.

Several countries experienced a second or third wave,

especially after the emergence of mutant viruses. This

pandemic, caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), enters host cells by binding to

the angiotensin-converting enzyme 2 (ACE2) via a spike protein

on its surface (1), initially presenting with fever, cough, and

fatigue; as the condition progresses, hypoxemia, respiratory

failure, and even death may occur (2). Meanwhile, the

presence of comorbidities increases the risk of SARS-CoV-2

infection, including hypertension, obesity, and diabetes (3, 4).

Diabetic kidney disease (DKD) is one of the most common

microvascular complications of both types of diabetes. The

increasing prevalence of diabetes poses a major threat to DKD,

especially an increase in type 2 diabetes (T2DM), and DKD is the

most common cause of end-stage renal disease (5). During this

pandemic, a study reported that DKD patients infected with

SARS-CoV-2 require a longer hospital stay to recover and has

the greatest impact on patients’ prognosis (6). Leon-Abarca et al.

reported that patients with DKD are twice as likely to have

COVID-19 pneumonia as patients with chronic kidney disease

and have higher intubation rates and case-fatality rates, which

may be associated with pro-inflammatory state and immune

dysfunction (7). Notably, among the patients with maintenance

hemodialysis (HD) with COVID-19, more than half of them

were combined with DKD and they are more likely to be

admitted to intensive care units (ICUs) and die (8). DKD

patients are increasingly being appreciated as an infectable

group for SARS-CoV-2, which is more prone to progress to a

severe disease.

Hyperglycemia is the initial cause of the development of

DKD; it can activate aldose reductase, protein kinase C, and

advanced glycation end product (AGE) pathway, thus inducing

the cell signal transduction network, resulting in inflammation

response and cell damage. However, it has been reported that

SARS-CoV-2 can infect pancreatic b-cells, leading to an

imbalance in insulin homeostasis and apoptosis (9). Further

research found that the concentrations of glucose, insulin, and

insulin resistance were significantly increased in severe

COVID-19 patients than in healthy people, resulting in

increased oxidative and nitrosative stress (10), which may

make it more difficult to treat and have serious consequences.

Khunti et al. summarized the study of new-onset diabetes in

COVID-19 (11). Thus, the disorder of glucose metabolism may

cause a vicious circle in patients with DKD complicated with

COVID-19.
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Although the exact complex pathophysiology mechanism

between COVID-19 and DKD is still being explored, the

relationship between them seems to be traceable. In this

review, we focus on DKD complicated with COVID-19

patients. We retrospect the pathogenesis of COVID-19 and

DKD and put the spot on their correlation. Furthermore, we

are also concerned about elevated blood glucose after COVID-

19 vaccination.
Clinical characteristics of DKD
complicated with COVID-19 patients

In this review, we performed a literature search through the

electronic database, including Medline/PubMed, EMBASE, and

Web of Science before 20 July 2022, using the following

keywords: (“diabetic kidney disease” OR “diabetic nephropathy”

OR “diabetic glomerulosclerosis”) AND (“COVID-19” OR “2019-

nCoV” OR “novel corona virus” OR “SARS-CoV-2”

OR “coronavirus”).

We found 11 cases of DKD complicated with COVID-19

(12–19) (Table 1), who were hospitalized with COVID-19. In the

literature, six of them were men and two cases reported a history

of contact with COVID-19 patients, four patients required

endotracheal intubation, and two patients died. Fever and

cough were the most common clinical symptoms. After

receiving timely treatment, most of the patients’ biochemical

indexes gradually improved and were finally discharged from the

hospital. Among the nine patients treated with HD, we found

that two patients did not need HD before admission but

underwent HD after admission, and one patient did not

recover from HD.

In the literature, four patients had reported lymphocytic

counts decreased and three cases reported cytokine storm (12,

13). Similar laboratory results show progressive reduction of

lymphocytes in COVID-19 patients; among the various cytokine

changes, interleukin-6 (IL-6) and IL-8 were the most significant

(20). Elevated cytokines and chemokines, known as cytokine

storms, further lead to dysregulation of the immune response,

which are a feature of severe COVID-19 and are thought to be a

major determinant of disease progression (2, 21). Research

found that plasma concentrations of IL-2, IL-7, IL-10, and

tumor necrosis factor- a (TNF-a) of COVID-19 patients

admitted to the ICU were higher than those of non-ICU

patients (2).

