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Fluorouracil, also known as 5-FU, is one of the most commonly used

chemotherapy drugs in the treatment of advanced gastric cancer (GC).

Whereas, the presence of innate or acquired resistance largely limits its

survival benefit in GC patients. Although accumulated studies have

demonstrated the involvement of tumor microenvironments (TMEs) in

chemo-resistance induction, so far little is known about the relevance of GC

TMEs in 5-FU resistance. To this end, in this study, we investigated the

relationship between TME features and 5-FU responses in GC patients using

a combined analysis involving both bulk sequencing data from the TCGA

database and single-cell RNA sequencing data from the GEO database. We

found that depleted extracellular matrix (ECM) components such as capillary/

stroma cells and enhanced immune processes such as increased number of M1

polarized macrophages/Memory T cells/Natural Killer T cells/B cells and

decreased number of regulatory T cells are two important features relating

to 5-FU beneficial responses in GC patients, especially in diffuse-type patients.

We further validated these two features in the tumor tissues of 5-FU-benefit

GC patients using immunofluorescence staining experiments. Based on this
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finding, we also established a Pro (63 genes) and Con (199 genes) gene cohort

that could predict 5-FU responses in GC with an AUC (area under curve) score

of 0.90 in diffuse-type GC patients, and further proved the partial applicability

of this gene panel pan-cancer-wide. Moreover, we identified possible

communications mediated by heparanase and galectin-1 which could

regulate ECM remodeling and tumor immune microenvironment (TIME)

reshaping. Altogether, these findings deciphered the relationship between

GC TMEs and 5-FU resistance for the first time, as well as provided potential

therapeutic targets and predicting rationale to overcome this chemo-

resistance, which could shed some light on developing novel precision

treatment strategies in clinical practice.
KEYWORDS

fluorouracil response, gastric cancer, tumor microenvironments, extracellular matrix,
immune components
Introduction
Gastric cancer (GC) represents one of the most common types

of cancer and accounts for 5.6% of newly diagnosed cancer cases.

In 2020, GC caused more than 70,000 deaths worldwide (7.7%

and ranked 3rd) (1). 5-FU is one of the most commonly used

antimetabolite drugs. 5-FU monotherapy, or in combination with

other therapeutics, has been suggested as the standard regimen for

advanced GC treatment in many countries (2, 3). Unfortunately,

the 5-year survival rate of patients with advanced GC is only 10-

15%, and due to the acquired chemoresistance, many GC patients

still suffer from recurrence and metastasis after an initial response

to 5-FU-based chemotherapy.

In the human body, 5-FU functions as a thymidylate synthase

(TS) inhibitor. After being taken, 5-FU is first converted to

fluorodeoxyuridine monophosphate (FdUMP), which can form

a stable complex with TS. TS functions by catalyzing the

conversion of deoxyuridine monophosphate (dUMP) to

deoxythymidine monophosphate (dTMP). After binding to

FdUMP, this process is inhibited, thus causing cytotoxicity (4,

5). Traditional chemoresistance explorations mainly focused on 5-

FU pathway-related enzymes (6, 7) or ATP-binding cassette

(ABC) transporter-mediated drug efflux process (8–10), and few

attempts have been made in the investigations of the relationships

between TMEs and chemoresistance due to the lack of means in

the exploration of TMEs at a cellular level.

A tumor is a complex mixture of different cell types, and

many of them have been reported of chemoresistance relevance,

such as heterogeneity of cancer cells, stiffness of ECM, depletion

of immune cells, and enrichment of tumor-suppressive immune

cells including M2 polarized macrophages, regulatory T cells,

and B cells (11). Recent advances in single-cell RNA sequencing
02
(scRNAseq) technologies have made it possible to examine the

gene expression profiles within a single cell while uncovering

abnormal communications between different cell types (12, 13),

which greatly facilitates the exploration of TME-involved

chemoresistance. In this study, using a combined analysis of

scRNAseq data and bulk sequencing data, we provided evidence

that depleted ECM and enriched immune components are two

important TME features leading to 5-FU beneficial responses.

We further established a Pro and Con gene cohort that could

predict 5-FU responses in GC patients. Moreover, we identified

key regulatory communications responsible for different 5-FU

responses. This study provides another perspective on the

exploration of chemoresistance.

Materials and methods

TCGA data retrieval

Phenotype information of 7,773 TCGA samples covering 18

different cancer types was downloaded from GDC portal

(genomic data commons data portal, www.portal.gdc.cancer.

gov). Only tumor samples were involved in this study

(“sample_type.samples” = “Primary Tumor”). Survival

information was determined using “days_to_death.diagnoses”

and “days_to_last_follow_up.diagnoses” information from

phenotype files. Normalized gene expression data of involved

TCGA samples were downloaded from RNAseqDB (14).
Survival analysis

Survival analysis was performed using R package “survival”

and “survminer”, and Kaplan-Meier survival plot was generated
frontiersin.org
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using survfit() function. In the screening of Pro and Con genes,

gene expression values of each input gene were classified into

either “high” or “low” categories using a median value as

classifier, and a Pvalue < 0.01 was used as a significant cut-off.

