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Inflammatory response:
The target for treating
hyperpigmentation during
the repair of a burn wound

Chi Zhong, Geao Liang, Peiting Li, Ke Shi, Fuyin Li,
Jianda Zhou and Dan Xu*

Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
Hyperpigmentation is a common complication in patients with burn injuries during

wound healing; however, the mechanisms underlying its occurrence and

development remain unclear. Recently, postinflammatory hyperpigmentation

(PIH) was found to result from overproduction of melanin. Local or systemic

inflammatory responses are often observed in patients who develop

hyperpigmentation. However, we lack studies on the relationship between PIH

and burn injury. Therefore, we comprehensively reviewed the existing literature on

the melanogenesis of the skin, inflammatory mechanisms in pigmentation, and

local or systemic alteration in inflammatory cytokines in patients suffering from

burn trauma to elucidate the relationship between PIH and burn injury. We believe

that this review will guide further research on regulating melanin production in the

burn management process.
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1 Introduction

An estimated 11 million burn injury cases are reported annually worldwide (1).

Approximately 50%–60% of the affected people, especially those with a dark complexion,

develop hyperpigmentation at the burn injury site (2). Hyperpigmentation is a common

condition that increases the economic burden of patients and reduces their quality of life by

leaving an irreversible dermatological abrasion and severely affecting their psychological

health. Postinflammatory hyperpigmentation (PIH) is a reactive and acquired
Abbreviations: PIH, postinflammatory pigmentation; WNT, wingless-related integration site; LRO, lysosome-

related organelle; ApoE, apolipoprotein E; PMEL17, melanocyte protein; TYR, tyrosinase; TYRP1, tyrosinase-

related protein-1; AP-3, adaptor protein complex-3; BLOC, biogenesis of lysosome-related organelle complex;

PKA, protein kinase A; MITF, microphthalmia-associated transcription factor; CREB, cAMP response element-

binding protein; PKA, protein kinase A; a-MSH, alpha-melanocyte-stimulating hormone; TA, tranexamic acid;

AzA, azelaic acid; KA, kojic acid.
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hyperpigmentation of the epidermis and dermis, with variable

pathogeneses and etiologies, including dermatoses, burn injury, and

cosmetic procedures (3–5). Among these, burn trauma, especially

severe burns, should never be ignored, as it is associated with

pigmentation disorders (6, 7) as well as increased systemic and

local inflammatory activities (8, 9). However, further studies are

required to establish the relationship between PIH and burn injury-

related inflammatory responses. Therefore, we have presented an

overview of melanogenesis, mechanisms of PIH, and inflammation

induced by burn injury. We have discussed their potential

relationships, the limitations of the present research, and an

orientation for future research.
2 Melanogenesis

Skin phenotype in individuals is mediated by the deposition of

melanin granules in keratinocytes. These granules are transported

from epidermal melanocytes through melanosomes (10, 11). Each

melanocyte can interact with 40 viable keratinocytes adjacent to

its dendrites, forming an epidermal melanin unit (12). The mature

melanosomes carrying melanin granules are transferred from the

dendrites of melanocytes into the cytoplasm of keratinocytes

through exocytosis, cytophagocytosis, plasma membrane

fusion, and membrane vesicle transfer (11, 13–15). The

movement of microtubules, actin cytoskeleton, centrosomes,

and centriolar satellites in keratinocytes carries the melanin-

laden melanosomes to the supranuclear region to form

microparasols, thereby protecting the epidermal DNA from

UV-induced stimuli or damage (16). Conversely, keratinocytes,

fibroblasts, and immune cells regulate pigmentation through

hormones and cytokines (17).

Neural crest cells, migrating from the dorsolateral and ventral

route, differentiate into melanoblasts by wingless-related integration
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site (WNT) signaling and subsequently form melanocytes in the hair

follicles and epidermis (18, 19). Melanosomes, the tissue-specific

lysosome-related organelles (LROs) located in the melanocytes, are

the factories synthesizing and packing melanin.

