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Analysis of bulk RNA-seq data
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targeted cell death-related genes
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Background: Sepsis is a life-threatening organ dysfunction syndrome that leads to

the massive death of immune cells. Long non-coding RNAs (lncRNAs) have been

reported to exert key regulatory roles in cells. However, it is unclear how lncRNAs

regulate the survival of immune cells in the occurrence and development of sepsis.

Methods: In this study, we used blood whole transcriptome sequencing data

(RNA-seq) from normal controls (Hlty) and patients with uncomplicated infection

(Inf1 P), sepsis (Seps P), and septic shock (Shock P), to investigate the fraction

changes of immune cell types, expression pattern of cell death-related genes, as

well as differentially expressed lncRNAs. Association network among these factors

was constructed to screen out essential immune cell types, lncRNAs and their

potential targets. Finally, the expression of lncRNAs and cell death genes in sepsis

patients were validated by qRT-PCR.

Results: In this study, we found fifteen immune cell types showed significant

fraction difference between Hlty and three patient groups. The expression pattern

of cell death-related genes was also dysregulated in Hlty compared with patient

groups. Co-expression network analysis identified a key turquoise module that was

associated with the fraction changes of immune cells. We then identified

differentially expressed lncRNAs and their potential targets that were tightly

associated with the immune cell dysregulation in sepsis. Seven lncRNAs,

including LINC00861, LINC01278, RARA-AS1, RP11-156P1.3, RP11-264B17.3,

RP11-284N8.3 and XLOC_011309, as well as their co-expressed cell death

genes, were finally identified, and we validated two lncRNAs (LINC00861 and

LINC01278) and four mRNA targets using qRT-PCR in sepsis samples.

Conclusion: The global analysis of cell death-related genes in the occurrence and

development of sepsis was carried out for the first time, and its expression

regulation mode was displayed. The expression pattern of sepsis-associated
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lncRNAs were analyzed and identified, and the lncRNAs were significantly related

to the change of immune cell proportion. We highlight the important roles of

lncRNAs and their potential targets in the regulation of immune cell fraction

changes during sepsis progression. The identified lncRNAs and their target genes

may become new biomarkers and therapeutic targets of sepsis.
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Introduction

Sepsis remains a common and life-threatening clinical disease with

high morbidity and mortality due to early-stage uncontrolled

inflammation together with late-stage protracted immunosuppression

(1). Annually, approximately 48.9 million people are affected by sepsis,

more than 11 million of those affected die, and one sixth of sepsis

survivors experience significant functional limitations (2, 3). Recent

decades have seen the remarkable progress of biomarker-guided

therapy targeting the excessive inflammatory response in the early

stage of sepsis (4, 5). However, increasing evidence has shown that most

patients dying of sepsis are actually the result of a substantially impaired

activation of the immune response that is due to a cytokine storm (6, 7).

Significant reductions in the number of monocytes, macrophages,

natural killer (NK) cells, T cells, B cells and follicular dendritic (DC)

cells were observed in the circulation of patients with sepsis (8–11). The

reduction of immune cells combined with the resultant

immunosuppressive effect on surviving immune cells contribute to

the severe immunoparalysis (7, 12), which is strongly related to severity

and mortality of sepsis. With this background in mind, biomarker-

guided therapy targeting the immune cell-death pathway may

significantly improve prognosis of sepsis. At present, the mechanism

of how sepsis leads to extensive immune cells death constitutes an

important focus of research, while is still not fully understood.

Long non-coding RNAs (lncRNAs) are a class of non-protein-

coding transcripts with an arbitrary length of larger than 200

nucleotides (13). It has now been established that lncRNAs exert

key regulatory roles in the innate and adaptive immune response

system, thereby contributing to the development and progression of

diverse diseases, including sepsis (14–16). Some lncRNAs, such as

lncRNA Cox2, lncRNA EPS and lncRNA Morrbid, can regulate

inflammatory gene expression programs of innate immune cells, as

well as the development and homeostasis (17–19). In the adaptive

immune system, lncRNAs have mainly been shown to regulate the

polarization and effector function of CD4 T cells (20–22). Liu and his

colleagues recently demonstrated that lncRNA NEAT1 promoted

apoptosis and inflammation in LPS‐induced H9c2 cells by targeting

miR‐590‐3p, providing new strategies for the treatment of sepsis (23).