Furthermore, four cases of elevated D-dimer levels have

been reported in the literature (12, 14, 16). D-dimer is a fibrin

degradation product, and the increase in this level indicates

that a hypercoagulable state in vivo exists that may be

associated with subsequent thrombosis (22). Sixteen percent
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of COVID-19 patients hospitalized in the New York Health

system reported thrombotic events, and the level of d-dimer at

the time of visit was independently associated with thrombotic

events (23). Li et al. indicated that higher levels of D-dimer on
Frontiers in Immunology 03
admission were associated with increased odds of death and

significantly elevated in patients with diabetes (24); thus, the

use of anticoagulants also needs to attract the attention

of clinicians.
TABLE 1 Summary cases of DKD complicated with COVID-19 patients.

Case Authors Age/
sex

Country Pre-hospital symptoms Laboratory
test after
admission

Chest computed
tomography

Treatments Outcomes

1 Abe et al.
(12)

60/M Japan Cough, slight fever, fatigue Cr: 10.04 mg/dl
D-dimer: 3.2 µg/
ml
CRP: ≈6 mg/dl
Lymphocyte
count: 530 ×
106/l

Bilateral and peripheral
GGO

Peramivir, favipiravir, HD,
tocilizumab,
immunoglobulin, intubation

CRP decreased
Continue to
HD after
discharged

2 Abe et al.
(12)

68/F Japan Fever, cough, diarrhea Cr: 4.69 mg/dl
D-dimer: 9.7 µg/
ml
CRP: ≈13 mg/dl
Lymphocyte
count: 520 ×
106/l

Bilateral and peripheral
GGO

Peramivir, favipiravir,
tocilizumab,
immunoglobulin, HD,
intubation

CRP decreased
Improved,
discharged

3 Bishawi
et al. (13)

32/F Qatar Cough, fever, body ache Cr: 10.08 mg/dl Right lower and mid
GGO

Remdesivir, dexamethasone,
HD

Cr fell to 3.85
mg/dl
HD is not
required after
discharged

4 Bishawi
et al. (13)

88/M Qatar Cough, fever Cr: 1.39 mg/dl Bilateral lower infiltrates
and peripheries faint
GGO

Remdesivir, dexamethasone,
tocilizumab

Cr fell to 1.43
mg/dl
Improved,
discharged

5 Hertanto
et al. (14)

59/F Indonesia Fever, cough, dyspnea, leg pain Cr: 1.5 mg/dl
D-dimer: 9.74
µg/ml
CRP: 22.5 mg/dl

NA Amputation, thrombectomy Cr fell to 1.30
mg/dl
Improved,
discharged

6 Hirai et al.
(15)

72/M Japan Fever, cough NA Left lower lobe
consolidation

Favipiravir, HD, intubation Died

7 Koshi
et al. (16)

52/F Japan Fever and have a history of
contact with a COVID-19
patient

D-dimer:1.06 µg/
ml
CRP: 3.91 mg/dl

Double lung lower lobe
GGO

Favipiravir, HD CRP decreased
Improved,
discharged

8 Kuroki
et al. (17)

69/M Japan Fever, cough, dyspnea CRP: 15.2 mg/dl
Lymphocyte
count: 1,010 ×
106/l

Bilateral multiple
consolidation, GGO, and
pleural effusion

Hydroxychloroquine, HD CRP decreased
Improved,
discharged

9 Kuroki
et al. (17)

72/F Japan Fever, dyspnea Lymphocyte
count: 430 × 106/
l

NA Hydroxychloroquine, HD Improved,
discharged

10 Tang et al.
(18)

50/M China Non-productive cough CRP: 4.01 mg/dl
Lymphocyte
count: 530 × 106/
l

Bilateral multiple GGO Moxifloxacin, lopinavir/
ritonavir, HD

Improved
Discharged

11 Yuan et al.
(19)

49/M China Intermittent cough and have a
history of contact with a
COVID-19 patient

NA A small cotton-wool
spot in the right lobe of
the right lung

Lopinavir, ritonavir,
interferon alfa-2b, HD,
intubation

Died
f

COVID-19, coronavirus disease 2019; Cr, creatinine; CRP, C-reactive protein; DKD, diabetic kidney disease; F, female; GGO, ground-glass opacities; HD, hemodialysis; M, male; ICU,
intensive care unit; NA, not available.
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DKD and COVID-19