A Pro gene was determined as “high” expression beneficial for

survival probability and a Con gene was determined as “low”

expression beneficial for survival probability.
GO enrichment analysis

GO enrichment analysis of Pro and Con genes was

per formed us ing R package “c lus terProfi l e r” and

“org.Hs.eg.db”. All input genes were first transformed into

“ENTREZID” before the enrichment analysis, and a

“Benjamini-Hochberg” method was used in generating

adjusted pvalues. A P.adjust value of 0.05 was used as a

significance cut-off.
ROC analysis

ROC analysis was performed using R package “ROCR” and

“pROC”, and the AUC values (area under curves) were

calculated using auc() function.
scRNAseq data analysis

scRNAseq raw count files were downloaded from GEO

online database under accession number GSE183904. A

“doublet detection” process was performed on each sample

separately using R package “DoubletFinder” (15) using 7.5% as

duplet cutoff, and all doublets were filtered prior to the

integration process.

Integration was performed through R package “Seurat” (16)

using FindIntegrationAnchors() and IntegrateData() functions.

After a quality control process, all cells with 200-2,500 unique

feature counts and less than 15% of mitochondrial counts were

retained. The combined data was scaled using ScaleData()

function followed by a linear dimensional reduction process

using RunPCA() function and a non-linear dimensional

reduction process using UMAP (Uniform Manifold

Approximation and Projection) method (dims = 1:25,

resolution = 1).
The decomposition process of
TCGA samples

The decomposition process was performed using R packages

“Biobase” and “BisqueRNA” (17). @metadata and @assays

$RNA@data were used as scRNAseq data input, and
Frontiers in Immunology 03
normalized TCGA expression fi le was used as bulk

sequencing input.
Immunostaining

Patient tumor sections were obtained from the Pathology

department of Shenzhen People’s Hospital, and all the sections

were incubated in 3% H2O2 at room temperature for 10min prior

to further antibody incubation. The following primary antibodies

were used in this study (CD206: CST 91992S; CD79A: ABClonal

A0331; HPSE: ABClonal A5727; TAGLN: ABClonal A21209;

COL1A2: ZENBIO 343277; LGALS1: ABClonal A1580). After

an incubation of 2h at room temperature with primary antibody,

the sections were further incubated with goat anti-rabbit IgG H&L

Cy5 secondary antibody (Abcam ab6564) and different stains

(green: Alexa Fluor™ 488 Tyramide, Invitrogen B40922; red:

Alexa Fluor™ 555 Tyramide, Invitrogen B40923; purple, Alexa

FluorTM 647 Tyramide, Invitrogen B40926).
Ethical considerations

This study was approved by the ethical committee of

Shenzhen People’s Hospital. All participating patients have

provided written consent.
Results

Favorable prognosis effects of 5-FU
treatment on diffuse-type GC patients

The rationale of this study is to investigate the relationship

between 5-FU responses in GC patients and their TMEs features.

A simplified flowchart illustrating the research design of this

study is listed in Figure 1A.

Among 407 TCGA STAD (Stomach adenocarcinoma)

tumor samples, 253 of them have no records of drug

treatments, 106 of them have antimetabolite treatment

(Fluorouracil or 5-FU, 82; Capecitabine, 1; Methotrexate, 1);

25 of them have alkylating agent treatment (Cisplatin, 16;

Oxaliplatin, 8; Dacarbazine, 1); 8 of them have topoisomerase

inhibitor treatment (Etoposide, 7; Irinotecan, 1); 3 of them have

mitotic inhibitor treatment (Paclitaxel, 2; Docetaxel, 1); 4 of

them have corticosteroid treatment (Dexamethasone, 3; Medrol,

1); 3 of them have anti-tumor antibiotic treatment (Epirubicin,

2; Mitomycin, 1); 1 of them has targeted drug treatment

(Cetuximab, 1), as listed in Figure 1B and detailed in

Supplementary Table 1. Among all these treatments, 5-FU is

the only drug with >=10 treated samples across all different

Lauren subtypes of GC (Diffuse type, 13; Intestinal type, 51; Not

specified, 18), hence we use this drug in the latter analysis.
frontiersin.org
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5-FU chemotherapy is one of the prior choices for advanced

GC treatment, and in our analysis, samples treated with 5-FU did

show a significant increase in survival rate compared to samples

receiving no drug treatment (1 year, 85.59% vs 51.78%, ***; 3 years,

23.17% vs 9.88%, **), as summarized in Table 1. Among different

subtypes of GC samples with 5-FU treatment, diffuse samples have

a higher survival rate compared to intestinal samples (1-year

survival rate, 92.31% vs 86.27%; 3-year survival rate, 30.77% vs

27.45%). A further prognosis analysis also shows that 5-FU

responses vary among different GC subtypes, as demonstrated in

Figure 1C: 5-FU treatment has a favorable prognosis effect on all
Frontiers in Immunology 04
GC samples (p = 0.0056) and diffuse samples (p = 0.02), and this

favorable prognosis effect is not significant on intestinal samples (p

= 0.25), nor unspecified samples (p = 0.36), suggesting 5-FU might

be a better chemotherapy solution in treating diffuse GC patients.
A pro and con gene cohort in GC 5-FU-
response prediction