Melanosomes undergo maturation through four stages (Figure 1):

Stages I–II include premelanosomes, which cannot synthesize

melanin until they mature to stages III–IV. Stage I melanosomes

originate as multivesicular bodies (MVBs) containing intraluminal

vesicles (ILVs) and melanocyte protein (PMEL17) (20). PMEL17

fragments are cleaved from the pre-melanosomal membrane and

bound to the ILV surface. This process is modulated by

apolipoprotein E (ApoE); this explains the elliptical shape of

eumelanosomes since stage II, whereas pheomelanosomes are

spherical owing to the suppression of PMEL17 expression by agouti

signaling (21). Concordantly, the shape of melanosomes depends

entirely on the form of PMEL17 fragments, and the reduced levels of

these protein fibrils lead to the morphological disruption of

melanosomes (22, 23). In stage III, melanogenic enzymes,

tyrosinase (TYR) and tyrosinase-related protein-1 (TYRP1), are

transported from the Golgi apparatus into melanosomes to produce

melanin to be deposited on the amyloid fibrils of PMEL17 (24). In

stage IV, the melanin accumulation on these fibrils is complete,

contributing to the heavy pigmentation of melanosomes observed

under the electron microscope (EM) (25).
2.1 Melanin biogenesis and transport within
melanosomes

Eumelanin and pheomelanin are synthesized in stages III–IV

under the regulation of melanogenic enzymes (Figure 2). Except for

the presence or absence of L-cysteine, altered pH in melanosomes can

influence the balance between pheomelanogenesis and

eumelanogenesis (26, 27).
FIGURE 1

Melanogenesis and regulation.
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The melanosomes are trafficked through a centrifugal route in the

melanocytes; melanosomes are transferred from the perinuclear area to

the dendrites through complementary routes mediated by microtubules

(MTs) and actin filaments (AFs) (28). These trafficking mechanisms are

independent: maturing melanosomes move to the periphery of

melanocytes through (driven by kinesin/dynein motors) during long-

distance and bidirectional transport. Once at the periphery, these

pigment-deposited organelles are transferred by actin-based Rab27a/

Melanophilin/Myosin-Va complex to undergo short-distance

dispersion, thereby preventing reverse transport along MTs (29, 30).

The mechanism by which melanosome transfers into the

keratinocytes remains elusive; however, four classic models have been

proposed to explain this process: 1) exocytosis, 2) cytophagocytosis, 3)

fusion of plasma membrane, and 4) membrane vesicle. Among them,

exocytosis may be the most plausible mechanism, as the melanocytes in

the extracellular space and melanin in keratinocytes are only

surrounded by a single membrane lacking TYRP1. After entering the

keratinocytes, the microtubules, actin cytoskeleton, centrosomes, and

centriolar satellites likely facilitate melanin granule distribution in

keratinocytes (16).
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2.2 Melanogenesis regulation

Intrinsic and extrinsic factors regulate melanogenesis by

various signal pathways, including protein kinase A (PKA),

mitogen-activated protein kinase (MAPK), protein kinase C

(PKC), WNT/b-catenin, and bone morphogenetic protein

(BMP)/Smad cascades. Microphthalmia-associated transcription

factor (MITF) in its phosphorylated active form plays a vital role

in regulating these cascades; it enhances the expression of

melanogenic enzymes, Rab27a protein, and the melanosomal

matrix protein PMEL17 (31).

2.2.1 PKA cascade
The activation of adenylate cyclase (AC) catalyzes the conversion

of abundant ATP into the second messenger cyclic AMP (cAMP),

which attaches to the R-subunit of PKA, thereby activating PKA. PKA

subsequently phosphorylates the cAMP response element-binding

protein (CREB) and salt-inducible kinase (SIK). CREB can directly

enhance theMITF overexpression (32). SIK, which is suppressed after

phosphorylation, releases more unphosphorylated CREB-regulated

transcription coactivator (CRCT), which shuttles into the nucleus and

binds to the already activated CREB. This complex cooperatively

activates the promotor of MITF (33–35).

Alpha-melanocyte-stimulating hormone (a-MSH) and

catecholamines can regulate melanogenesis via the cAMP-PKA

pathway. Impairment of the keratinocyte DNA results in the

upregulation of p53 and, subsequently, the pro-opiomelanocortin

(POMC) gene (36). Proteolytic cleavage of the POMC protein

results in the formation of adrenocorticotropic hormone (ACTH)

and a-MSH. a-MSHs produced from keratinocytes act as agonists to

melanocortin 1 receptor (MC1R) on melanocytes, thereby increasing

cAMP levels. Epinephrine and norepinephrine, which are

catecholamines, act on their G protein-coupled receptors (GPCRs);

the binding of these two first messengers to GPCRs separates Gas

subunit and stimulates the production of AC (32).

2.2.2 MAPK cascade
MAPK signaling is achieved through the following process:

mitogen-activated protein kinase kinase kinase (Raf or MAPKKK)

activates mitogen-activated protein kinase kinase (MEK or MAPKK)

and, consequently, extracellular signal-regulated kinase (ERK or

MAPK). The activation of downstream Raf-MEK-ERK boosts the

transcription of CREB and MITF (37).

Stem cell factor (SCF) (38), basic fibroblast growth factor (bFGF)

(39), and hepatocyte growth factor (HGF) (40) can bind to their tyrosine

kinase receptors, c-Kit, bFGFR, and c-MET, respectively. Once bound,

these receptors dimerize to boost the activity of tyrosine kinases in the

intracellular juxtamembrane region to control autophosphorylation.

Phosphorylated tyrosine residues conscript Src homology 2 (SH2) and

pTyr-binding (PTB) domains (41). This alteration converts Ras GDP

into Ras GTP-binding proteins, which are essential for the activation of

Raf-1, which consequently activates the MAPK cascade.
2.2.3 PKC cascade
The PKC pathway, which regulates melanogenesis, can be

induced by the binding of endothelin 1 (EDN1) to its GPCR.
FIGURE 2

Melanin biogenesis.
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After the complex formation, the Gaq unit activates phospholipase

Cb (PLCb) , which hydrolyzes phosphatidylinositol 4,5-

bisphosphate (PIP2) to inositol triphosphate (IP3) and

diacylglycerol (DAG). IP3 elicits a strong cytosolic Ca2+ response

in melanocyte dendrites (42, 43), whereas DAG activates PKC,

which can enhance the expression of MITF directly or indirectly via

the MAPK cascade (44).

2.2.4 WNT/b-catenin cascade
Frizzled receptors (FZD) bind to the transmembrane molecule

LRP5/6 to form the LRP-FZD dimer complex that modulates cell

differentiation and proliferation (45). As a ligand of the LRP-FZD,

wingless-type MMTV integration site family members (Wnt),

whose expression can be upregulated by exposure to a high dose

of UV rays (46). This excessively expressed growth factor

phosphorylates and inactivates glycogen synthase kinase 3b
(GSK3b) after binding to the LRP-FZD complex. In the absence

of active GSK3b, the accumulated b‐catenin protein in the

cytoplasm is then translocated into the nucleus, where it interacts

with T-cell Factor (TCF)/Lymphoid Enhancing Factor 1 (LEF1) to

increase MITF levels (47, 48).

2.2.5 BMP/Smad cascade
BMP regulates dorsoventral and anterior/posterior axis

formation, particularly in the neural crest cells, which require the

expression of BMP2 and BMP4 (49). Signals generated by the

assembly of BMP-BMPR and SMAD1/5/8 are recruited in

the cytoplasm to be phosphorylated and to form a complex with

co-SMAD4. This complex subsequently relocates into the nucleus to

regulate MITF expression (50).
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3 Postinflammatory hyperpigmentation

PIH is an acquired pigmentary disorder that primarily affects

patients with darker skin types (Fitzpatrick types III–VI).

Nonetheless, all skin types suffer from PIH owing to endogenous

and exogenous injuries. Several experiments exploring inflammatory

mediators have been conducted based on the specific mechanism of

inflammatory responses (Table 1).

The advent of genomic medicine has confirmed the indispensable

role of PKA and MAPK signaling pathways in various biological

processes, especially those related to oncogenesis or its progression.

Similarly, most inflammatory cytokines regulate melanogenesis via

these two cascades. Interleukin (IL)-18 and IL-33 contribute to the

expression of MITF and other related enzymatic expressions by

stimulating the PKA and MAPK pathways (59, 60). IL-33

expression, influenced by IL-17 and interferon (IFN)-g, establishes a
negative feedback loop resulting in pigmentation (61, 62). However,

IL-33 is also speculated to have a positive feedback loop with tumor

necrosis factor alpha (TNF-a), which induces melanocyte death

resulting in vitiligo (63).

