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An immune genes signature
for predicting mortality in
sepsis patients

Shirong Lin, Ping Li, Jibin Yang, Shiwen Liu, Shaofang Huang,
Ziyan Huang, Congyang Zhou and Ying Liu*

Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
A growing body of evidence indicates that the immune system plays a central role

in sepsis. By analyzing immune genes, we sought to establish a robust gene

signature and develop a nomogram that could predict mortality in patients with

sepsis. Herein, data were extracted from the Gene Expression Omnibus and

Biological Information Database of Sepsis (BIDOS) databases. We enrolled 479

participants with complete survival data using the GSE65682 dataset, and grouped

them randomly into training (n = 240) and internal validation (n = 239) sets based

on a 1:1 proportion. GSE95233 was set as the external validation dataset (n=51). We

validated the expression and prognostic value of the immune genes using the

BIDOS database. We established a prognostic immune genes signature (including

ADRB2, CTSG, CX3CR1, CXCR6, IL4R, LTB, and TMSB10) via LASSO and Cox

regression analyses in the training set. Based on the training and validation sets,

the Receiver Operating Characteristic curves and Kaplan-Meier analysis revealed

that the immune risk signature has good predictive power in predicting sepsis

mortality risk. The external validation cases also showed that mortality rates in the

high-risk group were higher than those in the low-risk group. Subsequently, a

nomogram integrating the combined immune risk score and other clinical features

was developed. Finally, a web-based calculator was built to facilitate a convenient

clinical application of the nomogram. In summary, the signature based on the

immune gene holds potential as a novel prognostic predictor for sepsis.
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1 Introduction

Sepsis, which is defined as the systemic inflammatory response to infection, has been a

leading cause of morbidity, mortality, and health system costs (1). Based on epidemiological

studies, approximately 31.5 million cases of sepsis occur worldwide annually with a mortality

rate of 16.8% (2). When sepsis becomes severe, it results in organ failure and a mortality rate

of more than 20%, while when septic shock occurs, refractory hypotension develops and a

mortality rate exceeding 40% occurs (3, 4). Sepsis treatments have advanced rapidly in the

past few years, including antibiotic therapy, ventilator management, glucagon monitoring,

and resuscitation strategies (5, 6). Nevertheless, there have been a few new effective therapies
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1000431/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1000431/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1000431/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1000431&domain=pdf&date_stamp=2023-02-13
mailto:liuyingemergency@outlook.com
https://doi.org/10.3389/fimmu.2023.1000431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1000431
https://www.frontiersin.org/journals/immunology


Lin et al. 10.3389/fimmu.2023.1000431
identified, and the mortality rate associated with sepsis remains high.

Therefore, early identification of patients at high risk of death may be

the key to preventing and treating sepsis patients and improving the

survival rate of patients with sepsis (7). As sepsis is a complex and

heterogeneous disease, it is often difficult for clinicians to accurately

assess the risk of death (8). Therefore, it is vital to research novel

biomarkers to better predict sepsis progression and improve sepsis

patients’ prognosis.

A number of biomarkers are currently used as indicators of

infection in critically ill patients, including the inflammatory

marker C-reactive protein (CRP) and the bacteremia indicator

procalcitonin (PCT); However, their diagnostic and prognostic

abilities in the case of sepsis appear to be suboptimal (9, 10). It

is currently unclear whether any biomarker can detect sepsis

rapidly enough or identify high-risk patients in an acceptable

manner, as sepsis has an extremely heterogeneous and complex

pathophysiology. In recent years, with the accumulation of a large

amount of “omics” data in public databases, gene expression

signatures have been proven useful for predicting the mortality

risk of different patients (11, 12). Theoretically, the heterogeneity

of sepsis can be explained by the differential expression of

thousands of genes in response to infectious agents (13). Hence,

transcriptomics, as promising new biomarkers, can provide

important predictive and prognostic information.