To screen for genes involved in 5-FU responses, we retrieved

normalized gene expression data of 5-FU-treated STAD samples
B

C

A

FIGURE 1

5-FU responses in different subtypes of STAD samples. (A) Schematic diagram illustrating the research design of this study. In this study, a Pro
and Con gene panel was first screened using TCGA data, and the expression status of these genes was further examined in different cell types
of GC samples using scRNAseq data. inally, the conclusions of this study were validated using decomposited TCGA data; (B) Bar plot showing
the number of samples with a certain type of drug treatment. All the STAD sample information was retrieved from TCGA online database;
(C) Plots showing the survival status of patients with or without 5-FU treatment. The survival information of involved STAD samples was
retrieved from the TCGA database, and a Kaplan-Meier plotter was used to estimate the survival information. A p < 0.05 was used as a
significance cutoff.
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from RNAseqDB (14). The expression status of each protein-

coding gene (“High” or “Low” in comparison to median value)

and survival times/status of related STAD samples were used in

the prognosis analysis. 63 Pro genes (higher expression

beneficial for 5-FU treated STAD samples with longer survival

times, n = 36, p < 0.01) and 199 Con genes (higher expression

beneficial for 5-FU treated STAD samples with shorter survival

times, n = 37, p < 0.01), as shown in Figure 2A and listed in

Supplementary Table 2. Most of the Pro genes (red) have

relatively higher expression values in 5-FU treated STAD

samples with longer survival times (top-left panel in

Figures 2B, C), and most of the Con genes (blue) have

relatively higher expression values in 5-FU treated STAD

samples with shorter survival times (bottom-right panel in

Figures 2B, D). Specifically, 5-FU-treated diffuse STAD

samples with longer survival times have the highest expression

values of Pro genes and lowest expression values of Con genes

compared to these in other Lauren subtypes of STAD samples,

indicating these genes might be related to a 5-FU beneficial

effect. 5-FU treated STAD samples with longer survival times are

renamed as 5-FU-benefit samples, and 5-FU treated STAD

samples with shorter survival times are renamed as 5-FU-futile

samples, hereafter.
GO enrichment results of Pro and Con genes are listed in

Figure 2E. Among 63 Pro genes, the top enriched GO functions

are immune-related items such as “Lymphocyte proliferation”,

“Leukocyte proliferation” and “Mononuclear cell proliferation”,

suggesting an immune infiltration process or enhanced

immunity occurring in 5-FU-benefit samples. Among 199 Con

genes, the top enriched GO functions are extracellular matrix

(ECM) related items such as “ECM organization”, “Extracellular
Frontiers in Immunology 05
structure organization”, and “External encapsulating structure

organization”, suggesting an ECM remodeling process in 5-FU-

futile samples.

To evaluate whether these Pro and Con genes could be used

to predict 5-FU responses in STAD samples, we use a ROC

analysis to examine the separation ability of these genes

(ZSCOREPro – ZSCORECon) in separating 5-FU-benefit

samples from 5-FU-futile samples (Figure 2G). Overall, this

gene panel has the highest separation ability of 0.90 on 5-FU

treated diffuse GC samples, 0.83 on 5-FU treated intestinal GC

samples, 0.73 on all types of GC samples, and 0.50 on not

specified GC samples. These AUC results are consistent with

previous prognosis results, suggesting that these genes play an

important role in the 5-FU chemotherapy process.
Performance of the pro and con gene
cohort in pan-cancer-wide drug-
response prediction

To evaluate the ability of the Pro and Con gene cohort in

predicting responses of different chemotherapy drugs pan-

cancer-wide, we retrieved the clinical information of 7,773

samples from TCGA online database involving 18 different

cancer types and 75 drugs (Supplementary Table 3) together

with their corresponding gene expression files from RNAseqDB

(14), and calculated the AUC scores of gene cohort in separating

specific-drug-treated samples of certain cancer type (subtype)

with longer survival times from ones with shorter survival times.

All the AUC results are detailed in Figure 3.
TABLE 1 Survival times of STAD samples from TCGA online database.

All Types Diffuse Type Intestinal Type Not Specified

5-FU None 5-FU None 5-FU None 5-FU None

Total 82 253 13 30 51 109 18 114

1 Year Death 11 122 1 16 7 43 3 63

Alive 71 131 12 14 44 66 15 51

Survival 86.59% 51.78% 92.31% 46.68% 86.27% 60.55% 83.33% 44.74%

X2 29.90 6.11 9.54 7.78

P value *** * *** **

3 Year Death 63 228 9 28 37 94 17 106

Alive 19 25 4 2 14 15 1 8

Survival 23.17% 9.88% 30.77% 6.67% 27.45% 13.76% 5.55% 7.02%

X2 8.46 2.61 3.51 0.45

P value ** >0.05 >0.05 >0.05

5 Year Death 75 245 12 28 46 105 17 112

Alive 7 8 1 2 5 4 1 2

Survival 8.53% 3.16% 7.69% 6.67% 9.80% 3.67% 5.56% 1.75%

X2 3.02 0.00 1.44 0.02

P value >0.05 >0.05 >0.05 >0.05
frontie
***p < 0.001; **p < 0.05; *p < 0.1.
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B