IL-17 adversely affects melanogenesis because the expression of

MITF and its downstream genes increases on blocking with anti-IL-

17RA (57). IL-17 and TNF synergistically inhibit melanin production

(58). Neutralization of TNF and IL-17 with monoclonal antibodies

(mAbs) increased the levels of c-KIT, MITF, and TYRP2 (58, 72).

This suggests that TNF induces IL-17 to exert a negative effect on

melanin synthesis through MAPK and PKA signaling pathways

(72, 73).

Under the control of phospholipase A2 (PLA2), cyclooxygenase

(COX), and prostaglandin E synthase (PGES), PGE2 is released by
TABLE 1 The influence of inflammatory cytokines on melanogenesis and its mechanisms.

Cytokines Main source Impact on
melanogenesis

Mechanisms Refs.

IL-1a Langerhans cells/Keratinocytes Promotion Pigment enhanced when binding with KGF (51)

IL-1b Macrophages/Keratinocytes Demotion NF-kB, JNK pathways (52)

IL-4 Th2 cells/Basophils Demotion JAK2-STAT6 pathways (53)

IL-6 Keratinocytes/Fibroblasts Demotion MITF, TYR, NHM viability (54)

IL-13 Th2 cells Demotion JAK2-STAT6 pathways (55, 56)

IL-17 Th17 cells Demotion MAPK, PKA pathways (57, 58)

IL-18 Macrophages/Keratinocytes Promotion MAPK, PKA pathways (59)

IL-33 Keratinocytes/Fibroblasts Promotion MAPK, PKA pathways (60–63)

PGE2 Keratinocytes/Melanocytes Promotion/Demotion MAPK, PKA pathways,
Formatting melanocyte dendrites

(64, 65)

IFN-g T cells Demotion JAK1-STAT1 pathways,
Melanocytes apoptosis, Melanosomes mature and convey,
Metabolite of tryptophan

(59, 66–71)

TNF Macrophages/Keratinocytes/Th1, Th17, and Th22 Demotion MAPK, PKA pathways (58, 72, 73)

GM-CSF Keratinocyte Promotion Melanocyte proliferation (74)
fro
KGF, keratinocyte growth factor; NF-kB, nuclear factor kappa-B; JNK, Jun N-terminal kinase; MITF, microphthalmia-associated transcription factor; TYR, Tyrosine; NHM, normal human
melanocyte; PKA, protein kinase A; ERK or MAPK, extracellular signal regulated kinase; JAK, The Janus kinase; STAT, signal transducer and activator of transcription.
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keratinocytes and epidermal melanocytes (64). In response to PGE2,

its receptor EP3 suppresses cAMP production, thereby preventing

pigmentation. In contrast, EP4 receptor activation may increase basal

cAMP levels, stimulating tyrosinase and the formation of dendrites in

melanocytes (65).

Janus kinase (JAK) and signal transducer and activator of

transcription (STAT) have been known as rapid membrane-to-

nucleus signaling modules. They have been associated with cancer

and inflammation for the past two decades. However, compared with

PKA and MAPK pathways, the regulation of melanogenesis by the

JAK-STAT pathway is relatively unknown. However, several cell

cytokines have been reported to alter melanocyte function through

the JAK-STAT pathway.

Studies on normal human melanocyte (NHM) cultures confirmed

that IL-4 produces melanin by downregulating MITF and

dopachrome tautomerase expression through the JAK2-STAT6

signaling pathway (53). IL-13, which shares JAK2-STAT6 signaling

pathways with IL-4 (55), can inhibit the mRNA and protein

expression levels of both tyrosinase and Dopachrome Tautomerase

(DCT), thus impacting melanin synthesis (56).

By upgrading the phosphorylation of the JAK1-STAT1 cascade,

IFN-g mediates reversible and independent MITF dyspigmentation

through Recombinant Interferon Regulatory Factor 1 (IRF1) binding

and DCT promoter repression in a dose-independent manner (66).

By associating CREB -binding protein (CBP) with elevated STAT1,

IFN-g can also inhibit the binding between CBP and CREB. In this

manner, by not affecting CREB phosphorylation, a-MSH-induced

melanogenesis exhibits inhibition (67).