Increasing evidence currently supports the immune system’s core

role in sepsis (14, 15). In sepsis, immune response activated by

invading pathogens fails to return to homeostasis, thus ultimately

leading to a pathological syndrome characterized by persistent

excessive inflammation and immunosuppression (16). Immune-

related genes (IRGs) are biologically important for the host’s

response to pathogens and play key roles in immune responses

(17). Therefore, researchers working on sepsis are becoming

increasingly interested in IRGs and their prognostic value.

In this study, we investigated the difference in IRG expression in

sepsis patients, and then developed a scoring model according to a

multigene signature and other clinicopathological factors to improve

prognosis prediction in sepsis patients, thereby facilitating clinical

treatment. An estimation model was created using a nomogram and a

web-based calculator, and its performance was evaluated according to

its discrimination, calibration, and clinical significance.
2 Methods

2.1 Data collection

The gene expression arrays of human sepsis datasets were derived

from inception to June 2022 based on the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/), which is a database of high-

throughput gene expression data, hybridization arrays, microarrays, and

chips is. A correction was made to all data before it was integrated.

Additionally, the Biological Information Database of Sepsis (BIDOS,

http://www.swmubidos.com/) was applied to validate the expression and

prognostic value of IRGs in sepsis. In total, 2498 immune-related genes

were downloaded from ImmPort (https://immport.niaid.nih.gov),

which includes a comprehensive list (18).
Frontiers in Immunology 02
2.2 Differential expression analysis

The probes with missing gene symbols and missing values were

removed. In order to standardize the data, we used the robust

multiarray (RMA) approach. Differentially expressed genes were

determined via the Limma package of R language (19), with |log 2

(fold change [FC]) | > 0.5 and p< 0.05 as the significant thresholds.
2.3 Functional enrichment analysis

GO analysis, which incorporated biological processes, molecular

functions, and cellular components, and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses were

performed by using the clusterProfiler package in R language (20), set

the significant threshold to p< 0.05.
2.4 Construction of the immune signature

Patients with follow-up duration and status in GSE65682 were

randomly divided into two groups: training and internal validation, and

other GEO datasets were set as external validation sets. To screen for

immune genes associated with survival, a univariate Cox regression

analysis was performed using the “survival” package. By using the R

packages “glmnet” and “survival,” the LASSO regression analysis was

carried out to screen potential genes based on variable screening and

complexity adjustment. As a final step, a multivariate Cox regression

analysis was conducted to confirm the identity of highly correlated genes

and construct an immune gene signature based on the following model:

Risk score =o
N

i=0
(bi � Expi)

where N indicates the number of IRGs included, and Expi indicates

the level of themRNA for each of these genes. bi represents the regression
coefficient obtained using the Cox regression method.

The median risk score was used as a cutoff for dividing patients

into high- and low-risk groups, and receiver operating characteristic

(ROC) curves were produced using the “survivalROC” package in R.

Assessment of the immunogene signature’s predictive potential was

conducted using AUC values.
2.5 Immune cell infiltration

The immune cell infiltration in the high- and low-risk groups was

s tud ied us ing the CIBERSORT a lgor i thm (HTTPS : / /

cibersort.stanford.edu/) (21). A landscape map was used to illustrate

differences between high-risk and low-risk groups in the relative

proportions of 22 types of immune cells.
2.6 Statistical analysis

By using the median risk score in each data set as a cutoff, Kaplan-

Meier curves were plotted to compare the survival risks between high-
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risk and low-risk individuals. To determine whether multi-mRNA

signatures and clinicopathologic characteristics were independent

factors, both univariate and multivariate Cox regressions were

applied. Significance was defined as P< 0.05. R software version 4.0.5

was used for all analyses except those requiring special parameters.
3 Results

3.1 Identification of differentially
expressed genes

To identify the differentially expressed genes, we detected the

differentially expressed genes between control and sepsis samples in

GSE65682. We initially identified 3,648 differentially expressed genes,

of which 1,187 were upregulated and 2,461 were downregulated

(Figures 1A, B). GO, and KEGG functional enrichment analysis

revealed that this set of genes was mainly enriched in immune/

inflammation-related functions (Figures 1C, D).
3.2 Construction of immune signature