C D

E F

G

A

FIGURE 2

Establishment of a Pro and Con gene cohort (A) Density plot showing the p value distribution of genes in the survival analysis of 5-FU treated
STAD samples. x-axis represents the log10 p value of each input gene in Kaplan-Meier analysis, and y-axis represents the density distributions of
all p values; (B) Heatmap representing relative expression values of Pro (red) and Con (blue) genes across all 5-FU treated STAD samples. Pink
represents 5-FU treated STAD samples with longer survival times (> median), and yellow represents 5-FU treated STAD samples with shorter
survival times (<= median); (C) Dual violin plot showing the relative expression values of Pro gene cohort across samples of different GC
subtypes (*p < 0.05; **p < 0.01; ***p < 0.001. Two-tailed t-test); (D) Dual violin plot showing the relative expression values of Con gene cohort
across samples of different GC subtypes. A two-tailed t-test was used(*p < 0.05; **p < 0.01; ***p < 0.001. Two-tailed t-test); (E) Top 10
enriched GO terms of Pro genes; (F) Top 10 enriched GO terms of Con genes; (G) ROC curves representing the separation ability of Pro and
Con gene cohort in separating different subtypes of 5-FU-benefit samples from 5-FU-futile samples.
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The Pro and Con gene cohort has a satisfactory prediction

ability (AUC score >= 0.8) on 12 cancer/drug combinations,

including Carboplatin on LUAD (lung adenocarcinoma, all

types, 0.84); Capecitabine on ESCA (esophageal carcinoma, all

types, 0.83) and STAD (diffuse type, 0.89); Fluorouracil on ESCA

(all types, 0.83) and STAD (diffuse type, 0.90; intestinal 0.83);

Docetaxel on LUAD (all types, 0.83); paclitaxel on CESC

(cervical squamous cell carcinoma and endocervical

adenocarcinoma, cervical type, 1.00) and LUSC (lung

squamous cell carcinoma, all types, 0.80; not specified, 0.82);

Etoposide on LUAD (all types, 1.00) and STAD (all types, 0.89).

Interestingly, the Pro and Con gene panel has a similar

prediction ability on Capecitabine and Fluorouracil, which is

not surprising because Capecitabine is used as a replacement for
Frontiers in Immunology 07
5-FU in many cancer treatments (18), and this result further

validated the robustness of our results.
Single-cell transcriptome analysis of GC
diffuse and intestinal samples

To explore the expression status of these Pro and Con genes

in different cell types of GC samples from a cellular perspective,

we reconstructed a GC single-cell atlas containing 93,940 cells

using downloaded scRNAseq data of 25 gastric samples (19)

including 5 para cancer normal samples, 6 diffuse type samples,

and 14 intestinal type samples (Supplementary Table 4,

GSE183904), as shown in Figure 4A. Cells from different
FIGURE 3

Performance of Pro and Con gene cohort in predicting different drug responses pan-cancer-wide. Tumor types/subtypes are listed on the left,
and involved chemotherapy drugs are listed on top. AUC scores in separating drug-benefit samples from drug-futile samples under each drug/
cancer combination are listed, and an “NA” represents “not applicable” due to small sample size (<6).
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sample conditions are evenly distributed across all UMAP plots,

suggesting the integration process of scRNAseq analysis is

reliable (Figure 4B). These cells are further clustered into 7

major groups and 31 subgroups (Figure 4C) based on the relative

expression status of their corresponding marker genes, as shown

in Figure 4D. Specifically, Epithelial cells (18,714 cells, 19.92%)

defined by cells expression EPCAM/KRT18 are further clustered
Frontiers in Immunology 08
in to 5 subgroups: Chief cells (952 cells) marked by LIPF/PGA3,

Parital cells (716 cells) marked by CKB/ALDH1A1, Neck mucus

cells (Neck, 3,179 cells) marked byMUC6/FUT9, Pit mucus cells

(Pit, 11,820 cells) marked by MUC5A1/TFF1, and Cycling cells

(2,047 cells) marked by TOP2A/MKI67; Endothelial cells (4,477

cells, 4.77%) defined by cells expressing CDH5/PECAM1 are

further clustered into 4 subgroups: Arterial cells (214 cells)
B C

D

A

FIGURE 4

A single-cell atlas of human diffuse and intestinal type GC samples (A) UMAP plot showing the distribution patterns of 6 major groups and 25
subgroups; (B) UMAP plots showing the distribution patterns of all groups per sample type; (C) Bar plot showing the basic information of 25
subgroups; (D) Dot plot representing relative expression status of all marker genes used in the determination of each subgroup. Average
expression values of each gene within a certain subgroup are represented using color, and the ratios of gene-expressing cells within a certain
subgroup are represented using circle sizes.
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marked by EFNB2/GJA5, Capillary cells (1,725) cells marked by

RGCC/ETS1, Vein cells (2,390 cells) marked by ACKR1/SELP,

and Lymphatic vessel cells (Lymphatic, 148 cells) marked by

LYVE1; Stroma cells (6,254 cells, 6.66%) defined by cells

expressing COL1A2/COL3A1 are further clustered into 3

subgroups: Fibroblast cells (3,196 cells) marked by PDGFRB,

Cancer-associated fibroblasts (CAF, 1418 cells) marked by

RGS5, Smooth muscle cells (SMC, 1,640 cells) marked by FAP/

PDGFRA; Myeloid cells (8,641 cells, 9.20%) defined by cells

expressing HLA-DRA are further clustered into 5 subgroups:

Monocytes (791 cells) marked by CD14/FCGR3A, M1 polarized

macrophages (M1.Macrophage, 3,697 cells) marked by CD14/

FCGR3A/CD68/TNF/IL1B , M2 polarized macrophages

(M2.Macropahge, 3,219 cells) marked by CD14/FCGR3A/

MRC1, Cycling macrophages (cMacrophage, 120 cells) marked

by CD14/FCGR3A/CD68/TOP2A/MKI67; Dendritic cells (DC,

708 cells) marked by CD1C; Granulocyte cells (2,479 cells) are

further clustered into 2 subgroups: Neutrophil cells (469 cells)

marked by CCR7/IDO1, Mast cells (2,116 cells) marked by

TPSB2/TPSAB1; T cells (35,572 cells, 37.87%) defined by cells

expressing CD3D/CD3G are further clustered into 10 subgroups:

CD4 naïve T cells (CD4.Naive, 3,781 cells) marked by CD4/

TCF7/SELL/LEF1, CD4 tissue resident memory T cells

(CD4.Trm, 2,337 cells) marked by CD4/IL7R/CD69, CD4

helper 17 cells (CD4.Th17, 2,498 cells) marked by CD4/

CCL20/CCR6, CD4 regulatory T cells (CD4.Treg, 3,883 cells)

marked by CD4/IL2RA/FOXP3 ; CD8 effector T cells

(CD8.Effector, 6,065 cells) marked by CD8A/GZMK, CD8

tissue effector memory T cells (CD8.Tem, 2,876 cells) marked

by CD8A/KLRB1, CD8 tissue resident memory T cells

(CD8.Trm, 6,296 cells) marked by CD8A/CD69/IL7R, CD8

naïve T cells (CD8.Naive, 1,953 cells) marked by CD8A/TCF7/

SELL/LEF1, Natural killer T cells (NK.T, 169 cells) marked by

CD8A/KLRD1, Natural killer cells (NK, 5,714 cells) marked by

KLRD1; B cells defined by cells (17,803 cells, 18.95%) expressing

CD79A/CD79B are further clustered into 2 subgroups: Plasma B

cells (PlasmaB, 14,197 cells) marked by DERL3, Naïve B cells

(NaiveB, 3,606 cells) marked by MS4A1.
Expression status of pro and con genes
in different cell types of GC samples

To examine the expression status of Pro and Con genes in

different cell types of GC samples, we summarized the

expression profiles of 55 Pro genes and 154 Con genes across

31 subgroups, as illustrated in Figure 5A and detailed in

Supplemental Table 5. The Pro and Con genes are ranked

based on their average expression values in different clusters.

Part of the Pro and Con genes are not involved in these profiles

due to the lack of their expression readings in scRNAseq data.

Among 55 Pro genes, 18 of them (32.73%) have the highest

expression values in lymphocyte components, followed by 15 of
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them (27.27%) in epithelial components, 8 of them (14.55%) in

myeloid components, 7 of them (12.73%) in endothelial

components, 4 of them (7.27%) in granulocyte components

and 3 of them (5.45%) in stroma components. The majority of

the Pro genes have the highest expression values in immune-

related components (28 out of 55, 54.55%), which is consistent

with the GO enrichment results of Pro genes, where top enriched

GO items are immune-related (Figure 2E). Among 154 Con

genes, 56 of them (36.37%) have the highest expression values in

stroma components, followed by 35 of them (22.73%) in

epithelial components, 32 of them (20.78%) in endothelial

components, 16 of them (10.39%) in myeloid components, 10

of them (6.49%) in granulocyte components and 5 of them

(3.25%) in lymphocyte components. The majority of the Con

genes have the highest expression values in ECM-related

components (stroma and endothelial components, 88 out of

154, 57.14%), which is consistent with the GO enrichment

results of Con genes, where top enriched GO items are ECM-

related functions (Figure 2F).

We further examined the expression status of the Pro/Con

cohort in 31 subgroups, and compared the difference between

normal and tumor samples, as shown in Figure 5B. In general,

relative expression values of the Pro cohort are higher in

immune-related components (myeloid, granulocyte, T cells

and B cells) compared to these in other components, and

among certain immune-related components (CD4.Naive,

CD8.Tem, CD8.Trm, CD8.Naive, NK), the expression values

of the Pro cohort are lower in tumor samples compared to these

in normal samples; relative expression values of the Con cohort

are higher in ECM-related components (endothelial and stroma

cells) compared to these in other components, and among most

of the ECM-related components (except lymphatic vessel cells

due to the limited number of cells), the expression values of the

Con cohort are higher in tumor samples compared to these in

normal samples. These results suggest that the Pro/Con cohort

might be involved in tumor progression.
Depleted ECM and enhanced immune
process co-contribute to 5-FU-benefit
responses in GC

To further explore the changes of ECM and immune

components in GC samples with different 5-FU responses, we

obtained cellular type proportion information of STAD samples

through a deconvolution analysis (Bisque R package) (17) using

RNA sequencing data and scRNAseq data (Figure 6A), and

further analyzed the changes of these proportions among

different groups (Figure 6B).

