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The transition period is the stage of the high incidence of metabolic and infectious

diseases in dairy cows. Improving transition dairy cows’ health is crucial for the

industry. This study aimed to determine the effects of dietary supplementation

medium-chain fatty acids (MCFAs) on immune function, metabolic status,

performance of transition dairy cows. Twenty multiparous Holstein cows

randomly assigned to two treatments at 35 d before calving. 1) CON (fed the

basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs

mixture every day) until 70 d after calving. The results showed that the serum

amyloid A myeloperoxidase concentrations in the blood of cows in MCFA

treatment significantly decreased during the early lactation (from 1 d to 28 d

after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor

necrosis factor concentration was significantly decreased at 56 d after calving (P =

0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before

calving to calving) blood of cows in MCFA treatment was significantly decreased

(P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d

after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the

concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the

blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of

hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively)

decreased dramatically at 14 d after calving. However, compared with the CON,

the pre-calving dry matter intake and the early lactation milk yield in MCFA

treatment were significantly decreased (P = 0.05, 0.02, respectively). In

conclusion, MCFAs supplementation transition diet could improve the immune

function and metabolic status of dairy cows, and the health of transition cows

might be beneficial from the endocrine status.
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Introduction

The transition period is widely regarded as the most challenging

period o the lactation cycle of dairy cows (1). To cope with various

challenges, it is necessary to use the integrated adaptation mechanism

coordinated by the endocrine system and the immune system (2, 3).

However, adaptive ability varies among individual dairy cows (4), and

different degrees of immunosuppression might occur, further

resulting in infectious and metabolic diseases (5).

The lack of energy in transition (6, 7) results in the mobilization

of body fat (8). Non-esterified fatty acid (NEFA) (9), triglyceride

(TG), and ketone bodies are produced in this process (10), which

affects liver metabolism, resulting in complex and difficult-to-regulate

systemic responses (11). Meanwhile, the increase in the feed energy

density of post-partum cows may lead to (12) a decrease in dry matter

intake (DMI) and feed efficiency (13). Studies have shown that

decreased DMI and increased negative energy balance (NEB) could

trigger competition for essential nutrients between the immune

system and milk generation. The lack of energy will impact

immune response and immune cell function, resulting in immune

suppression and increased disease susceptibility (14). Meanwhile,

transition immunosuppression and excessive inflammatory

responses are predisposing factors for metabolic disorders (15).

Therefore, the disturbance of nutrient metabolism and immune

homeostasis in dairy cows may cause harmful feedback loops,

which affect the health and performance of dairy cows (2).

MCFAs (Medium chain fatty acids) are fatty acids containing 6-

12 carbon atoms and are found mainly in coconut oil and palm kernel

oil (16). After ingestion, MCFAs are absorbed by the gastrointestinal

epithelial cells, some of which can be absorbed by the epithelial cells to

enhance intestinal integrity (17), and some can enter the liver through

the portal vein and directly metabolize. Besides, MCFAs can regulate

the metabolism of carbohydrates and lipids in the liver (18) and

promote the formation of liver glycogen (19) and the synthesis and

excretion of hepatic bile acids (20, 21). In addition, MCFAs can

regulate the release of inflammatory cytokines, such as IL-6 and IL-8,

preventing inflammation and decreasing the damage caused by

inflammation (22).

Currently, the application of MCFAs in animal production is

mainly carried out on monogastric animals. It was reported that

MCFA supplementation could improve DMI, feed efficiency, and the

average daily gain of nursery pigs (23). The application values of

MCFAs in the monogastric animal are attributed to their

antipathogen activity and immune-improving reaction (24, 25).

However, the application values of MCFAs in ruminants are still

controversial. Relevant studies showed that MCFA supplementation

could improve fat digestibility (26) and promote milk fat synthesis in

lactating dairy cattle (27, 28). Nevertheless, other studies on dairy

cows and swamp buffalo have reported that MCFAs decrease the

digestibility of fiber, which leads to a decline in DMI (29, 30). Besides,

several cell studies have shown that MCFAs have antipathogen (31)

and anti-inflammatory activities (32). It carries out the relevant

functions by stimulating cellular immunity and supporting

transition cows to face various challenges (33), such as reducing the

incidence rate of mastitis (34, 35). Moreover, there are few studies on

MCFAs in transition dairy cows (36), so it is necessary for us to

explore the application prospects of MCFAs in peripartum cows.
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Overall, our hypothesis focuses on whether MCFAs could

improve the immune function and metabolic status of dairy cows

in the transition period and whether MCFA supplementation could

modify dairy cows’ rumen fermentation and performance.
Materials and methods

Animals involved in this experiment were fed according to the

guidelines from the committee of animal welfare and animal

experimental ethical inspection of China Agricultural University.

The committee reviewed and approved the experiment and all

procedures involving animals (Protocol number: CAU20201024-2).
Cows, housing, feeding management,
and treatment

Twenty healthy multiparity Holstein dairy cows with similar body

condition scores (parity = 2.50 ± 1.42; body condition score = 3.28 ±

0.23; mean ± SD) were randomly assigned to two treatments, with 10

cows in each treatment. The control group (CON; parity = 2.67 ± 1.32;

body condition score = 3.33 ± 0.28) was fed a basal diet, while the

transition diet was followed in the pre-calving stage (21 d before calving

to calving) and the lactation diet was followed in the early lactation (1 d

to 28 d after calving) and peak lactation diet (29 d to 70 d after calving)

(Table 1). The MCFA treatment (MCFA; parity = 2.33 ± 1.58; body

condition score = 3.22 ± 0.15) was supplemented with 20 g of MCFA

mixture consisting of 10% octanoic acid, 7% decanoic acid, 17% lauric

acid, and 66% carrier (consisting of silica, wheat flour, and barley flour).

The experiment was carried out in a barn equipped with

automatic feeding bins (RIC, Roughage Intake Control, Insentec

B.V. Marknesse). The barn was divided into two parts before the

experiment (Barn 1 and Barn 2) to separate the transition and

lactating cows. Cows were transferred to Barn 1 35 d before calving

and 14 d for the adaptive phase and remained there until calving.

After calving, they were transferred to Barn 2 until the end of the

experiment. Both Barn 1 and Barn 2 were equipped with adequate

feeding bins, cubicles, and water bins, providing cows with a

comfortable environment, guaranteeing the experiment’s success

and the animals’ welfare. No additional MCFA mixture was added

to the cows’ diet during these two days as the cows needed to be taken

care of in the calving room after calving, which took 1-2 d.
Animal performance

The feed intake of dairy cows was recorded by the automatic RIC

system. TMR samples were collected weekly before calving and every

two weeks during the lactation period. After the feed samples were

collected and weighed, they were dried in a forced-air-drying oven at 55

degrees for 48 hours (Senxin experimental instrument series DGG-

9003, Shanghai, China). The dried samples were then equilibrated at

ambient temperature and humidity before reweighing. Each cowwore a

collar that recorded its rumination behavior after calving. An electronic

monitoring system (HR-TAG-LD, SCR Engineers Ltd) recorded data

every two hours to monitor the cow’s daily rumination time.
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At the 6th, 12th, 18th, and 24th hours of the last 3 d (68 d - 70 d after

calving), 300 - 500 g feces were collected from the rectum, and the

fecal samples were mixed with 10% tartaric acid and dried in a forced-

air-drying oven at 55 degrees for 48 h (37). The dried TMR and feces

samples were ground using a high-speed vertical grinder (RT-34,

Kunjie Yucheng Machinery Equipment, Beijing, China) and then

passed through a 1 mm mesh screen. Sieved TMR and feces samples

were collected and tested for crude protein (CP) (Dumas combustion,

Rapid MAX N Exceed, Elementar Analysensysteme GmbH, Hanau,

Germany), ether extract (EE) (ANKOM XT15Ii, Extractor, ANKOM

Technology, Macedon, America), neutral detergent fiber (NDF), and

acid detergent fiber (ADF) (38) (ANKOM 2000Ii, Automated Fiber

Analyzer, ANKOM Technology, Macedonia, USA), and the

digestibility of each nutrient was calculated (39).

Daily milk production was recorded using an automatic milking

system (ALPROTM, DeLaval, Sweden Tumba) for 70 d after calving.

On days 14, 28, 42, 56, and 70 after calving, 50 mL milk was collected

at the ratio of morning: afternoon: night (4:3:3). After mixing, 50mL

milk was immediately sent to the lab to determine the content of milk

fat, milk protein, and lactose, as well as the levels of urea nitrogen and

the somatic cell count (SCC) (near-infrared reflectance spectroscopy,

Series300 combi-foss; Foss Electric, Schiller ød, Denmark). Energy-

corrected milk (ECM = 0.327× kg/d of milk+12.95× kg/d of milk fat

yield+7.2× kg/d of milk protein yield) and fat-corrected milk (FCM =

0.4× kg/d of milk yield+15×milk fat %× kg/d of milk yield) were

calculated according to milk composition. The feed efficiency of

lactation was calculated by FCM/DMI.
Rumen fluid collection and analysis

On days 21 and 7 before calving and 1 d, 14 d, 28 d, 42 d, 56 d, and

70 d after calving before morning feeding, 50 mL rumen fluid was

extracted by oral intubation, filtered by four layers of gauze, and its

pH value was determined immediately (SEVEN2Go portable pH

meter, METTLER TOLEDO, Switzerland). The filtered rumen fluid

was centrifuged at 5400 g/min for 10 min, 1 mL of supernatant was

taken, and 0.2 mL 25% metaphosphoric acid solution containing

standard internal 2 ethylbutanoic acid (2-EB) was added and mixed.

Gas chromatography (6890N; Agilent Technologies, Avondale, PA,

USA) and capillary column (HP-Innowax 19091N-213, Agilent) for

determination of acetate, propionate, iso-butyrate, butyrate, iso-

valerate and valerate acid in rumen fluid. Ammonia nitrogen (NH3-

N) content was determined by the phenol-sodium hypochlorite

colorimetric method (40)
Blood sampling and analysis

Blood samples were taken from the tail vein of six randomly

selected dairy cows 21 d and 7 d before calving and 1 d, 28 d, 56 d, and

70 d after calving. Before morning feeding, 10 mL of blood was

collected from blood vessels containing anticoagulant EDTA. After

centrifugation at 300 g for 15 min, upper plasma was collected and
TABLE 1 Ingredient and chemical composition of the TMR.

Composition The peripartum
diet1

The lactating
diet2

Ingredient (%DM)

Oat grass 32.6 ——

Alfalfa hay —— 7.1

Corn silage 46.6 56.6

Corn 4.2 7.1

Steam-flaked corn —— 9.9

Corn gluten meal 2.8 1.7

Bean pulp 4.6 8.5

Soy hulls 5.1 2.8

Whole cottonseed —— 1.2

Molasses —— 2.4

Diamond V XP6 0.2 0.1

Bergafat T 3007 —— 0.8

Sodium bicarbonate —— 0.4

Urea 0.4 ——

premix 3.23 1.44

Chemical composition (%
DM)

CP5 16.56 16.98

ADF5 27.62 14.73

NDF5 41.32 23.32

Lignin 3.81 2.45

Starch 13.27 29.61

Fat 1.91 3.77

peNDF5 33.38 15.61

Ca 1.45 0.86

P 0.27 0.38

K 1.04 1.31

DM5 (%) 50.19 54.4

NEL (Mcal/kg) 1.44 1.78
NEL: a calculated value according to NRC (2001) (18), while the nutrient levels were measured
values.
1Applied in the pre-calving cows.
2Applied in the early lactation and peak lactation cows.
3The transition diet premix contained 150000 - 350000 IU/kg Vitamin A, 30000 - 95000 IU/kg
VitaminD3, ≥ 2500 mg/kg Vitamin E, 200 - 7500mg/kg Fe, 100 - 350 mg/kg Cu, 300 - 2500 mg/
kg Mn, 400 - 2500 mg/kg Zn, 2 - 20 mg/kg Co.
4The lactating diet premix contained 70000 - 150000 IU/kg Vitamin A, 20000 - 50000 IU/kg
Vitamin D, ≥ 400 mg/kg Vitamin E, 100 - 350 mg/kg Cu, 120 - 2000 mg/kg Mn, 400 - 2000 mg/
kg Zn, 2 – 10 mg/kg Co.
5CP, crude protein; ADF, acid detergent fiber; NDF, neutral detergent fiber; pe NDF, physically
effective neutral detergent fiber; DM, dry matter; NE, net energy.
6Diamond V XP (Diamond V, USA) contained proteins, peptides, antioxidants, organic acids,
nucleotides, vitamins, minerals, beta-glucans, and mannan oligosaccharides.
7Bergafat T 300 (Berg-Schmidt, Germany) contained natural glycerin 10% and palmitic acid 75 -
93%.
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stored at -20 degrees until analysis. Insulin (INS) was determined by

radioimmunoassay (BFM-96, multi-tube radioimmunocounter,

Zhongcheng Electromechanical Technology). Plasma TG was

determined by an automatic biochemical analyzer (CLS880, Jiangsu

Zecheng Biotechnology). NEFA, b -hydroxybutyric acid (BHBA),

immunoglobulin G, A, and M (IgG, IgA, IgM), interleukin (IL-2, IL-6,

IL-8, IL-10), tumor necrosis factor (TNF-a), myeloperoxidase

(MPO), and serum amyloid A (SAA) were detected using the

ELISA method (fully automated ELISA machine, THERMO

Multiskan Ascent) (41, 42).

The bile acids in the blood samples were extracted and purified by

liquid chromatography-tandem mass spectrometry with internal

isotope standard and then separated by BEHC18 ultra-high liquid

chromatographic column. Gradient elution was performed with 0.1%

formic acid-water and 0.1% formic acid-acetonitrile as mobile phases,

and mass spectrometry was performed with negative ion mode. At the

same time, a variety of isotope-labeled bile acids were used as an

internal standard to correct errors in sample pretreatment and mass

spectrometry analysis (43).
Phagocytic ability of neutrophils

The tail vein blood of five dairy cows in the two treatments was

collected using an EDTA tube 14 d, 28 d, 42 d, 56 d, and 70 d after

calving. Neutrophils were isolated from the EDTA anticoagulated

tube within 3 hours using the bovine peripheral blood neutrophil

isolation kit (P9400, Solarbio, China). The isolated neutrophils were

then added to 500 mL cell culture medium (RPMI-1640). After mixing

well, viable cell concentrations were recorded with a cell counter

(TC20TM, Bio-Red, America). Approximately 1×106 neutrophils

were absorbed according to the concentration, and the equivalent

fluorescent microspheres (F8821, ThermoFisher, China) were added,

mixed, and cultivated for 30 min at 37°C. Then, 200 mL of

paraformaldehyde was added (blown and mixed) fixed for 30 min,

and centrifuged at 1200 g for 8 min. The supernatant was discarded,

and 350 mL of FACS (1 mL fetal bovine serum + 49 mL phosphate

buffer saline) was added and transferred to a flow cytometry tube after

passing through a 70-mm pore size cell filter, the flow cytometry was

then used to analyze the samples (early lactation, BD FACS Calibur,

BD Company, America) (peak lactation, BD FACS Verse, BD

Company, America). Data were analyzed with FlowJo software and

presented with histograms, using the fluorescent channel, PE as the

abscissa. The parameter PE provided an accurate measurement of the

brightness of the stained cells. Subsequent statistical analysis was

performed according to the percentage of neutrophils that

phagocytosed the fluorescent microspheres (44, 45).
Statistical analysis

SAS Studio (SAS institute, Carry, NC, USA) software was used for

statistical analysis. Before analysis, SAS was used to test the normal

distribution of the data, and all the data were in line with normal
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distribution except SCC. The SCC results were then converted into

SCC scores by log. Due to the great physiological changes of cows

during the transition period, the experiment was divided into three

stages for separate analysis: pre-calving (21 d before calving to

calving), early lactation (1 d to 28 d after calving), and peak

lactation (29 d to 70 d after calving). One-way ANOVA was used

to analyze the nutrient digestibility of feed in the peak lactation stage

of dairy cows. All other data were analyzed using the MIXED model

of SAS, as follows:

Yijk = m + ai + bj + (ab)ij + eijk

Where Yijk is the dependent variable, m is the overall mean, ai is the
treatment effect (i=1, 2), bj is the effect of sampling time for the pre-

calving cows, the early lactation cows, or the peak lactation cows, (ab)
ij is the interaction effect of treatment and sampling time, and eijk is

the residual error.

By status, “week” was treated as a repeated measure and “cow” as

the subject of the repeated statement. Significance was declared at P ≤

0.05, and tendencies were reported if 0.05< P≤ 0.10. If the P-value of

an interaction term was ≤ 0.05, it was retained; otherwise, interaction

terms were removed from the model.
Results

Animal performance

Dietary supplements of MCFAs significantly reduced the DMI in

the pre-calving cows (P = 0.05). And in early lactation, milk yield in

MCFA treatment was significantly lower than that in CON (P = 0.02),

and ECM also had a decreasing trend (P = 0.06) (Table 2).

Milk composition analysis showed that milk fat has an increasing

trend in early lactation (P = 0.09), while milk protein yield and lactose

yield decreased significantly (P< 0.01, = 0.03, respectively) (Table 3).

In peak lactation, milk lactose and milk fat percentage saw an

interaction of time and treatment (P = 0.01, 0.07, respectively).

MCFA supplementation significantly increased lactose percentage

42 d (P = 0.04) but significantly inhibited it 56 d after calving (P =

0.03). Milk fat percentage showed an increasing trend 56 d after

calving (P = 0.09) (Table 3). The addition of MCFAs did not

significantly influence the digestibility of each nutrient (Table 4).
Inflammatory marker, immune globulin, and
phagocytic ability in blood

In the pre-calving period, there was a significant time × treatment

interaction for g-IFN (P = 0.04). However, there was no difference in

g-IFN at each time point before calving (Table 5). In early lactation,

compared with CON, the concentrations of MPO and SAA in the

serum of cows undergoing MCFA treatment were significantly

decreased (all P< 0.05, Table 5). There was also an interaction

trend of IL-6 (P = 0.06). Compared with the CON, the

concentration of IL-6 in the blood of cows under MCFA treatment
frontiersin.org
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was significantly increased 1 d after calving (P = 0.04, Table 5). In

peak lactation, TNF-a saw a significant interaction between time and

treatment (P = 0.01) and decreased significantly 56 d after calving (P =

0.02) (Table 5).

There was an interaction trend for IgM (P = 0.09) in the pre-calving

stage. IgM was significantly decreased 21 d before calving compared with

the CON treatment (P = 0.02, Table 6). In early lactation, there was a

significant interaction between time and treatment of IgM and IgA (P=

0.03,0.03, respectively). IgA concentration was also significantly

decreased 28 d after calving (P = 0.01, Table 6), but IgM concentration

was significantly increased 14 d after calving (P = 0.02, Table 6).

Furthermore, there was no significant difference in neutrophils

phagocytosis during early lactation and peak lactation (Figures 1A, B).
Serum energy, insulin, and bile
acid metabolism

The results of related metabolites and hormones in blood during

the pre-calving period show that INS concentration was significantly

reduced (P = 0.04; Table 7). TG showed a trend of interaction (P =

0.08) during early lactation, which had a decreasing trend compared

with CON 28 d after calving (P = 0.07, Table 7).

The interaction between treatment and time-affected lithocholic

acid (LCA), hyodeoxycholic acid (HDCA), hyocholic acid (HCA),

taurocholic acid (TCA), chenodeoxycholic acid (CDCA), and

ursodeoxycholic acid (UDCA) (P< 0.01,< 0.01,< 0.01, = 0.03, =

0.03, = 0.06, respectively). Specifically, the addition of MCFAs

downregulated the serum concentrations of LCA, HDCA, HCA,
Frontiers in Immunology 05
and UDCA in MCFA treatment cows 1 d post-calving (P = 0.02,<

0.01,< 0.01, = 0.09, respectively, Table 8), as well as the serum

concentrations of HCA and TCA in cows 14 d post-calving (P<

0.01, = 0.01, respectively, Table 8). However, CDCA concentration

increased significantly 14 d after calving (P = 0.02, Table 8). LCA also

had an upward trend (P = 0.08, Table 8).
Rumen fermentation

After analysis of rumen fermentation parameters, the

concentrations of iso-butyrate and isovalerate in the rumen fluid of

dairy cows during the pre-calving period were significantly decreased

(P< 0.01, 0.01, respectively, Table 9), but the total volatile acid content

was not affected. Besides, the acetate/propionate had a decreasing

trend in early lactation (P = 0.08, Table 9),

The NH3-N had an increasing trend in this period (P = 0.09).

Furthermore, different treatments had significant interaction with

NH3-N in rumen fluid in terms of time in early lactation (P = 0.02),

which shows that the concentration of NH3-N in MCFA treatment

was significantly downregulated 14 d after calving (P = 0.04)

(Table 10). In addition, the pH decreased significantly during early

lactation (P = 0.01, Table 10).
Discussion

The nutritional metabolism and immune function of dairy cows

are interdependent (46). During the transition period, decreased DMI
TABLE 2 Effects of feeding medium chain fatty acid on the performance of pre-calving, early lactation, and peak lactation cows2.