To screen out differentially expressed immune genes, 283 genes were

selected by taking the intersection of the 3,648 differentially expressed

Genes and the 2,498 immune genes (Figure S1). Next, univariate Cox

regression analysis was used to screen the immune genes with prognostic

values based on the training set. Eventually, 28 survival-related IRGs were

identified (Table S1). Subsequently, the 28 IRGs were used in Lasso-Cox

proportional hazards regression and ten-fold cross-validation analyses
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designed to construct the best gene signature; eventually, 14 IRGs were

identified for downstream analysis (Figure S1). Furthermore, multivariate

analysis was performed based on the Lasso results using the Cox

Proportional hazards model, and 7 immune genes were identified to

construct the prognostic model (Figure S1). In addition, we also explored

the correlations between the 7 genes. The heatmap of gene expression

correlation is illustrated in Figure S1.
3.3 Diagnostic value of IRG

We further investigated the diagnostic effectiveness of the seven

identified IRGs (ADRB2, CTSG, CX3CR1, CXCR6, IL4R, LTB, and

TMSB10). As displayed in Figures 2A–G, the diagnostic ability of each

IRG to distinguish sepsis from the control samples shows a superior

diagnostic efficiency. ROC curve analysis revealed that the area under the

curve (AUC) was 0.93 (95% confidence interval [CI], 0.90–0.96) for

ADRB2, AUC was 0.67 (95% CI, 0.61–0.73) for CTSG, AUC was 0.98

(95% CI, 0.97–0.99) for CX3CR1, AUC was 0.92 (95% CI, 0.89–0.95) for

TMSB10, AUC was 0.91 (95% CI, 0.87–0.94) for CXCR6, AUC was 0.95

(95% CI, 0.93–0.96) for IL4R, and AUC was 0.97 (95% CI, 0.96–0.99)

for LTB.
3.4 Validation of the expression of IRGs

A meta-analysis of IRG levels was performed to validate the gene

expression level between control and sepsis. We screened the research

data set of patients with sepsis in the GEO database. Eventually, the
frontiersin.org
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FIGURE 1

Differential gene expression and functional enrichment analysis in the GSE65682 dataset. (A) Heat map showing top 50 differential expression genes in
control and sepsis. (B) Volcano plots showing differential expression genes (logFC>0.5). (C) GO enrichment results of differential expression genes.
(D) KEGG pathway enrichment analysis of differential expression genes.
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following data sets: GSE28750, GSE6535, GSE12624, GSE54514,

GSE63042, GSE67652, GSE69528, GSE74224, and GSE95233 were

included. After pooling the mRNA level of IRGs from the different

datasets, we found nearly the same trend in the validation set

(Figures 3A–G).
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3.5 Validation of the prognostic role of
immune genes

To validate the prognostic role of each identified IRGs in sepsis,

we searched the BIDOS database, which included gene expression
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C

FIGURE 3

Meta-analysis of immune gene expression in sepsis based on existing microarray data sets: (A) ADRB2, (B) CTSG, (C) CX3CR1, (D) CXCR6, (E) IL4R,
(F) LTB, and (G) TMSB10.
A B D
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C

FIGURE 2

Diagnostic value of the immune genes for sepsis assessed via ROC curve analysis: (A) ADRB2, (B) CTSG, (C) CX3CR1, (D) CXCR6, (E) IL4R, (F) LTB, and
(G) TMSB10.
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data and survival data of sepsis obtained from the GEO database. The

K-M analysis results showed that most of the IRGs have a significant

prognostic value (Figures 4A–G).
3.6 Prognostic value of the IRG signature

According to Cox multivariate analysis, the Cox coefficients of the

7 IRGs were obtained (Figure 5A). The prognostic risk score

according to the expression of the 7 IRGs was determined as

follows: Risk score = ADRB2 × (-0.4102) + CTSG × (0.1825) +

CX3CR1 × (-0.1810) + CXCR6 × (0.8549) + IL4R × (-0.4270) + LTB ×

(-0.5605) + TMSB10 × (-0.6836). The gene expression levels in the

formula of the risk score were normalized microarray data.