Among 6 major cell types, there is a significant decrease of

stroma component, and a significant increase of T cell

component in 5-FU-benefit GC samples (All types) compared

to these in 5-FU-futile samples, while these significant changes
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are not examined in GC samples without 5-FU treatment

(Figure 6B, first row and second row). Regarding 31

subgroups, there are significant decreases of capillary/SMC/

CD4.Treg ratios, and significant increases of M1.Macrophage

ratio in 5-FU-benefit GC samples (All types) compared to these

in 5-FU-futile samples. Capillary and SMC cells are ECM-related

components, and the reduction of these components in 5-FU-

benefit samples indicates that an ECM-depletion process is

beneficial for 5-FU treatment. M1.Macrophage cells are
Frontiers in Immunology 10
immune-promotive components while CD4.Treg cells are

immune-suppressive component, and these changes suggests

that an enhanced immune process is beneficial for 5-

FU treatment.

Regarding specific GC subtypes, there are significant

decreases of Capillary/Stroma ratios and increases of

M1.Macrophage/Tcell/CD4.Naive/CD8.Tem/NK.T/Bcell/

PlasmaB/NaiveB ratios in 5-FU-benefit diffuse samples

compared to these in 5-FU-futile diffuse samples (Figure 6B,
B

A

FIGURE 5

Cellular expression profiles of Pro and Con genes (A) Relative expression values of Pro and Con genes in 31 subgroups. Average expression
values of each gene within a certain subgroup are represented using color. The subcellular location information of each gene is indicated on
the right; (B) Boxplot representing the relative expression values of Pro and Con gene cohort in different subgroups/conditions (*p < 0.05;
**p < 0.01; ***p < 0.001. Two-tailed t-test).
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third row); there are significant decrease of Capillary/Stroma/

SMC/CD4.Treg ratios and significant increases of Tcell ratio in

5-FU-benefit intestinal samples compared to these in 5-FU-futile

intestinal samples (Figure 6B, fifth row). Interestingly, we find

the stroma ratio is significantly lower in 5-FU-benefit diffuse
Frontiers in Immunology 11
samples compared to this in 5-FU-benefit intestinal samples,

and the ratios of most immune components (Myeloid/

M1.Macrophage/Tcell/CD8.Effector/CD8.Tem/NK.T/NK/Bcell/

PlasmaB/NaiveB) are higher (although not significant) in 5-FU-

benefit diffuse samples compared to these in 5-FU-benefit
B

A

FIGURE 6

Proportion analysis of scRNAseq groups in TCGA STAD samples (A) Bar plot representing proportions of 31 subgroups in each TCGA sample.
These data were generated through decomposition analysis; (B) Ratio comparison of 6 main groups/31 subgroups across different types of
TCGA samples. All GC samples with 5-FU treatment: row 1; all GC samples without 5-FU treatment: row 2; diffuse samples with 5-FU
treatment: row 3; diffuse samples without 5-FU treatment: row 4; intestinal samples with 5-FU treatment: row 5; intestinal samples without 5-
FU treatment: row 6; NS samples with 5-FU treatment: row 7; NS samples without 5-FU treatment: row 8; diffuse 5-FU-benefit samples vs
intestinal 5-FU-benefit samples: row 9. (*p < 0.05; **p < 0.01; ***p < 0.001. Two-tailed t-test).
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intestinal samples, suggesting a more depleted ECM and more

enhanced immune process in 5-FU-benefit diffuse samples,

which might explain the better performance of 5-FU on

diffuse GC patients (Table 1).
Key regulatory interactions in controlling
5-FU responses revealed by
scRNAseq analysis

A tumor is a complex system containing multiple

components, and most of the time, these components do not

work alone. Regulation by secreted proteins is one of the most

direct means by which a single component can affect the entire

TMEs. In this study, we further investigated possible regulation

relationships between scRNAseq-defined cell types through the

analysis of secreted proteins (Figure 5A, right panel, defined by

subcellular location information from The Human Protein Atlas

online database, www.proteinatlas.org) encoded by Pro and Con

genes, as shown in Figure 7.

Among secreted proteins encoded by Pro genes, some of

them have been previously confirmed of tumor inhibition ability

in many studies. For example, CHRBP (Corticotropin releasing

hormone binding protein) secreted by myeloid components

could inhibit renal carcinoma progression (20); HPSE

(Heparanase) secreted by myeloid components could promote

the degradation of ECM, which further promotes the infiltration

of T lymphocytes and hence antitumor ability (21); SLAMF1

(Signaling lymphocytic activation molecule family member 1)
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secreted by lymphocyte components could promote M1

macrophage anti-tumor polarization (22); SLAMF1 could also

promote the infiltration and activation of certain T and B

lymphocytes (23, 24). All these secreted proteins co-contribute

to a tumor-suppressive microenvironment.

Among secreted proteins encoded Con genes, many of them

have been previously confirmed of tumor promotion ability in

many studies. For example, STC2 (Stanniocalcin 2), SERPINE1

(Serpin family E member 1), FSTL3 (Follistatin like 3),

ADAMTS12 (ADAM metallopeptidase with thrombospondin

type 1 motif 12), ANGPT2 (Angiopoietin 2), BMP1 (Bone

morphogenetic protein 1) secreted by stroma components,

PXDN (Peroxidasin) secreted by endothelial components and

WNT7A (Wnt family member 7A) secreted by lymphocyte

components could promote tumor progression/metastasis in

many cancers (25–32); HPX (Hemopexin), FGF20 (Fibroblast

growth factor 20) secreted by epithelial components, STC2,

FSTL3, LOX (Lysyl oxidase), WNT5A (Wnt family member

5A), PGF (Placental growth factor), LOXL2 (Lysyl oxidase like

2) secreted by stroma components, PXDN, PDGFB (Platelet

derived growth factor subunit B) secreted by myeloid

components could promote angiogenesis process in many

cancers (27, 33–41); FGF20 secreted by epithelial components,

WNT5A and BMP1 secreted by stroma components,

PDGFB and ADAMTS9 (ADAM metallopeptidase with

thrombospondin type 1 motif 9) secreted by myeloid

components could promote stroma development and

fibroblast activations in many cancers (42–47); LOX, WNT5A,

LOXL2, BMP1 secreted by stroma components, PDGFB and
FIGURE 7

Key regulatory interactions in controlling 5-FU responses. Circle map representing secreted proteins that could contribute to 5-FU-benefit
response (left); Circle map representing secreted proteins that could contribute to 5-FU-futile response (right).
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ADAMTS9 secreted by endothelial components, IGLON5

(IgLON family member 5) secreted by myeloid components,

WNT7A secreted by Lymphocyte components could promote

ECM formation (39, 43, 45–50); FGF20 secreted by epithelial

components, FSTL3, WNT5A and LGALS1 (Galectin 1) secreted

by stroma components could promote M2 macrophage pro-

tumor polarization (51–54); STC2, FSTL3, ADAMTS12 and

LGALS1 secreted by stroma components could promote T cell

exhaustion process as well as promote immunosuppressive

functions of regulatory T cells (28, 55–57); WNT5A, LGALS1

secreted by stroma components, CSF3 (Colony stimulating

factor 3) secreted by endothelial components, IGLON5

secreted by myeloid components could promote infiltration

and differentiation of regulatory B cell, as well as inhibit

proliferation of B cells (58–61). All these secreted proteins co-

contribute to a tumor-promoting microenvironment.
Depleted ECM and infiltrated immune
components in 5-FU-benefit
patients validated by
immunostaining experiments

To validate the TME features relating to different 5-FU

responses, we involved four GC patients receiving 5-FU

chemotherapy treatment (in combination with oxaliplatin and

calcium folinate) after radical gastrectomy (clinical information

listed in Table 2). Among these four patients, two of them

(patient 1 and patient 2) have CEA (carcinoembryonic antigen)

values less than 5 ng/ml, as revealed in the following serum

tumor biomarker examinations, and these two patients are

classified as 5-FU-benefit, while the other two patients (patient

3 and patient 4) with CEA values over 5 ng/ml (abnormal

values), are classified as 5-FU-futile (Figure 8A). We further

examined the specific TME component changes in these four

patients using immunostaining of patient-specific tumor

sections (Figures 8B, C). Regarding ECM components, there is
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an obvious depletion of stroma cells (marked by TAGLN, green)

and fibroblasts (marked by COL1A2, red) in 5-FU-benefit

patients, as well as an increased expression of Heparanase

(HPSE, purple) which promotes the degradation of ECM.

Regarding immune components, there is an obvious

enrichment of B cells (marked by CD79A, red) in 5-FU-

benefit patients, as well as a decreased expression of Galectin-1

(LGALS1, purple). Galectin-1 could promote an immune-

suppressive environment (Figure 7), and the decrease of

Galectin-1 facilitates the immune infiltration process in 5-FU-

benefit patients. All these results confirm that the depletion of

ECM and infiltration of immune components co-contribute to

5-FU-benefit responses in GC patients.
Discussion

5-FU has remained the most extens ive ly used

chemotherapeutic drug in the treatment of many cancers.

Drug resistance to 5-FU is a common phenomenon in cancer

chemotherapy. So far most of the studies exploring 5-FU-

response predictions involved only 5-FU pathway-related

genes/enzymes (6, 7) or certain types of factors such as

immunohistochemical results (62) or inflammation (63),

however, the tumor is a complex system comprising of ECM,

stroma, vasculature and infiltrated immune cells other than

tumor cells alone, and all these components have the potential

to affect drug responses. Algorithms considering only one

component would lead to biased estimation, hence in

this study, we screened 5-FU-response-related genes

transcriptome-wide and established a Pro and Con gene panel

that could predict 5-FU response in different subtypes of GC

patients. We further investigated the pan-cancer-wide

applicability of this panel. The initial motivation of this pan-

cancer exploration is to investigate which drug/cancer

combination shares similar features with 5-FU/GC responses.

For example, the Pro/Con cohort has an AUC score of 0.84 on
TABLE 2 Clinical information of involved GC patients.

Gastric Cancer Patient 1 Patient 2 Patient 3 Patient 4

Sex Male Male Male Male

Age 67 66 68 70

Histological Type Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma

Lauren Type Diffuse Diffuse Intestinal Diffuse

TNM Stage pT3N2M0 pT4N2Mx pT3N1M0 pT4N3M0

Infiltration Degree pT3 pT4 T3 Pt4

Tumor Stage IIIB IIIB IIB IVA

Radical Gastrectomy Yes Yes Yes Yes

Chemotherapy Plan Oxaliplatin (140mg)
Calcium folinate (600mg)
5FU 0.6g dl, 4.0g CIV 48H

Oxaliplatin (120mg)
Calcium folinate (590mg)