The role of ACE2

Renin–angiotensin–aldosterone system (RAAS) activation is

a central mechanism in the pathogenesis of DKD. ACE2 is

considered a new therapeutic strategy for DKD due to its

renoprotective effect by converting angiotensin II (Ang II) to

angiotensin 1–7 (Ang 1–7), which acts as a vasodilator, anti-

inflammatory, anti-fibrotic, and anti-proliferation agent via its

specific Mas receptor to counteract the side effects of Ang II (25,

26). This fact is well established by the evidence of akita mice

whose blood pressure was reduced, elevated protein kinase C

level was attenuated, and glomerular hypertrophy was relieved

after injection with ACE2 (27). Mizuiri et al. revealed that the

high ACE/ACE2 ratio in DKD patients may lead to a decrease in

the glomerular filtration rate and renal injury (28). Moreover,

Ang 1-7 via Mas protein stimulates the production of nitric

oxide (NO) in platelets to exert an antithrombotic role, and this

effect is inhibited in Mas knockout mice who exhibit shorter

bleeding times (29).

Similarly to SARS, SARS-CoV-2 enters host cells precisely

through ACE2 and, because of its stronger affinity to ACE2,

leads to a widespread infection worldwide (1). SARS-CoV-2

enters kidney cells and activate immune response to stimulate

the production of the cytokine factor. The involvement of the

immune system and inflammation in the pathogenesis of DKD

has been reported (30, 31). DKD-induced chronic inflammation

in combination with the inflammatory response by SARS-CoV-2

results in cytokine storm, which in turn exacerbates renal injury.

Sultan et al. demonstrated that cytokine storm caused by the

high expression of ACE2 in COVID-19 patients may be one of

the causes of renal dysfunction (32). Interestingly, Menon and

colleagues compared DKD ACE2+ characterized genes with the

published SARS-CoV-2 genes and found that both two genes

significantly overlap and nearly 30% of genes are functionally

aligned with key processes of viral infection and immune

response (33). It means that some gene expression procedures

of DKD can interact with the virus infection to some extent. In

addition, Gilbert et al.’s biopsy of 49 DKD patients and 12

healthy living kidney specimens showed that the ACE2 mRNA

expression in the former was twice as high as that in the latter

(34), implying that they are more vulnerable to being infected

with COVID-19 and impose a double burden on the kidneys.

Notably, not only does ACE2 contribute to SARS-CoV-2

entering cells but also internalization decreases its expression on

the cell membrane. This results in the accumulation of Ang II,

which increases aldosterone secretion, resulting in subsequent

hypokalemia, which inhibits insulin secretion (35) and exerts

vasoconstriction, oxidative stress, inflammation, fibrosis, and

pulmonary edema by combination with the AT1 receptor

(AT1R). It has been proved that Ang II combined with AT1R

increases pulmonary capillary permeability, leading to increased
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pulmonary edema and lung damage (21). Exogenous injection of

recombinant human ACE2 protein reduces the extent of acute

lung injury in acid-treated ACE2 knockout mice (36), showing

that ACE2 has a protective effect on lungs. Taken together,

downregulation of the ACE2/Ang 1-7/Mas receptor axis and

amplification of the ACE/Ang II/AT1R axis are harmful to DKD

complicated with COVID-19 patients.
Endothelial injury and thrombosis

Albuminuria is one of the earliest detectable abnormalities

indicators of DKD. Thirty years ago, Deckert et al. hypothesized

that proteinuria was a reflection of extensive microvascular

injury (37) and was supported in subsequent results (38).

Chronic hyperglycemia, reactive oxygen species (ROC), and

inflammatory cytokines reduce the endothelial glycocalyx,

thereby directly stimulating the contact between blood

circulation substances and endothelium cells, causing

structural disorders and proteinuria (39, 40). Increased

oxidative stress reduces the production of NO in endothelial

cells, and reduced NO availability further leads to endothelial

dysfunction (38). Persistent endothelial dysfunction in turn

causes changes in vascular tone and permeability, activation of

abnormal coagulation function, and abnormal expression of

inflammatory cytokines (41).

DKD-induced endothelial dysfunction further aggravates

the serious risk of SARS-CoV-2 infection. Indeed, endothelial

dysfunction is also a common feature of COVID-19. Endothelial

damage and endothelial cell membrane disruption had been

found in COVID-19 autopsies (42). Kidney damage in COVID-

19 patients is dominated by elevated creatinine and albuminuria.

An excess half of patients of COVID-19 had proteinuria after

admission (43, 44). Both direct stimulation of SARS-CoV-2

invasion and indirect stimulation of cytokine storm result in

vascular endothelial dysfunction and thus may activate the

coagulation cascade (45, 46). Fibrinogen, D-dimer, factor VIII,

von Willebrand factor (vWF), and neutrophil extracellular traps

(NETs) were greatly increased in COVID-19 model experiment

(47) and patients (22); these abnormal coagulation parameters

indicating COVID-19 patients are in a hypercoagulable state. On

the one hand, SARS-CoV-2 infection activates the complement

system to generate pro-inflammatory peptides C3a and C5a and

recruit neutrophils to release NETs; it induces thrombosis by

activating the blood coagulation contact pathway, which in turn

leads to excessive production of thrombin and C5a (46, 48).