The risk score for each sepsis patient in the training set was

calculated. Patients were separated into high- and low-risk cohorts

based on the median risk score. We plotted the patient’s risk score

(green for low-risk values, red for high-risk values) and survival state

chart (green for alive, red for death) (Figures 5B, C). Differences in

expression of the seven IRGs between low- and high-risk are shown in

Figure 5D. The results showed sepsis exhibited a greater mortality risk

with an increasing risk score (Figure 5E).

Kaplan-Meier analysis revealed that in the training set, patients in

the high-risk group had shorter overall survival (OS) than those in the

low-risk group (Figure 5F). Receiver operating characteristic (ROC)

analysis demonstrated that the area under the curve (AUC) value of

the prognostic immune signature was 0.804 (Figure 5G).
3.7 Validation of the IRG signature

The risk score for each sepsis patient in the validation set was

calculated to validate the IRG signature. Samples were separated into

high- and low-risk cohorts based on the median risk score. We plotted

the patient’s risk score (green for low-risk values, red for high-risk

values) and survival state chart (green for alive, red for death) in

Figures 6A, B. Differences in expression of the seven IRGs between
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low- and high-risk are shown in Figure 6C. The results indicated a

higher mortality risk with an increasing risk score (Figure 6D).

Kaplan-Meier analysis revealed that in the validation set, patients

in the high-risk group had high mortality than those in the low-risk

group (Figure 6E). ROC analysis demonstrated that the area AUC

value of the prognostic signature was 0.877 (Figure 6F).

We also validated the signature by an external validation data set

(GSE95233). The results showed a higher portion of dead patients

with increasing risk scores (Figure 7A). Moreover, Multivariate

logistic regression analysis showed that risk score was

independently associated with survival (Figure 7B).
3.8 Immune cell infiltration estimation

To further study immune characteristics in sepsis with a

different immune risk score. We investigated the infiltrating

immune cells by using the CIBERSORT algorithm. The

percentage of immune cells that infiltrated the tumor is shown in

Figure S2. Based on immune infiltration levels among the different

immune infiltrating cells, we compared the high-risk group with

the low-risk group. The results showed that the high-risk group had

high proportions of plasma cells and macrophages M1. And the

low-risk group had high proportions of T cells CD8, NK cells

resting, and macrophages M0 (Figure S2).
3.9 Development of prediction nomogram
and web-based calculator

Independent prognostic factors were identified by Cox

proportional hazards regressions. The results showed this

immune risk signature was independent of prognostic factors

(Figures 8A, B). A nomogram was established to accurately

predict a certain clinical outcome by integrating age, gender,

ICU-acquired infection, diabetes, and the risk signature using a
A B D

E F G

C

FIGURE 4

Validation of the independent prognostic efficiency for individual mRNA in the 7-immune gene signature based on the BIDOS database. (A) ADRB2,
(B) CTSG, (C) CX3CR1, (D) CXCR6, (E) IL4R, (F) LTB, and (G) TMSB10.
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Cox model (Figure 9A). In the training set, the AUCs of the

nomogram were 0.972 (Figure 9B). The calibration plots based

on the training set showed good agreement between predictions

and observations (Figure 9C). Further, a decision curve analysis

(DCA) was conducted and showed that nomogram was clinically

useful (Figure 9D).