5FU 0.59g dl, 3.5g CIV 48H

Oxaliplatin (130mg)
Calcium folinate (600mg)
5FU 0.6g dl, 4.0g CIV 48H

Oxaliplatin (100mg)
Calcium folinate (500mg)
5FU 0.5g dl, 3.0g CIV 48H
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B

C

A

FIGURE 8

Immunostaining validation of TME features in 5-FU treated GC patients (A) CEA values of four GC patients with 5-FU chemotherapy treatments
after radical gastrectomy; (B) ECM features in the tumor tissues of these four patients. Stroma cells are colored in green (TAGLN) and red
(COL1A2); Galectin-1 is colored in purple (LGALS1). In 5-FU-benefit GC patients, more stroma cells as well as cells secreting galactin-1 are
examined compared to those in 5-FU-futile GC patients. (C) Immune features in the tumor sections of these four patients. B cells are colored in
red (CD79A); heparanase is colored in purple. In 5-FU-benefit GC patients, more B cells, as well as cells secreting heparanase are examined
compared to those in 5-FU-futile GC patients.
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Carboplatin/LUAD responses. We can reasonably speculate that

5-FU/STAD and Carboplatin/LUAD responses might share

similar drug response mechanisms since the expression

patterns of these Pro/Con genes have similarities. Based on

these results, we believe that more insights would be inspired

in future cancer therapy explorations.

Enriched ECM component or Desmoplasia has been

considered as one of the main reasons causing anti-cancer

drug resistance (64, 65), as these stiffened extracellular

matrices could impede the infiltration of drugs and immune

cells into the tumor. Besides, angiogenesis is often induced by

hypoxia accompanying this stiffness process, in which

disorganized neovascular vessels further lead to a decrease in

drug delivery efficiency (66). In our results, we find that Con

genes (high expression unfavoring 5-FU-benefit GC samples)

are enriched in ECM-related functions (Figure 2F), and these

genes are highly expressed in stroma/endothelial components

(Figures 5A, B). We also observe a significant decrease in ratios

of ECM-related components such as stroma/Capillary cells in 5-

FU-benefit GC samples (Figure 6B) as well as depletion of ECM

components in tumor sections of 5-FU-benefit GC patients

(Figure 8B), confirming the importance of desmoplasia in

mediating 5-FU responses. Based on our analysis and previous

publications, the ECM depletion process (degradation of ECM

components) in 5-FU-benefit GC patients could be possibly

regulated through TME secreted protein HPSE, and the ECM

enrichment process in 5-FU-futile patients could be possibly

mediated through TME secreted proteins including LOX,

WNT5A, LOXL2, ANGPT2, BMP1, PDGFB, ADAMTS9,

IGLON5 and WNT7A (Figure 7).

Besides ECM remodeling, TIMEs (tumor immune

microenvironments) are also reshaped during cancer

progression and chemotherapy process, and these immune

changes might also contribute to 5-FU responses in GC

patients. In our study, we find that Pro genes (high expression

favoring 5-FU-benefit GC samples) are enriched in immune-

related functions (Figure 2E), and these genes are highly

expressed in immune (myeloid, granulocyte and lymphocyte)

components (Figures 5A, B), indicating an immune infiltration

process in 5-FU-benefit GC samples. We also observe an

increase of M1.Macrophage/Tcell/Bcell ratio in 5-FU-benefit

GC samples (Figure 6B) as well as enrichment of B cells in

tumor sections of 5-FU-benefit GC patients (Figure 8B),

confirming the importance of immune components in

mediating 5-FU responses. Macrophages have been

demons t r a t ed o f g r ea t impor t ance in med ia t ing

chemoresistance through M2 polarization in many cancers

(67, 68). In our results, we find overexpression of secreted

proteins including HPSE and SLAMF in TMEs of 5-FU-

benefit samples that could induce an M1 macrophage

polarization, and overexpression of secreted proteins including

FGF20, FSTL3, WNT5A and LGALS1 in TMEs of 5-FU-futile
Frontiers in Immunology 15
samples that could induce an M2 macrophage polarization,

suggesting that polarizations of macrophages are related to

different 5-FU responses. Besides macrophages, we also find

overexpression of secreted protein SLAMF1 in TMEs of 5-FU-

benefit samples that could promote a T/B cell infiltration

process, as well as overexpression of secreted proteins

including STC2, FSTL3, WNT5A, ADAMTS12, LGALS1,

CSF3 and IGLON5 in TMEs of 5-FU-futile samples that could

promote a Treg/Breg infiltration and lymphocyte exhaustion

process, confirming that lymphocytes infiltration/depletion are

also related to 5-FU responses.

In this study, based on the combined analysis of bulk

sequencing data and scRNAseq data, we found that depleted

ECM components and enhanced immune process are two

related features affecting 5-FU responses in GC, especially in

diffuse GC patients. We also established a Pro and Con gene

panel that could predict the 5-FU responses in GC patients, and

proved partial applicability of this panel pan-cancer wide.

Moreover, we further revealed possible regulatory mechanisms

in these two processes (ECM and immune) based on scRNAseq

data. Although this study is limited by the lack of scRNAseq data

from patients with different 5-FU responses and a limited

number of 5-FU-treated samples, still our results shed some

new light on elucidating the mechanism of 5-FU resistance from

TME perspectives, as well as provide potential therapeutic

targets in overcoming this drug-resistance phenomenon.
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