IFN-g can induce hypopigmentation via other mechanisms,

including apoptosis in melanocytes (68), arresting melanosome

maturation and transportation (66), and metabolism of tryptophan

(69–71). Moreover, it is also known that IFN-g shares crosstalk with

IL-18, wherein IFN-g inhibits IL-18-induced melanogenesis

indirectly (59).

Other than the cascades referred to in this section, some cytokines

can also influence pigmentary deposition via other mechanisms. IL-

1a, a subtype of IL-1, initiates IL-1 receptor type I (IL-1RI), increasing
little pigment deposition. However, this effect is in combination with

the keratinocyte growth factor (KGF) (51). Conversely, IL-1b, another
form of IL-1, is presumed to inhibit MITF through the nuclear factor

kappa-B (NF-kB) and Jun N-terminal kinase (JNK) pathways (52).

IL-6 treatment, analyzed in vitro and in vivo, decreases the viability of

NHM, MITF, and TYR in a dose-dependent manner (54). Anti-

granulocyte-macrophage colony-stimulating factor (GM-CSF)

treatment led to the nulling of the keratinocyte regulates Melan-A

melanocyte proliferation, indicating that the proliferation of

melanocytes is augmented by GM-CSF (74).
4 Inflammation after burn injury

Pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) are the two main

mechanisms that trigger inflammatory responses. PAMPs are

c a u s e d b y d i v e r s e m i c r o b i a l mo l e c u l e s , e s p e c i a l l y

lipopolysaccharides (LPSs) discovered in Gram-negative bacteria. In

contrast, DAMPs require environmental alterations, such as trauma,
Frontiers in Immunology 05
thermal stimuli, or other damage to cause sterile inflammation (75).

Toll-like receptors (TLRs), members of pattern recognition receptors

(PRRs), stimulated and shared by both DAMPs and PAMPs, can

activate intracellular signals to regulate inflammation and ensure

similarity of inflammatory responses even under different stimuli

(76). The activation of TLRs releases many inflammatory cytokines

from the damaged tissue into circulation through myeloid

differentiation primary response protein-88 (MyD88), leading to the

transcription of activator protein 1 (AP-1) and NF-kB (77). The

increase in cytokines, locally and systemically, causes infection,

impaired healing, pigmentation disorders, and systemic

inflammatory response syndrome.

Burn injury, a unique DAMP (78), affects the skin, which is the

barrier protecting the human body from pathogens and

environmental stimuli. The impacted skin forms debris of tissues

and eschar, which serve as a reservoir for diverse bacteria and PAMPs,

especially around hair follicles with a higher bacterial load (79).

Additionally, TLR expression on dendritic cells is upregulated in

severe burn wounds (80).

The downstream nucleus, called cytokines in circulation, has been

described for appraising and monitoring patients with burns. IL-1b
has been reported for its poor outcome correlation, such as systemic

inflammatory response syndrome or even death (81, 82). IL-6

specifically induces remote organ inflammation (81–89) (Table 2).

IL-8 and IL-10 expression levels are upregulated (8, 83–89), whereas

IL-4 and IL-7 levels are downregulated (84). Meanwhile, the plasma

levels of other cytokines, such as granulocyte colony-stimulating

factor (G-CSF), GM-CSF, macrophage inflammatory protein-1

(MIP-1), and TNF-a, were also observed to increase in patients

with burn wounds (83–89). Similarly, changes in cytokine levels in

local burn wounds have also been observed. In the burn trauma

mouse model, levels of IL-6, TNF-a, and MCP-1 showed a significant

increase (90). However, Schwacha et al. (91) reported contradictory

results based on their burn wound mouse models.
5 Assessments and treatments

Currently, only limited assessments and treatments specifically

target burn trauma-induced PIH.We have summarized and evaluated

the currently available therapies for PIH to facilitate further research

on developing treatments against burn injury-induced pigmentation

disorders (Table 3).
5.1 Visual assessment

The use and application of the visual hyperpigmentation scale in

clinical practice are straightforward. The Fitzpatrick scale was created

to classify human skin into six phototypes (I–VI) based on tanning

response to UVR (92). The Taylor hyperpigmentation scale with 150

gradations for hyperpigmentation was proposed to obtain further

information; this scale comprises plastic cards in 15 different colors

(A–J) and 10 pigmentary gradations for each color card (93).

Wood’s lamp (340–400 nm, with maximum output at 365 nm)

emits UV and visible light (94). Hence, epidermal PIH appears darker

in contrast to unaffected healthy skin. However, PIH that occurs in
frontiersin.org
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TABLE 3 Assessments and treatments.

Assessments

Type Refs. Review

Visual assessment Fitzpatrick scale (92) Easy to practice but subjective due to its interobserver variability

Taylor scale (93)

Wood’s lamp (94, 95)

Skin biopsy (96) Limited due to its invasiveness

Optical techniques Polarized light photography (97) More reliable and reproducible but require professional training

Tristimulus colorimetry (98)

Diffuse reflectance spectroscopy (99)

Hyperspectral imaging (100, 101)

Reflectance confocal microscopy (102–104)

Treatments

Type Refs Review

Oral treatments Tranexamic acid (105, 106) Curing effect is finite

Glutathione (107)

Botanical agents (108, 109)

Topical treatments Hydroquinone (110–113) The optimal choices being more and less toxic

Retinoids (114, 115)

Azelaic acid (116)

Kojic acid (117)

Niacinamide (118, 119)

Traditional Chinese medicines (120)

Procedural treatments Chemical peeling (121–123) Risks of worsening PIH due to skin irritability

Laser technology (124)
F
rontiers in Immunology
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TABLE 2 Inflammatory cytokine character and alteration in the burn model.

Cytokines Character Sample Site Upregulation or downregulation Refs.

IL-1b Pro-inflammatory factor Human/Mouse Plasma Up (81, 82)

IL-4 Anti-inflammatory factor Human Plasma Down (84)

IL-6 Pro-inflammatory factor Human/Mouse
Mouse

Plasma
Wound

Up
Up

Down

(81–89)
(90)
(91)

IL-7 Pro-inflammatory factor Human Plasma Down (84)

IL-8 Pro-inflammatory factor Human Plasma Up (83–89)

IL-10 Anti-inflammatory factor Human Plasma UP (8, 83, 87–89)

G-CSF Pro-inflammatory factor Human Plasma Up (85–87)

GM-CSF Pro-inflammatory factor Human Plasma Up (85)

MIP-1 Pro-inflammatory factor Human
Mouse

Plasma
Wound

Up
Up

(83–86, 89)
(90)

TNF-a Pro-inflammatory factor Human
Mouse

Plasma
Wound

Up
Up

Down

(87, 88)
(90)
(91)
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the dermis cannot be distinguished as well as that in the epidermis

under the Wood’s lamp examination. The accuracy of Wood’s lamps

in differentiating between dermal and mixed melasma can be

improved with the assistance of dermoscopy (95).

Skin biopsy is a standard method to support PIH diagnosis,

excluding certain hyperpigmentation disorders such as melasma

and drug-induced hyperpigmentation. Histopathologically, PIH

presents perivascular or perifollicular lymphocytic inflammation,

dermal melanophages, and epidermal melanin without basal cell

vacuolization (96). Using skin biopsy as a criterion for diagnosing

PIH and other similar disorders is limited owing to its invasive nature.
5.2 Optical techniques

Unlike subjective clinical assessments, noninvasive technologies

supplement more credible and repeatable outcomes for PIH. These

consist of polarized light photography, colorimetry, diffuse reflectance

spectroscopy (DRS), hyperspectral imaging (HSI), and reflectance

confocal microscopy (RCM).

Polarized light photography is sensitive to detecting dermal

changes, especially vascular changes. When using parallel polarizing

filters, melanosis on the skin surface can be visualized using the

incident light source at a certain angle to the camera. Cross-polarized

photography can be used to visualize hyperpigmentation and

subsurface features such as vascularity, whereas parallel-polarized

photography is used for skin texture (97).

Tristimulus colorimetry is analogous to human eyes in perceiving

color. There are three axes, including L* (lightness-darkness) axis, a*

(red-green) axis, and b* (blue-yellow) axis, which describe and plot

color in a three-dimensional space. L* and b* values are used to

measure pigmentation (98).

DRS, an in vivo measurement, can compute and quantify the

biochemical concentrations of skin melanin, oxyhemoglobin, and

deoxyhemoglobin, according to their absorbance characteristics

(99). It is also used to estimate PIH because of its function of

quantifying melanin.

HSI measures spectral bands and provides sensitive

measurements. In reflectance spectra, it can capture subtle

alterations and quantify optical properties of the skin, containing

information about hemoglobin and melanin (100). Recently, this

method was integrated with machine learning—an established

structure-adaptive normalized convolution algorithm (101).

RCM, a great advance in dermatology, provides high-contrast images

of melanin granules. By emitting and detecting near-infrared wavelength

laser beam, RCM can visualize the layers between the epidermis to the

upper reticular dermis to a depth of 250–300 mm (102). Owing to the

relative differences in refractive indices and sizes of cell organelles and

keratin, signal contrast of melanin can be obtained (103). Therefore,

RCM has been used in evaluating the PIH model dynamically (104).
5.3 Oral treatments

Tranexamic acid (TA), widely used to fix abnormal fibrinolysis,

effectively inhibits melanogenesis. TA likely blocks UV-induced

plasmin activity, which decreases the levels of raw material of
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tyrosinase— arachidonic acid and prostaglandins (105). Oral TA

effectively decreases the mean melanin index in TA-treated

keratinocyte-conditioned medium (KCM) (106).

Glutathione, an antioxidant with skin-lightening activity, can

switch eumelanin production into pheomelanin. The reaction of the

glutathione thiol with dopaquinone forms a sulfhydryl–dopa

conjugate that results in the formation of pheomelanin instead of

eumelanin (107).

Other botanical agents proposed for their lightening effects

include ginseng and grape seed. Ginsenosides, the major active

compounds of ginseng, have a synergistic effect on bFGF-induced

antiproliferation of melanocytes via ERK cascades (108).

Proanthocyanidins extracted from grape seeds can potentially

regulate the NHM cell cycle and inhibit the production of

melanogenic enzymes (109).
5.4 Topical treatments

Hydroquinone, the most common ingredient of skin-lightening

agents, can prevent the conversion of Dihydroxyphenylalanine

(DOPA) to melanin and restrict the differentiation of melanocytes

from neural crest cells (110). Hydroquinone is the most effective in

the concentration of 2%–5%. To guarantee its efficiency and minimize

its defects, many combination formulae have been approved by the

US Food and Drug Administration (FDA) (111). However,

hydroquinone topical creams reportedly cause skin toxicity and

other side effects (112). Therefore, mequinol (4-hydroxyanisole)

may be used as a substitute for the parent compound to reduce

skin irritation (113).

Retinoids, which are vitamin A analogs, facilitate epidermal

turnover, thus removing melanin. Isotretinoin, adapalene, and

tazarotene are three mainstream retinoids that have been proven to

be useful in treating hyperpigmentation (114). Although its irritant

activity is not as high as the other two forms, isotretinoin should be

prescribed in high concentrations (115).

Azelaic acid (AzA) is used as a depigmenting drug in acne owing to

its anti-inflammatory, antibacterial, and antioxidant properties. In

acne-related PIH, alleviation and clearance of pigmentation were

observed at the end of the study (116). In addition, AzA is safer and

was assigned pregnancy category B by the FDA for its mild side effects.

Kojic acid (KA) inactivates tyrosinase by chelating copper, which

is the prosthetic group for this enzyme; it is effective in concentrations

ranging from 1% to 4% (117). The maximum potential human

systemic exposure dose (SED) of KA is 0.028 mg/kg/day. KA

reduces the synthesis of melanin and is less toxic to

melanocytes (117).

Niacinamide, an amide form of vitamin B3, was observed to

impede the transfer of melanin to epidermal keratinocytes in a

keratinocyte–melanocyte cocultured system (118). The level of

nicotinamide nucleotide transhydrogenase (NNT) is low in

individuals with PIH (119). Thus, the effect of nicotinamide on

NNT activity and skin pigmentation alteration can be explored in

the future.

Many traditional Chinese medicines (TCMs) with skin-whitening

functions that are recorded in prescriptions, such as Fructus Ligustri
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Lucidi, Hedysarum multijugum Maxim., Ampelopsis japonica,

Pseudobulbus Cremastrae seu Pleiones, and Paeoniae Radix Alba,

have also been observed to inhibit TYR expression and activity (120).
5.5 Procedural treatment

Chemical peeling, which includes the removal of the superficial

and deeper skin layers to regenerate the epidermis and part of the

dermis, causes reversible damage to the skin and redistributes

melanin. The superficial peeling strips the stratum corneum,

whereas medium to deeper peelings penetrate the papillary and

reticular dermis. Superficial peeling agents contain glycolic acid

(GA), salicylic acid (SA), trichloroacetic acid (TCA), and tretinoin.

In a study, repeated use of 5% GA improved brightness and reduced

redness with respect to the melanin and erythema in the fourth week

(121). SA modifies skin indices, such as melanin, pores, and texture;

this alteration is also enhanced by oral administration of isotretinoin

(122). TCA peels improve signs of photoaging such as

hyperpigmentation, erythema, and fine lines with repeated

treatment (123). Therefore, superficial peeling is the most viable

treatment for removing melanin. In contrast, deeper peeling agents

may result in PIH owing to irritation.

According to the principles of photothermolysis, current laser

technologies selectively and specifically destroy targeted tissue.

Modern melanin-directing laser machines consist of a Q-switched

(QS) laser and a picosecond (PS) laser. The wavelengths used in these

two systems are Nd : YAG (532 nm), Nd : YAG (1,064 nm), and

alexandrite (755 nm) (124). All these new generations of lasers reflect

patient selection with safer technologies and less postoperative

recovery time. However, although it is anticipatory and largely

transient, care and attention must be provided to avoid laser

irradiation-induced PIH.
6 Discussion

In the field of burns, more attention has been paid to the patient’s

systemic status and the maintenance of all vital organs, and little research

has been done on changes in skin color after burns. Although not well

documented, it is clinically possible to observe that some burn patients

with a severe inflammatory response have a greater proportion of

hyperpigmentation than less severe patients. Therefore, this suggests a

possible relationship between burns, inflammation, and melanogenesis.

Few scholars have focused on this phenomenon, and there is no definitive

evidence for the relationship between these three. Therefore, to fill this

research gap, this review discusses the relationship between the three as

much as possible in relation to the existing literature.

It summarizes pigment formation and its transport, regulation of

melanogenesis, mechanisms of PIH, and changes in inflammatory

cytokines induced by burns. It bridges the gap between PIH and

burn wounds, thereby providing insights that would aid in its

treatment and management. Pigmentation is mainly regulated

through various pathways, which, in turn, are regulated by various

inflammatory factors, resulting in PIH. Burns, as a stimulus to DAMP,

often cause cytokine storms. Burn wounds often appear

hyperpigmented. This suggests that the pigmentary changes in burn
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wounds may be caused by changes in the levels of inflammatory

mediators. Collectively, controlling inflammation in burn wounds

may help reduce hyperpigmentation.

The mechanism of PIH in the current study mainly focuses on the

PKA andMAPK pathways.We possess limited information regarding the

other mechanisms of pigmentation, such as JAK-STAT, and the

interaction among the various pathways. In addition, most PIH models

are based on vitiligo and acne, with few studies on burn models. Changes

in inflammatory mediators after burns are mainly observed in the plasma,

with few studies focusing on their profiles in wounds. Therefore, much

effort should be paid to developing effective burnmodels for studying PIH

and to excavating more unknown mechanisms, especially pathways of

PIH, and how these mechanisms promote or inhibit it.

Few assessments and therapies exist for PIH, specifically those

induced by burns, and these mainstream approaches treating PIH

are mainly directed toward melanogenesis as a phenotype to address

hyperpigmentation. Their mechanisms for reducing melanogenesis

are not solely, e.g., anti-inflammatory, antioxidant properties, direct

reduction of melanocytes, accelerated exfoliation of the stratum

corneum, etc. Some treatments, such as systemic and topical drugs

and laser therapy, have been used to relieve pigmentation disorders

in regular clinical practice. Procedural treatments might worsen

PIH. Despite their toxicity, topical treatments are the current

optimal choices owing to the limited number of oral drugs to

cure PIH.

Since the inflammatory phase partially overlaps the pigmentation

phase, further research is required to shed light on the alterations in

inflammatory cytokines in the burn wound site, especially in humans.

Additionally, the direct or indirect action of these alterations on the

pigmentation must be elucidated. If the direct action is confirmed,

anti-inflammatory and pigment-inhibiting drugs and treatments

would be potential and superior choices for alleviating PIH in

patients suffering from burn wounds. Finally, persistent effort is

required to identify nontoxic and reliable whitening agents.
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