Moreover, we built an easy-to-use web-based resource (https://

emergency.shinyapps.io/sepsis/) for clinical use and visualization

of the prediction model to estimate the mortality risk of sepsis

based on the nomogram (Figure S3). The estimated probabilities of

disease progression may be derived by drawing a perpendicular line

from the total point axis to the outcome axis.
4 Discussion

ICU deaths are mainly caused by sepsis, including septic shock,

which has a poor patient prognosis (22). There are many therapies for

the treatment of sepsis. However, no specific medicine has been

formulated thus far. When managing sepsis, it is critical to diagnose

sepsis early and recognize patients with high mortality risk (23). In

this study, we established robust prognostic seven-immune genes

(including ADRB2, CTSG, CX3CR1, CXCR6, IL4R, LTB, and
Frontiers in Immunology 06
TMSB10). In addition, the IRGs displayed excellent diagnostic

capability for sepsis.

Studies in the past have attempted to develop models of prognosis

in sepsis patients based on new biomarkers and clinical features (24–

27). However, due to the reliability, limited results have been applied

in clinical practice. In this study, our signature showed a high

predictive ability for sepsis. The AUC obtained by our signature

ranged from 0.804 to 0.877, with an average AUC value of 0.840.

More importantly, we built a more reliable nomogram model by

incorporating clinical risk factors and risk scores, with the AUC

reaching 0.972 and developed an easy-to-use calculator which will

allow the public to freely predict local cases and test the

model’s adaptability.

Most IRGs included in our signature were closely related to

inflammation and immune response. ADRB2 belonged to

superfamily A of seven transmembrane G protein-coupled

receptors (GPCRs) act ivated by epinephr ine (Epi) or

norepinephrine (NE) (28). Immune cells express ADRB2,

enabling the sympathetic nervous system to control immune

function directly (29). Previous studies indicated that ADRB2

controls inflammation by driving rapid IL-10 secretion (30).

CTSG is a recognized neutrophil protease released by activated

neutrophils to clear pathogens and regulate inflammation by
A
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FIGURE 5

Prediction performance assessment of the prognostic signature in the training set (n=240). (A) Coefficient distribution of the gene signature. (B) Bar plot
of a risk score for every patient and ordered by the value of risk score. (C) Distribution of vital survival status and risk scores of the immune signature.
(D) Heatmap of the mRNA expression levels of the seven signature-comprising immune genes. (E) Comparison of survival risk between two groups.
(F) Kaplan-Meier survival analysis of the gene signature in the training set. (G) ROC curves of the seven-mRNA signature in sepsis.
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FIGURE 6

Validation of the prediction performance of the prognostic signature in the validation set (n=239). (A) Bar plot of a risk score for every patient and
ordered by the value of risk score. (B) Distribution of vital survival status and risk scores of the immune signature. (C) Heatmap of the mRNA expression
levels of the seven signature-comprising immune genes. (D) Comparison of survival risk between two groups. (E) Kaplan-Meier survival analysis of the
gene signature in the validation set. (F) ROC curves of the seven-mRNA signature in sepsis.
A B

FIGURE 7

Validation of the signature using an external validation dataset (GSE95233). (A) Number of patient deaths increased with rising risk scores. (B) Multivariate
logistic regression analysis showed that risk score was independently associated with survival.
A B

FIGURE 8

Univariate and multivariate analysis of the influence of specific clinical characteristics on the outcome of sepsis: (A) Univariate analysis and
(B) multivariate analysis.
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modifying chemokines, cytokines, and cell surface receptors (31).

We found the upregulated CTSG expression in sepsis, which might

be a regulator of inflammation response during sepsis. CX3CR1 is a

chemokine receptor that binds to the proinflammatory chemokine

fractalkine (FKN or CX3CL1) (32). A previous study demonstrated

that the internalization of CX3CR1 is closely associated with

immunoparalysis in the late phase of sepsis (33). CXCR6 is the

receptor found on cells at sites of inflammation. There were limited

studies that focused on the role of CXCR6 plays in sepsis. In our

study, it was found that CXCR6 was downregulated when

compared to the control . IL-4R, a specific receptor of

inflammatory factors IL-4, transmits signals into the cellular

nucleus and exerts biological functions. IL4/IL4 receptor (IL4R)

interaction has well-defined roles in the immune system. In our

research, the result showed the upregulated IL4R expression in

sepsis. However, the specific role and mechanism of IL4R in sepsis

requires further elucidation. LTB is a lipid mediator produced

quickly (seconds to minutes) by phagocytes and induces

chemotaxis, and blocking LTB4 actions could be a promising

therapeutic strategy to prevent inflammasome-mediated diseases

(34). TMSB10 was originally identified in the thymus, which plays a

key role in the immune system (35). Most of the previous research

on TMSB10 has focused on the role of cancer immune

microenvironmental, and the critical role in sepsis still needs

further study.

The IRG plays an important role in regulating immune cell

function and response (17, 36). Here, we evaluated the differences

in the proportions of 22 immune cell types between low- and high-
Frontiers in Immunology 08
risk sepsis groups. Our results showed that the high-risk group had

high proportions of plasma cells and macrophages M1, and the low-

risk group had high proportions of T cells CD8, NK cells resting, and

macrophages M0. These results implied that high portions of plasma

cells and macrophage M1 are associated with poor prognosis.

Nomogram is a simple tool that can estimate risk by creating a

visible picture; it is frequently used in clinical practice (37, 38). It

incorporates several key features and is a simple and easy-to-use tool

that clinicians may use to diagnose and estimate various patient groups’

prognoses. In this study, we created a nomogram based on the immune

risk score and other clinical features to estimate the survival of patients

with sepsis. In addition to the classic nomogram, we created a dynamic

nomogram that could estimate patient prognosis using a simple web

page operation. Unlike previous nomograms that calculated an

estimate, the dynamic nomogram may deliver exact results.

However, several limitations need to be mentioned. First, all the

cases used in this research were downloaded from an open accessed

dataset, but none of our data were used for external verification.

Second, in vitro or in vivo studies need to be performed to investigate

the critical mechanisms associated with the prognostic significance of

the identified immune genes in sepsis.

In summary, our study identified and validated an IRG signature

that could independently predict the mortality risk of sepsis patients.

A prognostic nomogram was constructed by integrating the immune

risk score and other clinical features, which performed well in

predicting the survival of sepsis patients. Therefore, we fabricated a

clinically useful tool for improving the prognostic management

of sepsis.
A B

DC

FIGURE 9

A nomogram developed for predicting sepsis mortality. (A) Nomogram for predicting 7-, 14-, and 28- days survival based on the immune gene signature
and clinical features. (B) ROC curve for survival prediction of the nomogram. (C) Calibration plot of the nomogram for the prediction of survival. (D) DCA
of the nomogram for the prediction of survival.
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30. Ağaç D, Estrada LD, Maples R, Hooper LV and Farrar JD. The b2-adrenergic
receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav Immun
(2018) 74:176–85. doi: 10.1016/j.bbi.2018.09.004

31. Gao S, Zhu H, Zuo X and Luo H. Cathepsin G and its role in inflammation and
autoimmune diseases. Arch Rheumatol (2018) 33:498–504. doi: 10.5606/
ArchRheumatol.2018.6595

32. Aldahlawi AM, Elshal MF, Ashgan FT and Bahlas S. Chemokine receptors
expression on peripheral CD4-lymphocytes in rheumatoid arthritis: Coexpression of
Frontiers in Immunology 10
CCR7 and CD95 is associated with disease activity. Saudi J Biol Sci (2015) 22:453–8. doi:
10.1016/j.sjbs.2015.02.011

33. Ge XY, Fang SP, Zhou M, Luo J, Wei J, Wen XP, et al. TLR4-dependent
internalization of CX3CR1 aggravates sepsis-induced immunoparalysis. Am J Transl
Res (2016) 8:5696–705.

34. Salina ACG, Brandt SL, Klopfenstein N, Blackman A, Bazzano JMR, Sá-Nunes A,
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