There seems to be a feedback pathway between the complement

system and NETs, which continuously promotes thrombosis

(48). On the other hand, NETs also combined vWF secreted by

endothelium cells to help adhere and aggregate platelets (46).

Damaged endothelial cells increase the release of plasminogen

activator inhibitor-1, which inhibits the fibrinolytic system and

aggravates thrombosis (48). Moreover, the previously mentioned
frontiersin.org
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increase in the ACE/ACE2 ratio was also involved in thrombosis

(Figure 1). The accumulation of all factors leads to endothelium

and vascular damage, which ultimately leads to the occurrence of

the acute respiratory syndrome (ARDS) and multiple-

organ failure.

The occurrence of COVID-19 with thrombotic events has

been shown to have a higher rate of hospitalization and an

incidence of ARDS (49) and is independently associated with the

risk of death (23). Hertanto et al. reported a patient with a

history of T2DM, DKD, and leg pain who was admitted with

COVID-19. After the admission, dyspnea improved but the leg

pain became progressively worse and computed tomography

angiography showed thrombosis of popliteal arteries in both

lower limbs (14). This patient has a markedly elevated D-dimer

level on admission (14), suggesting that the patient may have

been in a hypercoagulable state before admission. After infecting

SARS-CoV-2, hyperinflammation, endothelium dysfunction,

complement system activation, and hypercoagulable may

aggravate limb ischemia, causing secondary harm to the

patient. Altogether, endothelial damage and hypercoagulable

state are key pathogenic mechanisms of COVID-19, and DKD

may stimulate its progression and deterioration.
Dipeptidyl peptidase 4

Dipeptidyl peptidase 4 (DPP4), also known as CD26, is

widely distributed in the kidney, usually present in membrane-
Frontiers in Immunology 05
bound and soluble forms, involved in the degradation of

glucose-dependent insulinotropic polypeptide and glucagon-

like peptide-1 (GLP-1), thus interfering with insulin secretion

and disrupting glucose homeostasis (50). Tahara et al. noted that

the level of DPP4 was correlated with AGEs; elevated AGEs

increased the expression of DPP4 in renal tubular cells (51). It is

well known that hyperglycemia can activate AGEs and induce

subsequent oxidative stress and inflammation response. Various

inflammatory cytokines associated with DKD contain truncation

sites for DPP4 (52). A cross-sectional study in China shows

increased DPP4 activities closely associated with T2DM-related

DKD patients, whose oxidation stress, IL-6, and C-reactive

protein (CRP) levels increased with the increase in the DPP4

quartile (53).

The DPP4 inhibitor, such as linagliptin and alogliptin, can

dramatically mitigate AGE and AGE receptor axis activity, thus

alleviating the renal damage caused by inflammation,

proteinuria, and oxidative stress in type 1 diabetes (T1DM)

and T2DM (54, 55). The elevated concentration of the

circulation soluble form of the AGE receptor in diabetics is

correlated with the inflammatory marker and proteinuria, which

can represent a biomarker for vascular injury in T2DM (56, 57).

On the other hand, the DPP4 inhibitor also inhibits the fibrotic

pathway mediated by transforming growth factor b (58), which

is induced by the interaction between DPP4 and cation-

independent mannose-6-phosphate receptor (59). The DPP4

inhibitor has gradually become the first choice treatment for

patients with T2DM-related renal failure (60).
FIGURE 1

The process of thrombus formation in DKD complicated with COVID-19 patients. The invasion of SARS-CoV-2 damaged the integrity of the
endothelium, and the injured endothelial cells stimulated the release of the von Willebrand factor (vWF) and plasminogen activator inhibitor-1
(PAI-1) and accelerated the formation of thrombosis. SARS-CoV-2 activates neutrophils by activating the complement system, thus causing the
release of neutrophil extracellular traps (NETs) (48). NETs not only stimulate the occurrence of the coagulation cascade and leads to subsequent
thrombosis but also stimulates cytokine storm to further aggravate endothelial damage. Downregulated angiotensin-converting enzyme 2
(ACE2) reduced angiotensin 1-7 production which also contributed to the thrombosis. The presence of DKD may aggravate endothelial damage
through inflammatory stimulation, hyperglycemia, and oxidative stress, resulting in a more serious consequence.
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A recent paper suggests that the S1 domain of the spike

glycoprotein of SARS-CoV-2 may interact with human CD26 to

cause disease (61); blocking this connection may reduce the toxic

effect of SARS-CoV-2 on the body. It has been well verified in

T2DM patients infected with COVID-19, who have mild

pneumonia, less non-invasive mechanical ventilation, and

better prognosis (62), indicating a range of benefits of the drug

for this group. Specifically, DPP4 plays a key role in T-cell

activation and immune regulation; it not only modulates CD4+T

cell maturation, migration, and cytokine secretion but also

interacts with several molecules involved in T-cell function,

including mannose 6-phosphate/insulin-like growth factor II

receptor, which in turn increased the expression of the AGE

receptor through activating reactive oxygen species (63, 64).

DPP4 expression is upregulated following T-cell activation (65).

Compared with CD28, the mRNA of TNF-a, interferon-g, and
Fas ligand are increased after CD26 co-stimulatory, manifesting

greater cytotoxic effects (66). Human T helper type 17 cells also

showed a high expression of enzymatically active CD26 (67),

while T helper type 17 cells can release IL-17 to recruit

monocytes, macrophages, and neutrophils and stimulate

cytokines, including IL-1b and IL-6. Solerte et al. reported that

T2DM patients infected with COVID-19 using the DPP4

inhibitor had elevated lymphocyte counts, and their CRP and

procalcitonin levels were decreased compared to those on

conventional treatment (68), suggesting that the anti-
Frontiers in Immunology 06
inflammatory effect may restore the efficiency of the immune

response after SARS-CoV-2 infection. The DPP4 inhibitor also

improves bronchoalveolar lavage IL-6 and TNF-a levels in LPS-

induced mice and attenuates lung injury (69), meaning direct

stimulation of anti-inflammatory activity in the lungs may help

ameliorate lung damage from COVID-19. Meanwhile, the

decrease in GLP-1 degradation alleviates insulin resistance and

its anti-inflammatory can reduce lung injury caused by excessive

production of cytokines (50) (Figure 2). As can be seen, the

therapeutic benefits of DPP4 inhibitors may shed new light for

DKD complicated with COVID-19 patients, and more research

is warranted to fully evaluate their effect.
Neuropilin-1

It has been found that neuropilin-1 (NRP-1) mRNA protein

is expressed in renal cells and highly located in differentiated

podocytes (70, 71). Increased AGEs not only elevate the DPP4

release but also acts on the podocytes. AGE-modified bovine

serum albumin downregulated the expression of NRP-1, which

may be achieved by reducing the binding ability of the Sp1

transcription factor to the NRP1 promoter to the inhibit the

transcriptional activity of the NRP1 promoter in podocytes (71),

thus restraining podocyte migration, which leads to increases in

“nude” areas of the glomerular basement membrane adhesion to
FIGURE 2

Effects of DPP4 and its inhibitors in COVID-19 and DKD. DPP4 cross talk with D-mannose-6-phosphate/insulin-like growth factor II receptor
(M6P/IGF-IIR) (64) and cation-independent mannose-6-phosphate receptor (CIM6PR) (59) induced reactive oxygen species (ROS) and fibrosis,
respectively. Meanwhile, DPP4 also induced the degradation of glucagon-like peptide-1 (GLP-1), all of which contribute to the progression of
DKD and COVID-19. DPP4 inhibitions blocked these processes and thus improved the disease progression.
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the Bowman space and causes glomerulosclerosis (70).

Furthermore, decreased NRP-1 partially inhibited the adhesion

capacity of podocytes and impaired cellular reorganization

skeleton, which may further influence podocyte injury in DKD

and lead to proteinuria (72). Short-term erythropoietin

treatment reversed NPR-1 expression, reduced proteinuria,

and protected podocytes from AGE-mediated damage (73),

which shows that a decreased expression of NPR-1 is one of

the characteristics of DKD.

Besides ACE2 as a receptor of SARS-CoV-2 infection, NRP-1

also as an alternative pathway contributes to SARS-CoV-2 infection

by binding to the S1 C-end rule motif cleaved by furin protein (74).

The role of NPR-1 in COVID-19 has been well described (75).

NRP-1 is considered an immune checkpoint for T-cell memory; its

immunological role in COVID-19 is unquestionable (75). The Toll-

like receptor (TLR) is a key modulator in innate immunity (76).