Variable
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment ×Time

Pre-calving2

DMI3 (kg/d) 9.99a 8.77b 0.326 0.05 0.01 0.99

Early lactation2 (kg/d)

DMI 15.02 14.18 0.608 0.42 <0.01 0.38

Milk yield 37.37a 32.56b 1.285 0.02 <0.01 0.38

4% FCM3 41.01 37.21 1.217 0.10 0.03 0.46

ECM3 43.62 38.78 1.351 0.06 0.04 0.37

Efficiency3 2.76 2.74 0.101 0.92 0.51 0.60

Peak lactation2 (kg/d)

DMI 23.25 22.14 0.585 0.29 <0.01 0.78

Milk yield 47.01 43.44 0.977 0.09 0.93 0.99

4% FCM 47.59 47.11 1.119 0.82 0.04 0.60

ECM. 48.65 50.66 1.515 0.51 0.11 0.34

Efficiency 2.04 2.07 0.055 0.80 0.02 0.23
SEM, standard error of mean.
a-b Means within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA = MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Pre-calving, from 21 d before calving to calving, early lactation = from 1 d to 28 d after calving, peak lactation = from 29 d to 70 d after calving.
3DMI, dry matter intake, FCM, fat corrected milk; ECM, energy corrected milk; Efficiency, FCM/DMI.
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cannot meet cows’ energy needs, leading to the occurrence of NEB

and stimulating the mobilization of body fat. Relevant metabolites

such as NEFA and BHBA may also affect the function of immune

cells, leading to immune dysfunction in dairy cows (47). Also,

transition cows go through huge changes in physiological status

and various stress factors before and after calving, resulting in the
Frontiers in Immunology 06
occurrence of excessive inflammatory reactions, which may further

affect the metabolic status of animals (48).

In general, the occurrence of inflammatory response is often

accompanied by an increase in the concentration of inflammatory

cytokines and positive acute phase protein (APP) in the blood. SAA is

a signature positive APP in inflammation, and its concentration in the
TABLE 3 Effects of feeding medium-chain fatty acid on milk composition of early lactation and peak lactation cows2.

Variable
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment ×Time

Early lactation

Milk fat percentage (%) 4.62 5.07 0.152 0.09 <0.01 0.49

Milk protein percentage (%) 3.28 3.11 0.063 0.13 <0.01 0.43

Mile lactose percentage (%) 5.17 5.18 0.034 0.94 0.37 0.76

Milk fat yield (kg/d) 1.71 1.62 0.053 0.42 0.27 0.72

Milk protein yield (kg/d) 1.24a 1.03b 0.044 <0.01 0.03 0.24

Milk lactose yield (kg/d) 1.98a 1.76b 0.071 0.03 <0.01 0.62

MUN3 (mg/dL) 19.76 17.63 1.014 0.32 0.36 0.88

SCC3 (×1000/mL) 197.07 43.00 41.458 0.32 0.09 0.72

Peak lactation

Milk fat percentage (%) 4.36 4.61 0.142 0.31 0.01 0.07

Milk protein percentage (%) 3.24 3.22 0.038 0.85 0.26 0.59

Milk lactose percentage (%) 5.28 5.25 0.022 0.48 0.61 0.01

Milk fat yield (kg/d) 1.90 2.01 0.059 0.32 0.01 0.26

Milk protein yield (kg/d) 1.48 1.42 0.034 0.46 0.88 0.42

Milk lactose yield (kg/d) 2.46 2.28 0.056 0.11 0.56 0.13

MUN (mg/dL) 19.29 18.88 0.795 0.80 0.32 0.29

SCC (×1000/mL) 69.00 57.18 13.909 0.12 0.52 0.22
SEM, standard error of mean.
a-bMeans within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA, MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Early lactation = from 1 d to 28 d after calving, Peak lactation, from 29 d to 70 d after calving.
3MUN, milk urea nitrogen, SCC, somatic cell count.
TABLE 4 Effects of feeding medium-chain fatty acid on nutrient digestibility of the peak lactation cows.

Digestibility (%)
Treatment

SEM P-value
CON MCFA

DM3 68.56 67.90 1.427 0.82

Protein 66.02 66.56 1.652 0.88

Fat 70.04 74.43 1.661 0.20

NDF3 27.74 29.09 3.403 0.87

ADF3 25.83 24.37 3.445 0.84
fron
SEM, standard error of mean.
a-bMeans within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA = MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Peak lactation, from 29 d to 70 d after calving.
3ADF, acid detergent fiber, NDF, neutral detergent fiber, DM, dry matter.
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blood is low under healthy conditions, but it increases significantly

during the onset of the inflammation (49). Similarly, as an important

marker of the inflammatory response, MPO is considered an

important tool for diagnosing bacterial infections (50). Compared

with CON, the significant decrease of SAA and MPO in dairy cows

under MCFA treatment during early lactation may indicate less

inflammation in the body. In addition, MCFAs can mediate

inflammatory responses by activating GPR84 and TLR-2 (51),

promoting proinflammatory cytokine IL-6 production of the

immune cell (52), and facilitating the rapid initiation of immune

responses to clear pathogens, which may play an important role in

alleviating the high stress and infection risk faced by cows during
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calving (53). Therefore, MCFAs may improve immune cell function

and rapidly clear invading pathogens, prevent the occurrence of an

excessive inflammatory response, and reduce the incidence of

infectious diseases.

The liver function of transition cows often experiences a dramatic

change as well. Liver function impairment is considered one of the

important reasons for NEB and metabolic disorders in dairy cows.

Bile acids are synthesized in the liver and, through interaction with

farnesoid X receptor (FXR), regulate digestion, fat metabolism (54),

and intestinal inflammation (55). In general, liver reuptake of blood

bile acids is reduced, resulting in higher concentrations of bile acids in

the blood, which may indicate impaired liver function. Meanwhile,
TABLE 5 Effects of feeding medium chain fatty acid on blood neutrophils phagocytosis of early lactation cows and peak lactation cows2.

Variable
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment ×Time

Pre-calving

IL3-2 (pg/mL) 152.05 152.33 2.202 0.57 0.04 0.29

IL-6 (ng/mL) 382.09 385.57 5.446 0.75 0.10 0.33

IL-8 (ng/mL) 82.65 80.34 1.074 0.28 0.07 0.51

IL-10 (pg/mL) 197.46 204.69 3.026 0.23 0.10 0.44

TNF-a3 (pg/L) 228.75 217.82 3.318 0.12 0.28 0.80

MPO3 (U/L) 125.48 126.08 1.253 0.83 0.78 0.82

SAA3 (mg/mL) 32.54 31.62 0.649 0.47 0.11 0.21

Early lactation

IL-2 (pg/mL) 159.17 160.12 2.338 0.85 0.30 0.40

IL-6 (ng/mL) 405.38 415.11 7.003 0.42 <0.01 0.06

IL-8 (ng/mL) 88.02 91.39 1.519 0.29 0.31 0.29

IL-10 (pg/mL) 214.44 213.98 3.375 0.92 <0.01 0.21

TNF-a (pg/L) 234.38 234.14 2.655 0.97 0.33 0.78

MPO (U/L) 140.22a 133.81b 1.526 0.04 0.28 0.13

SAA (mg/mL) 32.24a 29.92b 0.561 0.03 0.01 0.29

Peak lactation

IL-2 (pg/mL) 135.11 138.74 3.171 0.59 0.38 0.43

IL-6 (ng/mL) 416.84 436.53 9.149 0.32 0.56 0.69

IL-8 (ng/mL) 97.96 96.51 1.614 0.68 0.66 0.42

IL-10 (pg/mL) 231.24 230.32 3.373 0.89 0.06 0.82

TNF-a (pg/L) 238.10 229.13 4.321 0.25 0.27 0.01

MPO (U/L) 132.43 141.04 3.049 0.19 0.51 0.48

SAA (mg/mL) 31.06 30.58 0.820 0.76 0.05 0.14
SEM, standard error of mean.
a-bMeans within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA = MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Pre-calving, from 21 d before calving to calving, Early lactation = from 1 d to 28 d after calving, Peak lactation= from 29 d to 70 d after calving.
3IL, interleukin, TNF- a, tumor necrosis factor a; MPO, myeloperoxidase; SAA, serum amyloid protein A.
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the increasing level of serum bile acid is considered the main

characteristic of bile acid siltation. Relevant reports have pointed

out that bile acid siltation in animals during pregnancy affects glucose

homeostasis. Cholic acid (CA), glycocholic acid (GCA), and

taurocholic acid (TCA) are the three bile acids with the highest

levels in the blood of dairy cows (56). Our results show that the level

of TCA decreased significantly 14 d postpartum and the levels of
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HDCA, HCA, and LCA decreased significantly at different time

points in early lactation. Thus, MCFAs may promote bile acid

metabolism and improve the liver function of dairy cows, which

plays a vital role in alleviating NEB.

Previous studies have pointed out that MCFAs could improve

insulin resistance (57). The increasing level of INS in the prepartum

blood of dairy cows may represent reduced sensitivity to insulin
TABLE 6 Effects of feeding medium chain fatty acid on blood immune globulin of the pre-calving, early lactation, and peak lactation cows2.

Variable
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment×Time

Pre-calving

Ig3-G (mg/mL) 7.53 7.56 0.170 0.96 0.15 0.21

Ig-A (mg/mL) 93.61 91.24 1.450 0.41 0.10 0.27

Ig-M (mg/mL) 0.83 0.78 0.013 0.03 0.03 0.09

Early lactation

Ig-G (mg/mL) 8.12 8.30 0.209 0.66 0.01 0.70

Ig-A (mg/mL) 102.74 99.79 1.327 0.24 0.22 0.03

Ig-M (mg/mL) 0.80 0.82 0.017 0.53 0.02 0.03

Peak lactation

Ig-G (mg/mL) 8.24 8.08 0.191 0.56 <0.01 0.26

Ig-A (mg/mL) 97.79 94.70 1.797 0.41 0.37 0.30

Ig-M (mg/mL) 0.86 0.82 0.017 0.34 0.71 0.73
SEM, standard error of mean.
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA, MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Pre-calving, from 21 d before calving to calving, Early lactation, from 1 d to 28 d after calving, Peak lactation,= from 29 d to 70 d after calving.
3Ig, Immune globulin.
BA

FIGURE 1

Effects of feeding medium chain fatty acid on blood neutrophils phagocytosis of the early lactation cows and the peak lactation cows. (A) The blood
neutrophils phagocytosis of the early lactation dairy cows; (B) the blood neutrophils phagocytosis of the peak lactation dairy cows. CON, control
treatment, n = 9; MCFA: MCFA treatment (basic diet and medium chain fatty acids 20 g/d), n = 9. SEM, standard error of mean. Trt, treatment effect;
Time, the calving time effect; Trt × T, the interaction effect between treatment effect and time effect. The early lactation: from 1d to 28d after calving;
the peak lactation: from 29 d to 70 d after calving.
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TABLE 7 Effects of feeding medium-chain fatty acid on blood metabolites and hormones of pre-calving, early lactation, and peak lactation cows2.

Variable
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment×Time

Pre-calving

BHBA3 (mmol/L) 0.48 0.47 0.007 0.62 0.05 0.43

NEFA3 (umol/L) 43.14 41.88 0.586 0.18 <0.01 0.20

TG3 (mmol/L) 0.23 0.20 0.001 0.10 0.05 0.84

INS3 (mIU/mL) 22.65a 18.47b 0.939 0.04 0.32 0.65

Early lactation

BHBA (mmol/L) 0.50 0.50 0.007 0.62 0.01 0.11

NEFA (umol/L) 44.77 43.03 0.593 0.11 0.01 0.14

TG (mmol/L) 0.13 0.13 0.005 0.19 0.62 0.08

INS (mIU/mL) 14.13 14.98 0.681 0.54 0.10 0.41

Peak lactation

BHBA (mmol/L) 0.46 0.44 0.009 0.34 0.97 0.92

NEFA (umol/L) 44.38 43.61 0.688 0.61 0.64 0.69

TG (mmol/L) 0.13 0.15 0.008 0.27 0.16 0.84

INS (mIU/mL) 17.01 18.19 1.028 0.42 <0.01 0.82
F
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SEM, standard error of mean.
a-bMeans within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA, MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Pre-calving, from 21 d before calving to calving, Early lactation = from 1 d to 28 d after calving, Peak lactation = from 29 d to 70 d after calving.
3BHBA, b-hydroxybutyrate; NEFA, non-esterified fatty acid; TG, triglyceride; INS, insulin.
TABLE 8 Effects of feeding medium-chain fatty acid on blood bile acid metabolism of early lactation cows2.

Variable3 (m mol/L)
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment ×Time

LCA 0.02 0.02 0.002 0.37 <0.01 <0.01

UDCA 0.017 0.015 0.002 0.50 0.04 0.06

HDCA 0.03a 0.02b 0.002 0.02 0.02 <0.01

CDCA 0.30 0.61 0.118 0.13 0.03 0.03

DCA 1.20 3.47 0.592 0.15 0.05 0.11

HCA 0.05a 0.01b 0.006 <0.01 <0.01 <0.01

CA 18.77 21.04 3.547 0.71 <0.01 0.27

GLCA 0.08 0.08 0.012 0.81 0.11 0.79

GCDCA 0.82 0.71 0.153 0.70 <0.01 0.33

GDCA 2.03 1.90 0.290 0.80 0.01 0.66

GCA 9.30 6.86 1.328 0.28 <0.01 0.29

TCDCA 0.45 0.43 0.096 0.89 0.10 0.13

TCA 5.02 2.74 0.718 0.08 0.08 0.03

TBA 39.98 38.70 5.626 0.89 <0.01 0.76

CA/CDCA 75.35 89.10 20.696 0.75 0.16 0.85
SEM, standard error of mean.
a-bMeans within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA, MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Early lactation, from 1 d to 28 d after calving.
3LCA, lithocholic acid; UDCA, ursodeoxycholic acid; HDCA, hyodeoxycholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; HCA, hyocholic acid; CA, cholic acid; GLCA, cholic acid;
GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GCA, glycocholic acid; TCDCA, taurochenodeoxycholic acid; TCA, taurocholic acid; TBA, total bile acid.
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receptors in various organs and tissues in the body, thereby reducing

insulin sensitivity and triggering insulin resistance (58, 59). The

occurrence of insulin resistance reflects that the cows face a certain

degree of NEB, which further leads to increased mobilization of body

tissues, making cows face greater metabolic pressure and increasing

the risk of metabolic diseases. Compared with the cows in the CON

group, the concentration of INS in the prepartum blood of cows

under MCFA treatment was significantly lower, which may imply that

MCFA supplementation can improve the prepartum insulin
Frontiers in Immunology 10
sensitivity of cows. In addition, the concentrations of BHBA and

NEFA in the blood are also numerically down-regulated, and

prepartum NEFA and BHBA in the blood are correlated with the

occurrence of postpartum metabolic and infectious diseases in dairy

cows (60). Furthermore, increased TG concentration in the blood

may lead to the deposition of TG in the liver, resulting in the

occurrence of fatty liver (61, 62) and adversely affecting the

function of the immune system (63). The decreasing trend of

the blood TG in our experiment might be linked with the
frontiersin.org
TABLE 9 Effects of feeding medium-chain fatty acid on rumen fermentation of pre-calving, early lactation, and peak lactation cows2.

Variable
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment ×Time

Pre-calving (mmol/L)

Acetate 42.34 43.76 1.827 0.71 0.24 0.28

Propionate 8.61 9.93 0.459 0.18 0.49 0.39

Iso-butyrate 0.65a 0.52b 0.024 <0.01 0.13 0.36

Butyrate 6.12 7.13 0.332 0.16 0.75 0.81

Isovalerate 1.08a 0.87b 0.035 <0.01 0.05 0.51

Valerate 0.46 0.50 0.022 0.45 0.51 0.50

TVFA3 59.25 62.45 2.553 0.55 0.28 0.35

A/P3 4.97 4.74 0.074 0.12 0.30 0.25

Early lactation (mmol/L)

Acetate 45.70 51.17 2.361 0.20 <0.01 0.54

Propionate 16.29 17.64 0.767 0.41 0.73 0.67

Iso-butyrate 0.73 0.60 0.039 0.12 0.77 0.20

Butyrate 7.71 9.15 0.463 0.14 0.21 0.78

Isovalerate 1.34 1.28 0.068 0.69 0.04 0.25

Valerate 0.92 1.09 0.067 0.161 <0.01 0.31

TVFA 75.75 81.47 3.320 0.39 0.05 0.97

A/P 3.14 2.85 0.095 0.08 <0.01 0.14

Peak lactation (mmol/L)

Acetate 40.09 41.07 1.179 0.67 0.06 0.27

Propionate 15.54 17.18 0.663 0.22 0.09 0.46

Iso-butyrate 0.74 0.75 0.026 0.78 0.33 0.93

Butyrate 6.67 7.07 0.272 0.47 0.20 0.39

Isovalerate 1.45 1.44 0.054 0.87 0.41 0.54

Valerate 0.98 1.12 0.040 0.11 0.87 0.94

TVFA 65.55 69.66 2.090 0.33 0.14 0.42

A/P 2.61 2.52 0.057 0.47 0.23 0.75
SEM, standard error of mean.
a-bMeans within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA, MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Pre-calving, from 21 d before calving to calving, Early lactation, from 1 d to 28 d after calving, Peak lactation, from 29 d to 70 d after calving.
3TVFA, total volatile fatty acid, A/P, the ratio of acetate to propionate.
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improvement of metabolism. Meanwhile, although the dose of

MCFAs applied in this study was small, we cannot exclude the

beneficial effect of MCFAs as a fast and efficient energy metabolite

on the metabolism regulation of transition cows (64, 65).

The beneficial effects of MCFAs on the immunity and metabolism

of dairy cows do not seem to be reflected in productive performance. It

has been reported that MCFAs are rapidly absorbed into the liver for

metabolism to generate energy and send signals to the brain through

the vagus nerve to form satiety signals, thus affecting animal feeding

(66). Our results show that MCFA application significantly decreased

DMI prepartum, but the DMI in early and peak lactation cows was not

affected dramatically. Meanwhile, the prepartum diet consists of higher

roughage, which was degraded relatively slowly. So, dairy cows might

not adapt to the supplement of MCFAs in the pre-calving period. With

regard to the significant decrease in milk production in early lactation,

we believe that MCFA supplementation may change the energy

allocation of the animal body, and the reduced milk production will

be used to reduce the metabolic stress and improve the immune

function of cows, thus enhancing the health of cows in the transition

period (31). This discrepancy between health and performance needs to

be demonstrated in subsequent studies. Furthermore, milk fat

percentage increased in both early and peak lactation periods. This is

because MCFAs could improve the digestibility of whole digestive tract

fat in dairy cows (26).

Although the DMI decreased in the pre-calving period, we

observed that the TVFA in rumen fluid saw a numerical increase
Frontiers in Immunology 11
under MCFA treatment. In other words, MCFA supplementation

may improve the rumen function of transition dairy cows, and this

effect is more likely based on the beneficial regulation of rumen

microbiota and intestinal health. Relevant studies have shown that

MCFAs can inhibit intestinal pathogenic microorganisms, enhance

intestinal mucosal barrier function, and mediate intestinal immunity

(67, 68). IgA plays an important role in defending the enteric

pathogenic microorganism passage through the intestinal mucosa,

and the decrease in blood Ig A under the MCFA treatment may

suggest that the intestinal mucosa is less affected by pathogens (69).

The intestinal tract is the largest immune system and plays

an important role in resisting the infection of pathogenic

microorganisms from feed. MCFAs may improve intestinal health

and the microorganism community, which can promote rumen

fermentation and prevent systemic inflammation.
Conclusion

MCFA supplementation can improve the immune function of

transition dairy cows to some extent. MCFAs can regulate the level of

SAA, MPO, IL-6, TNF-a, and other related immune markers, which

will be of benefit in preventing the occurrence of inflammatory

diseases. Furthermore, MCFAs might improve the metabolic status

of dairy cows in the transition period by modifying liver function and

INS sensitivity.
TABLE 10 Effects of feeding medium-chain fatty acid on rumen fermentation and ruminant behavior of pre-calving, early lactation, and peak lactation cows2.

Variable
Treatment1

SEM
P-value

CON MCFA Treatment Time Treatment ×Time

Pre-calving

NH3-N
3 (mmol/L) 7.03 7.85 0.348 0.09 0.13 0.66

Lactic acid (mmol/L) 3.26 4.34 0.633 0.44 0.99 0.95

pH 6.50 6.50 0.066 0.99 0.15 0.69

Early lactation

NH3-N (mmol/L) 5.58 5.77 0.294 0.69 <0.01 0.02

Lactic acid (mmol/L) 6.26 5.94 0.689 0.81 0.09 0.33

pH 6.54a 6.17b 0.089 0.01 <0.01 0.67

Rumination (min/d) 522.47 508.25 10.637 0.51 0.08 0.79

Peak lactation

NH3-N (mmol/L) 5.60 4.83 0.243 0.15 0.20 0.34

Rumination (min/d) 528.04 530.51 4.443 0.78 0.48 0.14
SEM, standard error of mean.
a-bMeans within a row with unlike superscripts differ (P ≤ 0.05).
1CON, control treatment, basic diet with no medium chain fatty acids, n = 9. MCFA, MCFA treatment, basic diet and medium chain fatty acids 20 g/d, n = 9.
2Pre-calving, from 21 d before calving to calving, Early lactation, from 1 d to 28 d after calving, Peak lactation, from 29 d to 70 d after calving.
3NH3-N, ammonia nitrogen.
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