Likewise, Li et al. provided experimental evidence that lncRNA

PCED1B-AS1 interacted with miR-155 to modulate macrophage

apoptosis and autophagy in tuberculosis (24). However, little is

known regarding the mechanisms of how lncRNAs regulate the

survival of immune cells in sepsis, which may impede further
02
research into treatments targeting immune microenvironment

regulation in sepsis.

In the present study, we aim to (1) reveal the fraction changes of

immune cell types in varying degrees of sepsis based on a public

RNA-seq data; (2) profile the pattern of cell death-related genes and

lncRNAs in sepsis and septic shock; (3) construct a co-disturbed

network between immune microenvironment associated lncRNAs

and cell death genes; (4) identify several potential lncRNAs and

targets associated with the immune cell dysregulation in blood

samples from sepsis and septic shock patients; finally elucidate the

preliminary mechanism by which lncRNAs regulate immune cells in

response to sepsis. These findings will improve our understanding on

the involvement of lncRNAs in the regulation of immune cells in

sepsis and contribute to the development of new targets for

sepsis treatment.
Materials and methods

Retrieval and process of public data

GSE154918 deposited by Herwanto (25) were downloaded from

Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE154918). GSE154918 included 105 peripheral

blood samples from patients with uncomplicated infections (Inf1 P),

sepsis patients (Seps P), septic shock patients (Shock P), and healthy

controls (Hlty). SRA Run files were converted to fastq format with

NCBI SRA Tool fastq-dump. The raw reads were trimmed of low-

quality bases using a FASTX-Toolkit (v.0.0.13). Then, the clean reads

were evaluated using FastQC (http://www.bioinformatics.babraham.

ac.uk/projects/fastqc).
Reads alignment and differentially expressed
gene analysis

The high-quality clean reads were aligned to the human GRch38

genome by TopHat2 (26) allowing 4 mismatches. Uniquely mapped

reads were ultimately used to calculate read number and reads per

kilobase of exon per million fragments mapped (RPKM) for each

gene. The expression levels of genes were evaluated using RPKM. The

differential expression of genes (DEGs) was analyzed by the software

DEseq2 (27) (https://bioconductor.org/packages/release/bioc/html/
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DESeq2.html), which can be used to analyze the differential

expression between two or more samples. DEseq2 modeled the

original reads and used the scale factor to explain the difference of

Library depth. Then, DEseq2 estimated the gene dispersion, and

reduced these estimates to generate more accurate dispersion

estimates, so as to model the reads count. Finally, the model of

negative binomial distribution was fitted by DEseq2, and the

hypothesis was tested by Wald test or likelihood ratio test. The

analysis results were analyzed based on the fold change (FC ≥ 2

or ≤ 0.5) and false discovery rate (FDR ≤ 0.05) to determine whether a

gene was differentially expressed.
Cell-type quantification

The CIBERSORT algorithm (28) (v1.03) was used with the default

parameter for estimating immune cell fractions using FPKM values of

each expressed gene. A total of 22 immune cell phenotypes were

analyzed in the study, including seven T cell types [CD8 T cells, naïve

CD4 T cells, memory CD4 resting T cells, memory CD4 activated T

cells, T follicular helper cells, and regulatory T cells (Tregs)]; naïve

and memory B cells; plasma cells; resting and activated NK cells;

monocytes; macrophages M0, M1, and M2; resting and activated

DCs; resting and activated mast cells; eosinophils; and neutrophils.
LncRNA prediction and direction
identification

To systematically analyze the lncRNA expression pattern, we used

a pipeline for lncRNAs identification similar as previously reported

(29), which was constructed based on the StringTie software (30).
WGCNA and co-expression analysis

To fully understand the expression pattern of cell death-related

genes in sepsis, we applied weighted gene co-expression network

analysis (WGCNA) (31) to cluster genes that have similar expression

pattern with default parameters. 2045 cell death-related genes (GO:

0008219) were retrieved from the gene ontology (GO). All expressed

cell death-related genes (25% with FPKM ≥ 0.5 and at least one

sample with FPKM ≥ 1) in 79 samples were used as input data.

Eigengenes for each clustering module were used as the representative
Frontiers in Immunology 03
expression pattern of genes in each module. Module–trait associations

were also investigated using WGCNA.

To explore the regulatory mode between lncRNAs and their target

genes, we calculated the Pearson’s correlation coefficients (PCCs)

between them and classified their relation into three class: positive

correlated, negative correlated and non-correlated based on the PCCs

value. P-value < 0.01 and absolute PCC > 0.6 between lncRNAs and

genes were picked out to draw networks by program Cytoscape (32).
Functional enrichment analysis

To sort out functional categories of DEGs, GO terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways were

identified using KOBAS 2.0 server (33). Hypergeometric test and

Benjamini-Hochberg FDR controlling procedure were used to define

the enrichment of each term.
Other statistical analysis

Principal component analysis (PCA) analysis was performed by R

package factoextra (https://cloud.r-project.org/package=factoextra) to

show the clustering of samples with the first two components. The

pheatmap package (https://cran.r-project.org/web/packages/pheatmap/

index.html) in R was used to perform the clustering based on Euclidean

distance. Student’s t-test was used for comparisons between two groups.
Assessment of gene expression

To evaluate the validity of the potential sepsis-associated

lncRNAs and the cell death-related targets in RNA-seq data, qRT-

PCR was performed. Whole blood samples were obtained from 7

healthy controls, 6 sepsis patients and 6 septic shock patients, who

were age-and-gender-matched. This process was approved by the

ethics committee of Henan Provincial People’s Hospital, as well as the

agreement of all volunteers. All the blood samples were processed

immediately after collection for the isolation of peripheral blood

monouclear cells (PBMCs). Total RNA was extracted from PBMCs

using the TRIzol reagent (Invitrogen). cDNA synthesis was done by

standard procedures, and qRT-PCR was performed on the Bio-Rad

S1000 with Hieff™ qPCR SYBR® Green Master Mix (Low Rox Plus;

YEASEN, China) and specific primers (Table 1). Relative gene
TABLE 1 Primer sequences used for qRT-PCR analysis.

LncRNA/mRNA Forward primer Reverse primer

LINC01278 5′-GCTATTCCAGTGCCAAGT-3′ 5′-CTCCAACCATCAACATCCT-3′

LINC00861 5′-AAGGCTATGTGTAAGAAGGT-3′ 5′-CTAAGAGGCTGAGGCATAC-3′

BCL11B 5′-TCATCTGCTTCCGTGTTG-3′ 5′-GTGGTCTTCCTGTAGTCATAA-3′

MTOR 5′-GAATTGAAGCGTGTGAGTC-3′ 5′-TCAGGTCGTGGAGAACAT-3′

IL7R 5′-GAGGAAGGCAGGAAGAGA-3′ 5′-CAGGATGGAGTGAGACAAG-3′

KMT2A 5′-CATCACCATCTGCCTCATA-3′ 5′-TACTTGGACTACACTACTCTG-3′
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expression was determined by employing the 2−DDCT method (34) and

normalized against GAPDH.
Results

Diversity of immune microenvironment
characteristics in whole blood among
healthy donors and sepsis patients

A total of 79 samples were finally screened out from four groups:

healthy controls (Hlty, 35 samples), uncomplicated infections (Inf1 P,

9 samples), sepsis (Seps P, 18 samples) and septic shock patients

(Shock P, 17 samples). We first used CIBERSORT algorithm to

characterize cell composition of the four groups, and finally

identified the fractions of eighteen hematopoietic cell phenotypes.

Global presentation and statistical analysis revealed that most of the

immune cell types were significantly changes in at least one of the

three patient groups compared with normal controls, except B cell

naïve, T cell CD4 naïve, and mast cell resting (Figure 1A; Figure S1A,

Table S1). The most abundant neutrophils cell was significantly

decreased in normal controls (Figure 1A). Principal component

analysis (PCA) of all the cell fractions also showed a clear

separation between normal controls and three patient groups

(Figure S1B), further demonstrating the changed hematopoietic cell

fractions in sepsis samples. We then dedicated to explore the top

changed cell fractions among these four groups. Between Inf1 P and

Hlty, dendritic cells activated had highest fold change, while B cells

memory had lowest fold change (Figure 1B). Between Seps P and

Hlty, dendritic cells activated was also ranked first, and NK cells

activated was ranked last (Figure 1C). Between Shock P and Hlty,

Macrophage M0 was the top enriched cell type, while T cell CD4

memory resting was the top enriched in Htly samples (Figure 1D).

We also analyzed the fraction changes among the three patient

groups. Dendritic activated and resting cells showed highest ratio

enrichment in Seps P and Shock P, respectively, suggesting the

important role of dendritic cell inactivation in the progression from

sepsis to septic shock (Figure 1E). Between Seps P and Inf1 P,

activated NK cells were enriched in Inf1 P samples, and memory B

cells were enriched in Seps P samples (Figure S1C). We then

selected five cell types that showed high difference among these

four groups to present the detail fraction of each sample (Figure 1F;

Figure S1D). In summary, these results demonstrated that

hematopoietic cell fractions were extensively regulated during the

development of sepsis.
Weighted gene co-expression analysis
(WGCNA) of cell death-related genes
obtained modules associated with sepsis

We further investigated the underlying mechanisms of sepsis

immune cell population change from the aspect of gene expression

associated with cell death. We extracted 1469 expressed genes from

cell-death pathway (GO: 0008219) in the gene ontology (GO)

database. Differentially expressed gene (DEG) analysis of these

genes revealed the dominant difference came from the comparison
Frontiers in Immunology 04
between Hlty and three patient groups (Figure S2A, B). We then used

WGCNA method to classify these genes into expression modules

based on their expression levels. Four expression modules were finally

obtained, including grey, turquoise, blue and brown. The largest

turquoise module (1248 genes) showed obvious expression

difference between Hlty and other three patient samples; blue and

brown modules showed higher expression patterns in Seps P and

Shock P groups, respectively (Figure 2A). While the grey module did

not show such obvious expression pattern (Figure 2A). We then

performed module-trait analysis to construct association between

identified modules and disease status or cell fractions. Turquoise

module showed significant correlation (positive or negative) with four

groups and most of the cell types (Figure 2B). Similar to the

expression pattern, blue and brown modules were positively

correlated with Shock P and Seps P groups, respectively

(Figure 2B). We then analyzed the enriched functions of genes

from the largest turquoise module. Besides cell death-related

pathways, several other pathways were also enriched, including

positive regulation of protein phosphorylation, regulation of cellular

response to stress, response to oxidative stress, cytokine production

and signaling, regulation of DNA-binding transcription factor

activity, and pathway in cancer (Figure 2C). In the brown module,

mitotic cell cycle-related pathways were the top three enriched

pathways (Figure 2D), indicating that genes in this module play

important role in cell cycle regulation. We then analyzed protein-

protein interaction network in brown module and found the tight

interaction among genes-related to cell cycle, including BUB1,

BUB1B, CDK1, PLK1, AURKA, AURKB, MAD2L1, ESPL1, and

BIRC5 (Figure 2E). Similar analysis was performed for blue

module, and we found the significantly enriched cell apoptosis-

related pathways (Figure S2C), which contained SIAH2, FBXO7,

and CDC34 genes (Figure S2D).
Dynamic changes of lncRNA associated with
immune microenvironment regulation in
healthy donors and sepsis patients with
varying degrees

We then focused our attention on the dysregulated lncRNAs

between normal controls and sepsis patients. Global lncRNA

identification revealed that most lncRNAs, including known (such as

NEAT1, HULC, UCA1, MALAT1, and MIR4435-2HG, Table S2) and

novel lncRNAs, were overlapped among the four groups, and Hlty

group also showed higher number of specific lncRNAs than other

three groups (Figure 3A). Differentially expressed lncRNA

(DElncRNA) analysis demonstrated the difference was increased by

the elevated disease degree (Figure 3B), and the difference between

Hlty and three patient groups was dominant (Figure 3B; Figures S3A,

B), suggesting lncRNA expression pattern were extensively changed in

sepsis patients. We then merged all the DElncRNAs and performed K-

means clustering analysis. Four clusters were obtained when

considering the balance between cluster number and distance.

Hierarchical clustering heatmap of centroid value and the expression

levels of all DElncRNAs showed cluster3 was clearly separated from

other three clusters (Figure 3C; Table S3). These four clusters also

showed their distinct expression pattern by plotting their centroid
frontiersin.org
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values using boxplot. Cluster1 was highly expressed in all three patient

groups; Cluster2 was higher expressed in Inf1 P and Seps P groups and

decreased in Shock P group; Cluster3 was specifically highly expressed

in Hlty group; Cluster4 showed an increased pattern by the disease

degree (Figure 3D). The dynamic expression pattern of these lncRNAs

indicates they may have their specific functions in the progression of

sepsis. We then attempted to construct the association between

DElncRNAs and immune cell types using correlation method to

further explore lncRNA functions. After filtering based on the

criteria (PCC > 0.6 and P-value < 0.01), eleven immune cell types
Frontiers in Immunology 05
were associated with DElncRNAs; four immune cell types, including

M0 macrophage, neutrophils, CD8 T cells, and Tregs, were associated

with more than 200 DElncRNAs (Figure 3E). By classifying correlated

DElncRNAs into four clusters, we found cluster3 had the largest

lncRNA numbers, followed by cluster1 and cluster4 (Figure 3F).

Meanwhile, four immune cell types, including naïve B cells, resting

dendritic cells, resting NK cells, and resting CD4 memory T cells were

specifically correlated with lncRNAs from cluster3 (Figure 3F). These

results indicate that the associated DElncRNAs may contribute to the

phenotype dysregulation of immune cell types.
A

B

D E

F

C

FIGURE 1

Diversity of immune microenvironment characteristics in whole blood among healthy donors and sepsis patients. (A) Boxplot showing fraction of each
cell type in each group. The significant difference of cell fractions among healthy donors and sepsis patients was calculated using the Student’s t-test.
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (B) Inf1 P group relative to Hlty group rank ordered based on decreasing values of the relative frequency ratio
at Inf1 P vs. Hlty. (C) Seps P group relative to Hlty group rank ordered based on decreasing values of the relative frequency ratio at Seps P vs. Hlty.
(D) Shock P group relative to Hlty group rank ordered based on decreasing values of the relative frequency ratio at Shock P vs. Hlty. (E) Shock P group
relative to Hlty group rank ordered based on decreasing values of the relative frequency ratio at Shock P vs. Seps P. (F) Boxplot showing cell fraction of
five cell types.
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Construction of co-disturbed network
between immune microenvironment
associated lncRNAs and cell death genes

The canonical roles of lncRNAs are to regulate expression and

functions of their targets in cis or trans manners. We have constructed

the association and DElncRNAs and immune cell types, so we further

investigated DElncRNAs and their potential target genes using co-

expression network method. Using the cell death-related genes and

DElncRNAs as input, we constructed cell death gene and DElncRNA

network. Most of the involved DElncRNAs came from Cluster3, and

cell death-related genes came from turquoise module (Figure 4A). We

found two DElncRNAs from Cluster4, including XLOC_011309 and

RARA_AS1, were negatively correlated with large number of genes

from turquoise modules, suggesting their potential regulatory functions

on their co-expressed genes (Figure 4A). From the co-expression

network, we extracted seven DElncRNAs with high correlated gene

number and their co-expressed genes to investigate their association

with the eighteen immune cell types. We found the highly dysregulated

immune cell types in Figure 1A also showed significant association with

DElncRNAs and cell death-related genes. The highly associated
Frontiers in Immunology 06
immune cell types included CD8 T cells, Tregs, M0 Macrophages,

Neutrophils and other cells (Figure 4B). These results indicate that the

associated DElncRNAs and cell death-related genes may play

important roles in the dysregulation of immune cell types in sepsis.

We then presented the detail expression pattern of these seven

DElncRNAs and their co-expressed potential targets. LINC00861 and

LINC01278 were higher expressed in Hlty, and their co-expressed

targets BCL11B and MTOR were higher expressed in Hlty (Figure 4C).

The expression levels of other five DElncRNAs and their potential

targets were shown in Figure S4. We propose that these seven

DElncRNAs and their targets may be the key regulatory molecules of

immune cell survival in the occurrence and development of sepsis, and

can be treated as potential therapeutic targets.
Validation of the expression of lncRNAs and
cell death genes in healthy control and
sepsis patients by qRT-PCR

We finally validated the reliable expression changes of the

immune microenvironment associated lncRNAs and the co-
A

B

D E

C

FIGURE 2

Weighted gene co-expression analysis (WGCNA) of cell death-related genes obtained modules associated with sepsis. (A) WGCNA analysis were
performed with all expressed cell death-related genes. Heatmap showing expression profile of expressed cell death-related genes. