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Roces de Álvarez-Buylla. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 21 March 2023

DOI 10.3389/fimmu.2023.1014778
Molecular tracking of insulin
resistance and inflammation
development on visceral
adipose tissue

Antonio Bensussen*, José Antonio Torres-Magallanes
and Elena Roces de Álvarez-Buylla*

Laboratorio de Neuroendocrinologı́a, Centro Universitario de Investigaciones Biomédicas,
Universidad de Colima, Colima, Mexico
Background: Visceral adipose tissue (VAT) is one of the most important sources

of proinflammatory molecules in obese people and it conditions the appearance

of insulin resistance and diabetes. Thus, understanding the synergies between

adipocytes and VAT-resident immune cells is essential for the treatment of

insulin resistance and diabetes.

Methods: We collected information available on databases and specialized

literature to construct regulatory networks of VAT resident cells, such as

adipocytes, CD4+ T lymphocytes and macrophages. These networks were

used to build stochastic models based on Markov chains to visualize

phenotypic changes on VAT resident cells under several physiological

contexts, including obesity and diabetes mellitus.

Results: Stochastic models showed that in lean people, insulin produces

inflammation in adipocytes as a homeostatic mechanism to downregulate

glucose intake. However, when the VAT tolerance to inflammation is

exceeded, adipocytes lose insulin sensitivity according to severity of the

inflammatory condition. Molecularly, insulin resistance is initiated by

inflammatory pathways and sustained by intracellular ceramide signaling.

Furthermore, our data show that insulin resistance potentiates the effector

response of immune cells, which suggests its role in the mechanism of

nutrient redirection. Finally, our models show that insulin resistance cannot be

inhibited by anti-inflammatory therapies alone.

Conclusion: Insulin resistance controls adipocyte glucose intake under

homeostatic conditions. However, metabolic alterations such as obesity,

enhances insulin resistance in adipocytes, redirecting nutrients to immune

cells, permanently sustaining local inflammation in the VAT.

KEYWORDS

visceral adipose tissue, CD4+ T cells, macrophages, adipocytes, insulin resistance,
diabetes mellitus, stochastic dynamic network models
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Introduction

Insulin resistance is a clinical condition in which various cell

types stop responding adequately to this hormone (1). Currently,

around 463 million of people around the world suffer from this

condition (2), mainly due to obesity, sedentary lifestyle and poor

nutritional habits. It is estimated that the incidence of people with

insulin resistance will increase over time, and may become an

extended public health issue world-wide (3). For this reason,

numerous efforts have been made to understand the underlying

molecular mechanisms of insulin resistance, and how to prevent or

revert this pathological condition. It is now known that insulin

resistance is has an inflammatory origin and it has been reported

that once insulin resistance is generated in the visceral adipose

tissue (4) (VAT), this pathological condition can be become

systemic. Regarding the causes of insulin resistance in the VAT,

some studies have suggested that diets rich in fat and sugar promote

the swelling of adipocytes (5), which become inflamed and promote

the infiltration of macrophages into the VAT (6). Consequently,

localized inflammation is triggered in the VAT, which contributes

to promoting obesity and insulin resistance (7). Nevertheless, the

exact mechanism by which insulin resistance is generated in

adipocytes remains to be elucidated.

To delve into the origin of insulin resistance and understand

what are the differential factors that determine the irreversibility of

this pathological condition in diabetics, new integrative and

innovative approaches such as transcriptomics have been used.

The transcriptomic assays performed on diabetic patients showed a

strong increase in the activity of the immune system, particularly on

CD4+ T lymphocytes and macrophages, coupled to metabolic

alterations on adipocytes such as reduction on PPARg, GLUT4
and adiponectin levels (8). Concerning the macrophages, a

significant increase in M1 phenotype on diabetic patients

compared to healthy subjects has been observed (9). Regarding

CD4+ T cells, recent evidence suggest that Th2 population present a

significant reduction while the Th1 and Th17 populations increase

in diabetic patients (10). Interestingly, it has been reported, that

diabetic patients treated with insulin present a significant increase

in IL-10 producing CD4+ T cells (11). These facts are relevant to

understand the in vivo dynamics of VAT, although, it would be

more enriching to have a mechanism that explains how these

separate observations are originated at the molecular level.

Nonetheless, studying the VAT dynamics in situ can be a highly

complex task. For this reason, different computational tools have

been developed in order to integrate VAT available information and

propose new hypotheses that allow an in-depth understanding of

how this tissue is deregulated under metabolic diseases such

as diabetes.

Currently, computational models have been used to study some of

the associated effects of insulin resistance on some of the constituent

cells of VAT, such as CD4+ T lymphocytes. Specifically, simulations

using a gene regulation network (GRN) that models lymphocyte

differentiation and plasticity and cell fate under different stimuli (12),

was able to predict that hyperinsulinemia tends to polarize

lymphocytes towards a Th17 response and at the same time T-

regulatory (Treg) cells are reduced (13), which implies that the high
Frontiers in Immunology 02
levels of insulin present in patients with resistance to this hormone

would increase the inflammatory response in VAT. On the other hand,

a model based on Ordinary Differential Equations (ODEs) focused on

adipocytes showed that adiponectin secretion has an ATP-dependent

step to be carried out (14). This finding is important, since adiponectin

is a hormone secreted by adipocytes that is responsible for reducing

inflammation in VAT (14). Another model of ODEs focused on

abdominal subcutaneous adipose tissue was used to estimate the

effect of caloric restriction in a group of volunteers and to visualize

the metabolic fluxes inside the adipose tissue (15). Nevertheless, it is

still necessary to have a computational tool that allows us to visualize

the interactions between VAT-resident immune cells with adipocytes

in different physiological contexts. In this direction, we constructed a

stochastic model based on discrete Markov chains to represent the

VAT of healthy, obese and diabetic patients (Figure 1A) in order to

identify the mechanism by which insulin resistance is generated in

adipocytes and to understand how exactly immune cells participate in

the appearance of this clinical dysregulation. The model is composed

by three sub-models of adipocytes, CD4+ T cells and macrophages.

Each sub-model considers chemical components present in the

microenvironment of VAT, such as hormones, metabolites and

cytokines as inputs to trigger specific responses (Figure 1B).

In the case of CD4+ T lymphocytes, the phenotypes considered

were Th0 lymphocytes, effector variants Th1, Th2, Th9 and Th17,

as well as regulatory phenotypes such as Th1R (FoxP3+ IFN-g +),
Th2R (FoxP3+ IL-4+), iTreg (FoxP3+ IL-10+ TGF-b+), Tr1

(FoxP3- IL-10+) and Th3 (FoxP3- TGF-b+) (Figure 1C). For the

adipocytes model, we considered the following observations: TNF is

expressed only in inflamed adipocytes (16), while cells that express

connective tissue growth factor (CTGF) are hypertrophic

adipocytes (16), and similarly, adipocytes that translocate GLUT4

(8) are responsive to insulin. Considering these three

experimentally tested markers, as well as recent experimental

evidence that suggest functional phenotypic diversity of

adipocytes (17), we proposed a series of phenotypes in which

adipocytes might have combinations of these genes turned on

and/or turned off. These eight phenotypes are “TNF- CTGF-

GLUT4+”, “TNF- CTGF+ GLUT4-”, “TNF- CTGF+ GLUT4+”,

“TNF+ CTGF- GLUT4-”, “TNF+ CTGF- GLUT4+”, “TNF+ CTGF

+ GLUT4-”, “TNF+ CTGF+ GLUT4+”, “GLUT4- CTGF- TNF-”

(Figure 1D). Finally, the macrophage model considers monocytes

M0, polarized macrophages M1, M2 and tumor-associated

macrophages (TAMs) type M1 (M1-TAM) and type M2 (M2-

TAM) (Figure 1E). Using this computational approach, we found

that insulin naturally creates inflammation in VAT cells as a normal

part of the nutrient absorption process, although adipocytes

compensate this local inflammation with the production of

adiponectin. However, under obesity or diabetes, this balance is

broken, generating insulin resistance in adipocytes. Our results

showed that the severity of insulin resistance depends on the

degree of inflammation present in the tissue. Mechanistically, our

data show that insulin resistance is generated when pro-

inflammatory cytokines activate ceramide signaling, which

supports this process in general. Finally, we discuss the possible

physiological role of this mechanism embedded in adipocytes and

in other insulin-responsive cells.
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Materials and methods

Methodology overview

In order to track how insulin resistance is generated in VAT

adipocytes, we divided this work in four stages. During the first

stage, information was collected about the intracellular functioning

of CD4+ T lymphocytes, macrophages and adipocytes, considering

the particularities of VAT; and for this, we use databases and

available specialized literature (Figure 2). In the second stage, we

use the collected information to create Boolean network models of

macrophages and adipocytes. Furthermore, we expanded a model of
Frontiers in Immunology 03
CD4+ T cells developed by Martinez et al. (12), to visualize the Th9

phenotype. Subsequently, we calculated the attractors of each

model, and classified them into phenotypes based on the gene

expression pattern they presented (Figure 2) (Supplementary

Information). In the third stage of this work, we build the

stochastic models based on Markov chains, and we focus on

validating the qualitative behavior of each model (Figure 2). In

the fourth stage of this work, stochastic simulations of different

physiological contexts were carried out. Such contexts are the

functioning of the VAT in healthy patients, obese patients and

diabetic patients. Similarly, the effect of therapeutic agents on VAT

adipocytes to reverse insulin resistance was simulated (Figure 2).
A B
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C

FIGURE 1

Computational stochastic models to represent the VAT. (A) Schematic representation of the VAT with adipocytes, resident macrophages and CD4+
T lymphocytes. (B) Schematic representation of functioning VAT model. (C) Stochastic model of all phenotypes of CD4+ T cells considered in this
work. Each arrow represents a stochastic transition between each phenotype, and the probability of transition between states is determined by the
microenvironment signals present in the VAT. (D) Stochastic model of phenotypes of adipocytes. Each phenotype represents determined metabolic
and genetic state of these cells in response to insulin, and other chemical components of VAT. (E) Stochastic model of macrophage phenotypes.
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Selection of cell markers

To identify macrophage phenotypes, the following molecular

markers were selected: iNOS for M1 macrophages (18), Arg1 for M2

macrophages (18), co-expression of Arg1 and iNOS together with IL-

12 or IFN-g (19) for M1-like TAM macrophages (20), and co-

expression of Arg1 and iNOS for M2-like TAM macrophages (21).

To identify the different lineages of CD4+ T lymphocytes, the

following molecular markers were used: IFN-g and IL-12 for the

Th1 phenotype (22); GATA3 and IL-4 for the Th2 phenotype (23);

PU.1 and IL-9 for the Th9 phenotype (24); RORgT and IL-17 for the

Th17 phenotype (22), and TGF-b, IL-10 and FoxP3 for the regulatory
phenotypes (25). Finally, to identify adipocytes, the followingmarkers

were used: CTGF for hypertrophic adipocytes (16), TNF for inflamed

adipocytes (16), and GLUT4 in the membrane for insulin-responsive

adipocytes (8). These markers were selected from purified cell types.

This information was used to classify attractors of the Boolean

models (Supplementary information).
Validation of phenotype labelling algorithm

To test the efficacy of our algorithm to classify the cellular

phenotypes of Boolean attractors, we first searched in GEO (Gene

Expression Omnibus) database for a dataset of phenotypes that were

identifiable by specialized bioinformatics tools for immune cell

detection, such as xCell software (26). In this case, we use data from

purified CD4+ T lymphocytes. These RNA seq data are available under

accession number GSE210222 and were obtained by Kanno et al. (27).
Frontiers in Immunology 04
We normalized the dataset under Transcripts Per Million (TPM)

convention, after that we calculated the mean expression for each

gene. We use this metric to discretize the data values expressed in TPM

as follows: we assign 0 to all values below the mean and 1 to all values

greater than or equal to the mean. The data in TPM was analyzed with

the xCell R package, and the discretized data was analyzed with our

attractor classification algorithm. The results of these analyzes are

reported in Data File 1.
Stochastic modeling

To create the stochastic models used in this work, we

consulted the specialized literature to create gene regulation

networks (GRN) for macrophages and adipocytes. Next, all

GRNs were simplified and we used such reduced networks to

propose Boolean models for each network (Supplementary

Information). In the case of CD4+ T lymphocytes, we used the

model previously published by Martinez et al. (12, 13), and we

added IL-9 signaling and the regulation of the transcriptional

factor PU.1 to represent Th9 phenotype (Supplementary

Information). Next, we search for the attractors and its basins of

attraction for each Boolean model, and we selected the most

frequent and representative attractors that represent distinctive

genotypic characteristics of each phenotype (Supplementary

Information). Subsequently, we use the reduced GRN of each

cell type together with the attractors that represent the studied

phenotypes with the previous selected markers to perform the

implementation of three discrete Markov chains.
FIGURE 2

Flowchart of the methodology. This work was carried out in four different stages. In the first stage (blue rectangles) the necessary information was
collected to model the main VAT cells. In the second stage (purple rectangles) models of Boolean networks of CD4+ T lymphocytes, macrophages
and adipocytes (Supplementary Information) were built and evaluated. In the third stage (yellow rectangles), the information of previous stages was
used to build and validate stochastic models based on Markov chains of adipocytes, CD4+ T lymphocytes, and VAT-resident macrophages. Finally, in
the fourth stage (pink rectangles), exploratory simulations were carried out to study the operation of the VAT in different pathophysiological contexts
and its response to possible pharmacological treatments.
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Computational implementation

To implement the three Markov chain models, we used the C#

object-oriented programming language in Microsoft Visual Studio

2022. Each Markov chain was implemented as follows: 1) Attractors

that represent the phenotypes studied were used as initial

conditions for simulations (Supplementary Information). 2) We

assigned a noise level associated for each simulation, for the

robustness analysis of the networks, noise levels of 3%, 8% and

13% were chosen. For the rest of the simulations, 8% noise was used.

3) For each gene and each time step a stochastic perturbation was

simulated by generating a random number uniformly distributed in

the interval of (0, 1). If the number was lower than the noise level,

then the Boolean function that controls the state of the node (i.e.,

gene) will give the complement of the value that it should normally

report. 4) For each GRN attractor we use 10000-time steps and 30

iterations per phenotype. Subsequently, we repeated this sequence

of experiments 10 times and counted the how many times the

attractor used as the initial condition was maintained at the end of

each simulation. 5) At the end, we divided the total number of times

the attractor was conserved by the total number of jumps recorded

between the states belonging to the Markov chain, and we reported

these data in Data File 2. 6) Finally, we averaged the values for each

of the 10 simulation rounds to obtain an average value of the

transition probability between each of the states. With this

information we create the Markov matrices associated with each

model. All matrices and their corresponding conditions of

simulation are available in Data File 2.
Code availability

The code used for each stochastic model presented in this work

is available at the ZENODO repository (28).
Analysis of Markov matrices

We use the final values of each of the Markov matrices (Data

File 2), to implement the following equation in MATLAB version

7.0:

~P(t) = At~x

Where~P(t) is the vector of probability of each Markov chain at

any given time t, A is the transpose of a Markov matrix, and the

vector~x is a vectorial initial condition. We solve this equation for t

! ∞ in order to obtain the stationary distribution of probabilities

for each Markov chain, which corresponds to the distribution of

phenotypes of all cell linages (29).
Statistics

We used the R software (30) to test the qualitative behavior of

all models by performing a Binomial test of one tail, to determine
Frontiers in Immunology 05
whether the probability of success of each stochastic model was

higher than the randomness (p = 0.5) or not. We also used the R

software to test the quantitative accuracy of each model by

performing a multivariate correlation analysis. In both procedures

we used 5% of significance.
Data availability

The dataset used to validate our phenotype classification

algorithm was obtained by Kanno et al. (27) and is available in

Gene Expression Omnibus with the accession number GSE210222.

The outcomes of comparing our algorithm to xCell software, is

freely available in Data File 1. All the calculations made by the

stochastic models to determine the gene expression frequencies,

along with the numerical data of Figures 3–8, are found in Data

File 2.
Results

The models reproduce the behavior of
adipocytes, macrophages and CD4+ T cells

Each model was constructed using data from experimental

literature summarized on a gene regulatory network (GRN)

(Supplementary Information). After that, we applied Boolean

formalisms to model each GRN (Supplementary Information) to

obtain a computational model for all cell types. We analyzed each

Boolean model to find stable gene expression patters (i.e., fixed

points) that were classified to all phenotypes selected in Figure 1.

We validated our algorithm to classify attractors to cell phenotypes

by comparing its results with xCell software outcomes. After

determining that the algorithm works, and correctly identifies the

cell phenotypes (Data File 1), we used these attractors to construct

computational models based on discrete Markov chains (see

Methods and Supplementary Information). This type of stochastic

models enable predictions of phenotypic distributions (29), that can

be validated with flow cytometry available data, or generate novel

predictions to be tested in future experiments. Once the models

were finished, we tested whether all of them were robust and

capable to reproduce the biological aspects of the cell type they

represent. To this end, we investigated a series of chemical signals

that trigger specific responses on the cell types studied, for example

we sought to know the effect of certain combinations of polarizing

cytokines, such as IL-2 and IL-4, on the differentiation of CD4+ T

lymphocytes. We then used those well characterized conditions to

perform stochastic simulations with different levels of randomness

(3, 8 and 13% of noise), and we compared the outcomes of models

to data of cellular quantifications performed with flow cytometry.

As a result of this procedure, our model of CD4+ T lymphocytes

showed that in the absence of stimuli, the dominant phenotype is

Th0, as it is observed experimentally (31) (Figure 3A). The model

also showed that during stimulation of IL-12 and IFN-g, the
dominant phenotype is Th1, while Th2 remains at basal levels, as
frontiersin.org
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confirmed by flow cytometry data (31) (Figure 3B). The opposite

occurs when CD4+ T cells are treated with IL-2 and IL-4, since Th2

phenotype increases while phenotype Th1 is reduced (31)

(Figure 3C). On the other hand, the model showed that the

presence of TGF-b and IL-4 increases the frequency of Th9

phenotype (24) (Figure 3D), while combinations of TGF-b and

IL-6 increases Th17 phenotype (31) (Figure 3E). Interestingly, the

model of CD4+ T cells also showed that TGF-b and IL-2 produce

Th1R, Th2R and iTreg phenotypes, as it has been observed in
Frontiers in Immunology 06
previous experimental results (31) (Figure 3F). In agreement with

experimental data, the model of macrophages showed that the

absence of stimuli favors the M0 phenotype (32) (Figure 3G),

while TLR4 stimulation together with the presence of IFN-g
promote the M1 phenotype (32) (Figure 3H). In the same way,

the model of macrophages shows that IL-4 and IL-13 polarizes these

cells towards M2 phenotype (32) (Figure 3I). Similarly, the model of

macrophages shows that a combination of GM-CSF, IL-4 and IL-10

polarizes these cells towards M2-TAM phenotype (33) (Figure 3J).
A B

D E F

G IH
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C

FIGURE 3

Comparison of flow cytometry data vs in silico proportions of cell phenotypes. (A) Phenotype distribution of CD4+ T cells without stimuli, (B) in
presence of IFN-g and IL-12, (C) in presence of IL-2 and IL-4, (D) TGF-b and IL-4, (E) TGF-b and IL-6, (F) TGF−b and IL-2. For panels D, the flow
cytometry data was adapted from (24). The data of the remaining panels was adapted from (31). (G) Phenotype distribution of Macrophages without
stimuli, (H) in presence of IFN- g and TLR4 ligands, I in presence of IL-4 and IL-13, (J) In presence of GM-CSF, IL-4 and IL-10. The data of (G–I) was
adapted from (32), and the data of (J) was adapted from (33). (K) Phenotypic distribution of adipocytes in presence of an inflammation inducer, (L) in
presence of TNF. For both panels the data was adapted from (34).
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Regarding the model of adipocytes, it showed that inflammation

inducers like CoCl2 increases the expression of TNF in these cells, as

it has been characterized in vitro (34) (Figure 3K). Finally, the

model of adipocytes showed that TNF reduces the translocation of

GLUT4 in presence of insulin, which is responsible of glucose

uptake (34) (Figure 3L).
Frontiers in Immunology 07
The results of the three models and their validation with

previous experimental data suggest that they are useful qualitative

tools (Figure 3). Consequently, we decided to test whether the

results obtained with the models could result from random

fluctuations or whether the results were statistically significant. To

assess the qualitative performance of the models, we compared the
A B

D E F

G IH

J K L

C

FIGURE 4

Quantitative evaluation of stochastic models of the VAT cells. In this work the quantitative accuracy of all models was tested by a multivariate
correlation analysis. In all panels are compared the outcomes of each model to experimental measurements of every phenotype frequency. Each

panel reports the multiple correlation coefficient (Rxx), the Pearson correlation coefficient (R2), the adjusted correlation coefficient (R2
a ) as well as the

p-value. (A) in silico outcomes vs in vitro data of CD4+ T cells without stimuli, (B) CD4+ T cells treated with IFN-g and IL-12, (C) IL-2 and IL-4, (D)
TGF-b and IL-4, (E) TGF-b and IL-6, (F) TGF−b and IL-2. The data for (A–C, E), and (F) was taken from (31), and the data for panel D was obtained
from (24). (G) Macrophages without treatment, (H) macrophages treated with IFN- g and TLR4 ligands, (I) IL-4 and IL-13, (J) GM-CSF, IL-4 and IL-10.
The experimental data of (G–I) was taken from (32), and the data of panel J was taken from (33). (K) Adipocytes treated with an inflammation
inducer, (L) and adipocytes treated with TNF. For both panels the experimental data was taken from (34).
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phenotypic relationships observed in vitro against observations

obtained in silico. For instance, in the absence of stimuli, Th0 is

the dominant phenotype for CD4+ T lymphocytes in vitro (31),

then we compare whether this phenotype is also dominant in

computational simulations made under the same conditions. In

positive case, we count this trial as a success, otherwise this trail

must be considered as a failure. Based on this rationale, we count

the successes and failures obtained for all the microenvironments

evaluated and for all the noise levels used in each model. This

procedure was done to calculate a probability of success associated

with each model, and subsequently a binomial test was performed

to determine whether the probability of success of each model is

greater than expected by chance or not (Table 1). As a result of this

procedure, we found the probabilities of success for CD4+ T

lymphocytes (p = 2.462e-05), macrophages (p = 0.0002441) and

adipocytes (p = 0.0002441) models were significantly higher than

chance (Table 1). Finally, we tested the quantitative accuracy of each

stochastic model by performing a multivariate correlation analysis

(Figure 4). In all cases, we found that simulated outcomes are

strongly correlated with experimental observations, which indicates

that these models effectively represent each cell type. Collectively,

these results show that all models are robust and accurate to

reproduce the biology of adipocytes, macrophages and CD4+ T

cells as characterized by different combinations of cytokines and

ligands under physiological context.
Insulin promotes local inflammation in
healthy VAT

After validating each model, we focused on simulating the

necessary conditions to recreate VAT dynamics in healthy, obese

and diabetic patients. To this end, we investigated which were the

characteristic cytokines, hormones and chemical signals of VAT in

the aforementioned physiological states. It has been reported that

VAT of lean patients is characterized by low levels of IL-6, TNF and

IL-8 (36). In contrast, relatively high levels of IL-4, IL-10, IL-13 and

TGF-b have been seen in these persons (36). Interestingly, the

presence of IL-12 and IFN-g in basal conditions has also been

observed (9). In turn, it has been possible to observe ex vivo that the

adipocytes of lean patients have low levels of expression of the TNF

receptor type 2 (TNFR2) (34), together with the absence of

ceramides in plasma (37). Using this information, we were able to

propose a suitable set of microenvironments to simulate the most

likely environments in which VAT cells can be found (Figure 5A).

Using the aforementioned conditions as reference, our

computational models showed that VAT adipocytes from lean

subjects in the presence of insulin strongly increase GLUT4

translocation, and some of them can increase TNF and CTGF

gene expression (Figure 5B).

Regarding macrophages, it is known that several fatty acids such

as palmitic acid can activate TLR4 signaling in these cells (38), so it

has been reported that such receptors can be activated in VAT (39).

Considering these facts, as well as the cytokine profile mentioned

above, the stochastic model of macrophages showed that the M2

phenotype is the most predominant cell type in the absence
Frontiers in Immunology 08
(Figure 5C) as well as in the presence of insulin (Figure 5D). On

the other hand, a lower prevalence of the pro-inflammatory

phenotype M1 is also observed (Figures 5C, D). In a biological

context, it is impossible to directly measure the prevalence of each

of the microenvironments in situ, in fact, what can be measured in

the laboratory is a mixture of all the microenvironments present in

the VAT. For this reason, we decided to average the population

frequency obtained from each of the simulated microenvironments

with or without insulin, in order to observe the qualitative global

effect of this hormone on the effector response of macrophages. As a

result of this procedure, we found that insulin slightly favors the

appearance of M1 phenotype to the detriment of the M2

phenotype (Figure 5E).

On the other hand, the absence of insulin promotes anti-

inflammatory linages of CD4+ T cells, particularly the Th3

phenotype. In the same way, CD4+ lymphocytes model predicts

the prevalence of Th9 population, followed by the phenotypes Th1

and Th2 (Figure 5F). However, the presence of insulin increases

Th2 phenotype frequency while reducing Th9 population. It is

interesting to note that either in the presence or in the absence of

insulin; no substantial changes are seen in Th1 population, while

there is a slight increase in Th17 population due to insulin

stimulation. It should be noted that insulin affected the

distribution of T-regulatory lineages, biasing the population

balance towards the iTreg environment to the detriment of Th3

(Figure 5G). By averaging the microenvironments, as it was done

with the macrophage model, it is observed that at a global level,

insulin in lean people increases Th1, Th2 and Th17 subpopulations.

Similarly, it can be seen that insulin has a negative effect on Th9 and

Treg lineages (Figure 5H). Finally, we compare the outcomes of our

models with ex vivo data from lean patients. Herein is observed that

Th1 phenotype is more frequent than Th17 phenotype (35)

(Figure 5I). Similarly, it has been reported that the M2 phenotype

is more frequent than the M1 phenotype in lean healthy patients (9)

(Figure 5J), facts that were reproduced by the models, which in turn

validates the models presented here. Collectively, these data suggest

that insulin has the property of inducing local inflammation in VAT

during normal homeostatic conditions and such conditions emerge

from the complex regulatory networks that underlie gene

expression of constitutive cells of the VAT, such as CD4+ T cells,

macrophages and adipocytes.
Insulin enhances inflammation and Th17
response in obese patients

Unlike the outcomes observed in VAT of lean and healthy

patients, obese patients present a higher expression of IL-6, IL-8 and

TNF (36). Similarly, it has been observed that the expression of IL-2

(40) and IL-10 (41) increases, while the IL-4 levels decrease (36). In

addition, it has been reported that the infiltration of macrophages

and T lymphocytes to the VAT increases (9), which enhances the

local inflammation (Figure 6A). Considering these data, we use

them to reframe the modeled microenvironments in the VAT. As a

result of this procedure, the model of adipocytes showed that local

inflammation in the VAT induces adipocytes to secrete more
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CTGF, condition that only occurs when these cells increase their

size. In this sense, adipocytes also increased their expression of

TNF, contributing to the microenvironment of inflammation

(Figure 6B). On the other hand, when adipocytes were stimulated

with insulin, a reduction in the number of GLUT4-positive cells was

observed, and in the same way, the expression of TNF was markedly

increased (Figure 6B). In absence of insulin (Figure 6C), the

macrophages presented a pattern in which the M2 phenotype was

predominate over the M1 phenotype; but the addition of insulin

slightly changed this scenario, causing the M1 phenotype to be

slightly increased (Figures 6D–F).
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Regarding CD4+ T lymphocytes, our stochastic model showed

that patients in the absence of insulin, there is a considerable

population of pro-inflammatory Th17 lineage. However, insulin

drastically increases Th17 phenotype but not Th1 linage

(Figure 6G). In accordance with our model, the average response

observed in CD4+ T lymphocytes showed that insulin particularly

favors Th17 phenotype while the Treg phenotype is disfavored

(Figure 6H). It should be noted that in ex vivo models it has been

observed that the reduction of Treg cells in obese patients

aggravates obesity and leads to insulin resistance (42).

Interestingly, our CD4+ T cells model predicts that in response to
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FIGURE 5

Insulin produces local inflammation on VAT cells. (A) Schematic representation of the simulated conditions within healthy lean subjects VAT, (B) Cell
distribution of adipocytes with and without insulin. (C) Distribution of macrophage phenotypes without insulin, and D: with insulin. (E) Mean behavior
of both phenotypic distributions. (F) Phenotype distribution of CD4+ T cells in absence of insulin, (G) and in presence of high levels of insulin.
(H) Mean distribution of CD4+ T lymphocytes phenotypes. (I) Simulated Th1 and Th17 populations versus real frequencies of such phenotypes.
(J) Simulated M1 and M2 populations versus their ex vivo frequencies. The values presented for panels (I, J) was adapted from (35) and (9)
respectively. Collectively, these data suggest that insulin promotes inflammation in healthy VAT of lean people.
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high insulin levels, regulatory T cells are polarized toward IL-10-

producing lineages like Tr1 to the detriment of TGFb-producing
lineages such as Th3 (Figure 6G), which is consistent with

experimental observations, in which it can be verified that one of

the physiological adaptations of obesity is the production of IL-10

(43) and the decrease in TGFb is associated with the appearance of

insulin resistance in obese persons (42). Lastly, we compared the

mean frequency of Th1, Th17, M1, and M2 phenotypes of lean,

healthy patients versus obese patients (Figures 6I, J). This

comparison allows us to see that typical inflammation on obesity

tends to bias the immune response towards Th17 immunity (35)

(Figure 6I). On the other hand, the pro-inflammatory M1
Frontiers in Immunology 10
phenotype is markedly increased in obese patients (9) (Figure 6J).

Collectively, these results suggest that insulin promotes the

inflammatory process in obese patients towards a Th17 response.
Ceramides inhibit Th1 response in
diabetic patients

The abnormally high level of ceramides in the bloodstream is

one of the most distinctive markers of type 2 diabetes (37, 44). Thus,

to simulate VAT conditions in obese and diabetic patients, the

microenvironments used to simulate the context of obesity were
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FIGURE 6

Obesity increases local Th17 immunity in VAT. (A) Schematic representation of the simulated conditions within VAT of obese patients. (B) Phenotype
distribution of adipocytes with and without insulin. (C) Phenotype distribution of macrophages in absence of insulin, and (D) in presence of insulin.
(E) Mean behavior of macrophage phenotype distribution. (F) Distribution of CD4+ T cells without insulin, (G) and with insulin. (H) Mean distribution
of CD4+ T lymphocytes phenotypes. (I) Simulated Th1 and Th17 populations versus real frequencies of such phenotypes. (J) Simulated M1 and M2
populations versus their ex vivo frequencies. The values presented for panels (I, J) was adapted from (35) and (9) respectively. Collectively, these data
suggest that insulin enhances Th17 immunity in obese patients.
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given added high levels of plasma ceramides (Figure 7A). Under

these conditions, the adipocyte model showed that insulin

resistance was maximized in this type of cells (Figure 7B). While,

in presence or in absence of insulin, the macrophage model showed

that M1 phenotype increases 50% of its frequency compared to

healthy patients in same conditions (Figures 7C-E). On the other

hand, the model of CD4+ T cells showed that the immunity was

biased towards the Th17 phenotype to the detriment of the other

effector responses either with or without insulin (Figures 7F-H).

Interestingly, our model showed that the presence of ceramides

increases the frequencies of FoxP3+ cells such as Th1R, Th2R and
Frontiers in Immunology 11
iTreg phenotypes, avoiding the inhibition produced by high levels

of insulin as it was observed in obese patients (Figure 7H). Perhaps

this phenomenon is a chronic adaptation to the metabolic

imbalance present in diabetics, as has been observed in obese

patients (41). This hypothesis might explain why in patients of

type 1 diabetes FoxP3+ Treg cells increase at onset of the disease

(45). Finally, we compare the data from our simulations against the

data obtained ex vivo from obese and diabetic patients. The model

of CD4+ T cells shows a decrease in Th1 lineage while Th17

population increases, as occurs in real observations (35)

(Figure 7I), and similarly, the model of macrophages predicts a
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FIGURE 7

Extracellular ceramide inhibits Th1 response in diabetic patients. (A) Schematic representation of the simulated conditions within diabetic patients
VAT, (B) Distribution of adipocyte-phenotypes with and without insulin. (C) Distribution of macrophage-phenotypes in absence of insulin, and
(D) in presence of insulin. (E) Average behavior of macrophage phenotype distribution. (F) Distribution of CD4+ T cells without insulin, (G) and with
insulin. (H) Average distribution of CD4+ T lymphocytes phenotypes. (I) Simulated Th1 and Th17 populations compared to ex vivo frequencies of
such phenotypes. (J) Simulated M1 and M2 populations versus their ex vivo frequencies. The values presented for panels (I, J) was adapted from (35)
and (9) respectively. These results suggest that extracellular ceramide inhibits Th1 response and avoids Treg inhibition due to insulin, as it was
observed in obese patients.
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considerable increase of M1 macrophages in VAT of obese and

diabetic patients compared to healthy patients, as it was observed in

ex vivo data (9) (Figure 7J). Together, these results suggest that

extracellular ceramides potentiate the inflammatory effect of insulin

by stimulating Th17 response to the detriment of other immune

responses such as Th1.
Inflammation triggers intracellular
ceramide signaling to induce
insulin resistance

Up to this point, our data suggest that the presence of

extracellular ceramide is sufficient to alter the normal polarization
Frontiers in Immunology 12
of cells in the immune system. However, it remains to be

determined whether extracellular ceramide is capable of inducing

insulin resistance in VAT adipocytes. To investigate this point, we

explored several possible scenarios in which some important

regulators of adipocytes are blocked or overexpressed in presence

of insulin (Figure 8A). In agreement with previous reports, our

model shows that IL-10 and IL-4 improve insulin sensitivity (46)

(Figure 8A). Similarly, our simulations showed that the presence of

TNFR2 decreases the potential of adipocytes to respond to insulin

(34, 47) (Figure 8A). Also, our data were also capable to reproduce

other biological relevant observations such as high levels of IL-6

(48), TNF (49) and IFN-g (50) can induce insulin resistance in

adipocytes (Figure 8A). It should be noted that even without the

presence of TNFR2, the context of high levels of inflammation was
A

B

C

FIGURE 8

Molecular mechanism that sustains insulin resistance in adipocytes. (A) Simulations of controlling the insulin response in different conditions. Each
simulation was performed by activating inputs of the adipocyte model (+) in presence of insulin (See methods). (B) Simulations of treatments against
insulin resistance. Each simulation was performed considering high levels of TNF, IL-6, and IFN-g. The effect of neutralizing antibodies was simulated
by turning off the corresponding node of each target molecule. Over-activation was simulated by turning on the target molecule for all time steps.
(C) Conceptual model to explain insulin resistance. All data presented in this figure suggest that inflammation alone produce insulin resistance, and
intracellular ceramide signaling sustains this pathological condition.
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sufficient to induce insulin resistance in adipocytes (Figure 8A). In

any case, the extracellular levels of ceramides were not a decisive

factor for the appearance of insulin resistance, unlike

inflammation (Figure 8A).

Next, we carry out a series of simulations to determine the

molecular mechanism that sustains insulin resistance and visualize

therapeutic strategies to neutralize it. For this purpose, we also

carried out a series of simulations in which we maintained

constitutively active or inhibited some molecular components that

participate in the control of adipocyte gene expression regulation,

such as interleukins (Figure 8B). Our data showed that in cases of

severe inflammation, insulin resistance cannot be restored by IL-10

alone, as it was recently reported (51). In this sense, our simulations
Frontiers in Immunology 13
showed that therapies based on neutralizing antibodies directed

against pro-inflammatory cytokines such as TNF (52) and IL-6 (53)

do not improve insulin resistance (Figure 8B). In this sense, our

simulations showed that antioxidants (54) as well as IL-1b
neutralizing antibodies do not increase glucose uptake in response

to insulin (55). However, our data pointed out that PPARg over-

activation may improve insulin sensitivity, as it has been observed

in vitro (56) (Figure 8B). In this regard, our data showed that

maintaining high levels of adiponectin was enough to restore

insulin sensitivity, as it has been report previously (57). This

made us think that insulin resistance is supported by intracellular

signaling of ceramides, since adiponectin receptors degrade

intracellular ceramides when activated (58), then in our last
TABLE 1 Qualitative validation of stochastic models of the VAT cells.

CD4+ T cells

Inputs (Microenvironments) Experimental observations Noise level score*

3% 8% 13%

None Th0 > others 1 1 1

None Others = 0% 0 0 0

IL-12 + IFN-g Th1 > Th2 1 1 1

IL-2 + IL-4 Th2 > Th1 1 1 1

IL-4 + TGF-b Th9 > Th0 1 1 1

IL-6 + TGF-b Th17 > Th2 1 1 1

IL-2 + TGF-b Treg > Th1R 1 1 1

IL-2 + TGF-b Treg > Th2R 1 1 1

IL-2 + TGF-b Th1R > Th2R 1 1 1

Trials n = 27, Binomial probability of success = 0.8889, CI: 0.7372 – 1, a = 5%, p-value = 2.462e-05

Macrophages

Inputs (Microenvironments) Experimental observations Noise level score*

3% 8% 13%

None M0 > M2 1 1 1

TLR4 + IFN-g M1 > M2 1 1 1

IL-4 + IL-13 M2 > M1 1 1 1

IL-4 + IL-10 + GM-CSF M2-TAM > M1 1 1 1

Trials n = 12, Binomial probability of success = 1, CI: 0.7791 – 1, a = 5%, p-value = 0.0002441

Adipocytes

Inputs (Microenvironments) Experimental observations Noise level score*

3% 8% 13%

None TNF- > TNF+ 1 1 1

Inducer (CoCl2) TNF+ > TNF- 1 1 1

Insulin GLUT4+ > GLUT4- 1 1 1

Insulin + external TNF GLUT4- > GLUT4+ 1 1 1

Trials n = 12, Binomial probability of success = 1, CI: 0.7791 – 1, a = 5%, p-value = 0.0002441
frontie
*1 is assigned for asserts and 0 is assigned for failures. Bold values indicate p-value associated with each one-tailed binomial test.
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simulation the production of ceramides was suppressed inside

adipocytes, thereby restoring insulin sensitivity even in a highly

inflammatory setting (59) (Figure 8B). Thus, our data showed that

inflammation produces insulin resistance through the activation of

intracellular ceramide signaling. For their part, once ceramides are

activated, they can sustain insulin resistance in adipocytes thanks to

their numerous positive feedback loops at the signaling

level (Figure 8C).
Discussion

In this paper, we have developed stochastic dynamic network

models to explore the complex molecular mechanisms that underlie

insulin resistance and the interactions of the immune system with this

pathological condition. We modeled regulatory circuits previously

characterized for cells of the immune system residing in VAT and

adipocytes under contrasting physiological contexts. In this direction,

our models showed that insulin has a pro-inflammatory effect not only

on cells of the immune system, as previously characterized, but also on

adipocytes (Figure 5B). In fact, our results suggest that the pro-

inflammatory effect on adipocytes works as a homeostatic

mechanism to downregulate GLUT4 activity, preventing all

adipocytes from absorbing glucose in large quantities (Figures 5B

and 6B). In addition, our simulations suggest that adipocytes

together with M2 macrophages and Treg cells counteract the

temporary induction of inflammation by secreting adiponectin

(Figure 5B) as well as anti-inflammatory (Figures 5E, H) cytokines to

maintain metabolic balance in VAT. The homeostatic inflammation

produced by adipocytes may explain why there are resident

populations of M1 macrophages and Th1 lymphocytes in VAT (9).

Moreover, our results show that once a certain limit of inflammation

tolerated by VAT is exceeded, adipocytes begin to increase its size.

Along with this, adipocytes also increase the secretion of pro-

inflammatory cytokines and decrease their levels of adiponectin,

leading to obesity (Figure 6B). It is important to mention that in this

scenario, high insulin levels promote the formation of pro-

inflammatory lineages of macrophages and CD4+ T cells, with Th17

and Th1 phenotypes being especially favored to the detriment of Treg

cells. On the other hand, the adipocyte model showed that local

inflammation decreases insulin sensitivity, which is a pre-diabetic

signature. Finally, our models showed that once inflammation

increases and lipotoxicity symptoms appear, denoted by high levels

of plasmatic ceramide, insulin resistance becomes more intense in

adipocytes and the polarization of CD4+ T cells favors Th17 response

instead of Th1 immunity (Figure 7F). In this scenario, our data suggest

that hyperinsulinemia can compensate for the metabolic imbalances

produced by inflammation and lipotoxicity, increasing the number of

FoxP3+ Treg cells (Figure 7G). This compensatory mechanism may

explain why an increase in FoxP3+ Treg cells has been observed in

patients with type 1 diabetes at the onset of the disease (45).

Regarding the central question of how insulin resistance is

originated, our results showed that when the inflammation pathways

in adipocytes are activated, ceramide signaling enhances a series of

feedback loops that inhibit the pathway of insulin receptor (Figure 8B).

More importantly, our data showed that it is not possible to eliminate
Frontiers in Immunology 14
insulin resistance with an anti-inflammatory approach alone

(Figure 8C). In fact, our computational projections suggested that to

alleviate insulin resistance, a combined approach of anti-inflammatory

therapy together with inhibitors of intracellular ceramide signaling is

needed, because anti-inflammatory actions would control the

inflammation of adipocytes as well as the immune system,

particularly Th17, Th1 and M1 populations, while ceramide

inhibitors would favor the sensitization of insulin-resistant

adipocytes. On the other hand, we noticed that the pathways

involved in the generation of insulin resistance are present in other

cell types that are responsive to this hormone. This suggests that such

mechanism could be present in other insulin-responsive cells and

insulin resistance could have a broader physiological and evolutionary

role. Interestingly, in acute viral infections, high levels of IFN-g can

directly induce insulin resistance in muscle cells, which serves to

redirect energy resources towards the immune system, enhancing its

effector function (50). It was also been found that in obese mice, this

mechanism rapidly leads to diabetes (50). Interestingly, a previous

work showed that muscle cells were directly responsible for insulin

resistance caused by viral infections instead of VAT (50), which

reinforces the hypothesis of homeostatic role of insulin resistance.

However, if insulin resistance truly has a physiological role, then

why it cannot be reversed in diabetic patients? Perhaps the answer to

this question lies in another exceptional physiological condition,

pregnancy. In general, during the first and third trimesters of

pregnancy, the secretion of pro-inflammatory cytokines such as TNF

is strongly increased (60, 61). TNF is capable of inducing insulin

resistance in adipocytes (62), vascular smooth muscle cells (63), and

skeletal muscle cells (64). In fact, some overweight and obese women,

can develop gestational diabetes (65), just as it was observed with viral

infections. However, after childbirth, the secretion of adiponectin (66)

and anti-inflammatory cytokines such as IL-10 is increased (67), which

eventually allows the mother to overcome her gestational diabetes

condition. Thus, we hypothesize that strong and exceptional

inflammatory conditions such as pregnancy or acute viral infections

may induce generalized insulin resistance (50, 68–71), in order to

strengthen the effector function of the immune system, and if the

patient is pre-diabetic or obese, then they could develop a temporary

diabetes (Figure 9A). But, after the inflammatory process is over, the

organism will activate wound healing processes which will increase the

number of anti-inflammatory cytokines as well as adiponectin,

removing the insulin resistance and temporary healing insulin

resistance and diabetes (Figure 9A). Nevertheless, in the case of type

2 diabetes mellitus, caused entirely by inflammation in VAT (50), the

nutrient redirection mechanism would be activated without having an

exceptional inflammatory context, as occurs with pregnancy and acute

viral infections (Figure 9B). In fact, our data suggest that in the latter

case the organism would not even detect a highly inflammatory

stimulus, as occurs with pregnancy and viral infections, since VAT

needs local inflammation to function normally (Figure 9B).

Consequently, anti-inflammatory mechanisms are not be activated

and the organism gradually adapts to the local inflammation until type

2 diabetes mellitus appears (Figure 9B). If our hypothesis is true, maybe

insulin resistance and diabetes could be cured by inducing the release of

anti-inflammatory cytokines and adiponectin with exercise (72), along

with anti-inflammatory therapy, ceramide-inhibiting drugs, and a
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rigorous diet. Indeed, exercise has been reported to practically eliminate

the risk of developing gestational diabetes (73), and to improve the

condition of diabetic patients (74). In any case, more research is

required to alleviate insulin resistance and type 2 diabetes mellitus

and further understand the complex molecular mechanisms

underlying insulin resistance and health-related conditions.
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FIGURE 9

Hypothesis of the physiological role of insulin resistance. (A) Insulin resistance as nutrient redirecting mechanism. 1) When a strongly inflammatory
stimulus is detected, the systemic release of pro-inflammatory cytokines is favored, which induces insulin resistance in cells responsive to this
hormone, such as adipocytes. 2) In this way, the effector function of the immune system is enhanced, in order to neutralize the source of
immunogenic signals. 3) After the pro-inflammatory stimulus is controlled, the body inhibits inflammation. 4) As a result, many anti-inflammatory
cytokines such as IL-4 and IL-10 are released along with hormones such as adiponectin, which together inhibit inflammation and block intracellular
ceramide signaling. Consequently, insulin resistance is eliminated and systemic homeostasis is restored. (B) Type 2 diabetes mellitus. 1) As a result of
an alteration in the normal inflammatory levels of VAT due to diets rich in sugar and fat, the nutrient redirection mechanism controlled by insulin
resistance is locally activated. 2) In consequence, the organism does not process this as a highly inflammatory stimulus. Instead, it processes this
type of inflammation as normal VAT behavior, favoring physiological adaptations to chronic inflammation. Consequently, tissue regeneration
processes are not activated and this pathological state continues indefinitely, producing type 2 diabetes mellitus.
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