Sultan et al. reported that both expressions of TLR2, TLR4 mRNA,

and NRP-1 were elevated in moderate and severe COVID-19

patients, and the NRP-1 level was positively correlated with TLR2

and TLR4 (77). Upregulated NRP-1 is related to deterioration of

renal function. This was verified by the significant correlation

between NRP-1 expression and serum creatinine and urea levels

in severe COVID-19 patients (32, 77). The consumption of NRP-1

after infection may lead to impaired podocyte function and

aggravate DKD (78).

Furthermore, NRP-1 contributes to the SARS-CoV-2

infection of pancreatic b-cells and impairs cell function; NRP-

1 inhibition can rescue this process (9). Severe COVID-19 may

induce blood clotting dysfunction, which leads to the release of

various factors from the endothelium. NPR-1 also plays a role in

the coagulation process by controlling the adhesion and

permeability of endothelial cells (75). Given the above

characteristics, severing the combination of the SARS-CoV-2

S1 and NRP-1 could be a new therapeutic target for COVID-19

(79). However, there are few available data on NRP-1 in DKD

complicated with COVID-19 patients. Whether the level will be

changed in this population remains to be confirmed by

further study.
COVID-19 vaccination

The rapid rollout of vaccines has significantly reduced

morbidity and mortality associated with COVID-19 (80).

However, associated adverse reactions have been reported; we

summarize the cases of hyperglycemia and related complications

following COVID-19 vaccination in people with or without

diabetes (Table 2) (81–97). The majority of cases occur with

nausea, polydipsia, and polyuria after 1–4 weeks of COVID-19
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vaccination and diagnosed as diabetic ketoacidosis (DKA),

hyperosmolar hyperglycemic syndrome, or new-onset diabetes.

Of the reported glycated hemoglobin concentrations, those

following vaccination were almost higher than baseline;

although the exact mechanism is unclear, it may have a similar

pathophysiology to the generation of immune and cytokines

responses following COVID-19 infection.

SARS-CoV-2 invades pancreatic b-cells through ACE2 and

NRP-1, thereby destroying insulin secretion, and Müller et al.

demonstrated the presence of SARS-CoV-2 antigens in the

pancreas (98). Subsequently, downregulated ACE2 elevates the

ACE/ACE2 ratio, which in turn activates inflammatory

pathways and hypercytokinemia can directly damage the

insulin signal; it is reasonable to assume that similar reactions

may occur after SARS-CoV-2 antigen presentation following

vaccination (90, 99). The impairment of the insulin signal leads

to the increase in gluconeogenesis and the decomposition of

adipose tissue, which further increases the production of ketone

bodies (100) and subsequent hyperglycemia complications.

Many cases have reported symptoms of nausea and vomiting

after vaccination (101), resulting in patients being unable to

consume carbohydrates and history of diabetes-inducing

insufficient insulin, which together leads to ketosis; in turn,

ketosis aggravates nausea. This vicious cycle leads to the

development of DKA in patients (86).

In the literature, of 16 patients with new-onset diabetes after

vaccination, 11 of them were diagnosed with T1DM. Adjuvants

are a key component of vaccine by secreting TNF-a, interferon-
a, and other cytokines by immune cells to activate more robust

and long-lasting specific immune responses, leading to

autoimmune/inflammatory syndrome (84, 102, 103). There

have been reports of autoimmune diseases caused by COVID-

19 vaccination (104). mRNA seems to have self-adjuvant

properties that induce immune response. A severe immune

response leads to a rapid destruction of cells and severe loss of

insulin secretion, which may be one of the causes of T1DM

production. Melanoma differentiation‐associated protein 5

(MDA5), as a receptor for recognition of congenital

pathogens, induces interferon synthesis, which impairs b-cell
insulin production, proinsulin transformation, and

mitochondrial function (105) and may recognize RNA of

RNA-based COVID-19 vaccines, thus promoting the

development of T1DM (92, 106) (Figure 3). Meanwhile, for

patients with genetic susceptibility, vaccination may aggravate

irreversible changes in autoimmune diseases (84, 85). T1DM-

related alleles were reported in two patients (94, 97). Therefore,

genetically susceptible people need to be more cautious after

vaccination. However, it also needs more research to investigate

the relationship between T1DM and COVID-19 vaccination.
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TABLE 2 Summary cases of hyperglycemia following COVID-19 vaccination in patients with or without diabetes.

Authors Country Age/ Medical history Baseline Vaccine Time of Symptoms HbA1c (%)
after

admission

Diagnosis Treatments after
discharge

14.1 DKA Insulin at a dose of 1.3
units/kg/day

16.3 DKA, tympanic membrane
perforation with acute
suppurative otitis media

Insulin at a dose of 1.1
units/kg/day

13.2 HHS Metformin 1,000 mg
twice daily

ND HHS, DKA Metformin 500 mg twice
daily

ND Hyperglycemia Increased dose of
metformin

ND Hyperglycemia Recovered without
additional intervention

ND Hyperglycemia Recovered without
additional intervention

11.5 Graves’ disease, T1DM Thyroid hormone
normal, insulin
analogues to reduce
glucose

8.3 Graves’ disease,
hyperglycemia

Thyroid function
normalized after 3
months of thiamazole

8.0 DKA Continue insulin therapy

11.6 DKA Continue insulin therapy

12.0 DKA Continue insulin therapy

13 T2DM, HHS From insulin to
metformin

8.2 T1DM Insulin was stopped after
3 months

(Continued)
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sex HbA1c
(%)

type symptoms
onset

Part 1 (Patient with diabetes)

Ganakumar
et al. (81)

India 20/M T1DM ND Covishield 2 days after
second dose

Abdominal pain, decreased
appetite, vomit

25/F T1DM, a history of on and off pain in the
right ear

ND COVAXIN 4 days after
second dose

Fever, myalgia, nausea,
vomiting, pain abdomen

Lee et al.
(82)

America 59/M T2DM, hypertension, COVID-19 infection 10
months earlier

7.5 Moderna 2 days after
first dose

Fatigue, myalgia, subjective
fevers, blurry vision, dry
mouth, polyuria

87/M T2DM, hypertension, hyperlipidemia,
ischemic stroke, congestive heart failure, and
history of COVID-19 infection

7.0 Moderna 2 days after
first dose

Fatigue, myalgias, thirst

Mishra
et al. (83)

India 58/F T2DM ND Covishield 1 day after
first dose

ND

64/M T2DM ND Covishield 1 days after
first dose

Tachycardia, sweat,
palpitations

65/M T2DM ND Covishield 6 days after
first dose

ND

Patrizio
et al. (84)

Italy 52/M T2DM, vitiligo 7 BNT162B2 28 days after
second dose

Night fever, weight loss,
asthenia

Sakai et al.
(85)

Japan 31/F T1DM, painless thyroiditis 8.3 BNT162b2 1 day after
second dose

Sweat, diarrhea, shortness
of breath during exertion

Yakou et al.
(86)

Japan 71/F Basedow disease, T1DM 8.1 BNT162b2 1 day after
first dose

Nausea, fatigue

52/F T1DM 10-11.0 BNT162b2 1 day after
second dose

Nausea, palpitation and
respiratory distress

Zilbermint
et al. (87)

America 24/F T1DM ND Moderna 15 h after
second dose

Nausea, tachycardia,
tachypnea

Part 2 (patient with non-diabetes)

Abu-
Rumaileh
et al. (88)

America 58/M Skin tags in his neck ND BNT162b2 24 days after
first dose

Nocturia, polyuria,
polydipsia, severely
dehydrated, worse mental
status

Aydoğan
et al. (89)

Turkey 56/M Vitiligo, Hashimoto’s thyroiditis 5.9 BNT162b2 14 days after
second dose

Weight loss, dry mouth,
polyuria, polydipsia
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TABLE 2 Continued

Authors Country Age/
sex

Medical history Baseline
HbA1c

Vaccine
type

Time of
symptoms

Symptoms HbA1c (%)
after

admission

Diagnosis Treatments after
discharge

hyperglycemia 10.1 T1DM Medical nutrition
therapy

vision, polyuria,
ia, weight loss,
andidiasis

12.5 T1DM Discontinued insulin

dizziness, weight
mouth

12.6 T1DM Insulin therapy

14.1 Hyperglycemic ketosis ND

14.7 HHS, DKA ND

17.1 DKA ND

, polydipsia,
dedness, dysgeusia

12.0 T2DM, non-ketotic HHS Metformin 1,000 mg
twice daily and weekly
dulaglutide 0.75 mg

appetite loss, and
e erythema on the

9.4 DKA, T1DM Insulin therapy

olydipsia, polyuria,
ons, loss of
fatigue

7.0 DKA, fulminant T1DM Insulin therapy

a, fatigue, nausea
it

9.3 T1DM ND

ver, fatigue, thirst,
abdominal pain

7.6 DKA, fulminant T1DM Insulin therapy

olydipsia, polyuria, 8.0 Fulminant T1DM Insulin therapy

ia, polyuria Near normal Fulminant T1DM, DKA Insulin therapy

thirst, polyuria,
ia

10.3 Acute-onset T1DM, DKA Insulin therapy

s; F, female; HHS, hyperosmolar hyperglycemic syndrome; M, male; ND, not described; T1DM, type 1
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(%) onset

48/M None 5.6 BNT162b2 56 days after
second dose

Fatigue

27/F None ND BNT162b2 21 days after
second dose

blurred
polydip
vaginal

36/M None ND BNT162b2 21 days after
second dose

Fatigue
loss, dry

Edwards
et al. (90)

United
Kingdom

59/M Hypertension, hypercholesterolemia 5.6 Covishield 21 days after
first dose

ND

68/M Hypothyroidism, pre-diabetes 6.5 Covishield 36 days after
first dose

ND

53/M Hypertension, pre-diabetes 6.2 Covishield 20 days after
first dose

ND

Lee et al.
(82)

America 52/F Hypertension 5.5-6.2 BNT162b2 2 days after
first dose

Polyuri
lighthea

Makiguchi
et al. (91)

Japan 65/F Lung adenocarcinoma with brain metastases ND BNT162b2 ND Fatigue
extensiv
trunk

Sakurai
et al. (92)

Japan 36/F None ND BNT162b2 3 days after
first dose

Thirst,
palpitat
appetite

Sasaki et al.
(93)

Japan 73/F Osteoporosis, non-tuberculous mycobacterial
infection

6-7 Moderna 49 days after
second dose

Anorex
and vom

Sasaki et al.
(94)

Japan 45/F Bronchial asthma ND BNT162b2 8 days after
first dose

Slight fe
nausea,

Sato et al.
(95)

Japan 43/M Malignant melanoma 5.4-5.7 mRNA
vaccination

2 days after
second dose

Thirst,

Tang et al.
(96)

China 50/M None ND Inactivated
vaccine

5 days after
first dose

Polydip

Yano et al.
(97)

Japan 51/F None 5.6 Moderna 42 days after
first dose

Fatigue
polydip

Covishield, ChAdOx1 nCoV-19; BNT162b2, Pfizer-BioNTech COVID-19; COVAXIN, BBV152-inactivated whole virion; DKA, diabetic ketoacidos
diabetes mellitus; T2DM, type 2 diabetes mellitus.
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Fortunately, although they need drug treatment, the prognosis

was relatively good in all of these cases. Therefore, timely

monitoring of blood glucose after vaccination is necessary,

regardless of prior diabetes.

Conclusion

The presence of DKD has been reported to make COVID-19

potentially more severe and fatal, ultimately resulting in ARDS

and multiple-organ failure. The relationship between COVID-19

and DKD is complex and bidirectional. RAAS activation, chronic

inflammation, and endothelial dysfunction are the core

components linking COVID-19 and DKD. Chronic endothelial

dysfunction promotes the procoagulant and anti-fibrinolytic state.

SARS-COV-2 disrupts the glucose–insulin axis, which increases

oxidative stress and exacerbates the progression of DKD. The

anti-inflammatory effect of DPP4 inhibitors shows the protective

effect on organs. The role of NRP-1 still needs to be further

explored. The development of vaccines has greatly suppressed the

spread of disease; although there are some adverse reactions, early

detection may reduce the harm caused by adverse reactions. Of

course, due to the lack of relevant experimental models, more

research is needed to illustrate the relationship and prognosis

between DKD and COVID-19.
Author contributions

YY: conducted the data collection and wrote the

manuscript. SZ: conducted the data collection and wrote the
Frontiers in Immunology 10
manuscript. GX: was responsible for the idea and paper

revision. All authors contributed to the article and approved

the submitted version.
Funding

The Kidney Disease Engineering Technology Research

Centre Foundation of Jiangxi Province (No. 20164BCD40095).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
FIGURE 3

Possible mechanisms of hyperglycemia and its complication associated with COVID-19 vaccination. The injection of COVID-19 vaccines may
cause a pathophysiological process similar to that of COVID-19 infection, such as ACE2 downregulation, cytokine production, and immune
response. Adjuvants can activate more powerful and lasting specific immune responses to cause autoimmune diseases. The production of
cytokines may damage the insulin receptor signal, lead to gluconeogenesis and lipolysis, and increase the substrate concentration of ketone
bodies. Melanoma differentiation‐associated protein 5 (MDA5), as an innate pathogen recognition receptor, may interact with vaccines and
damage pancreatic b-cells. All of the above processes may cause an abnormal increase of blood glucose.
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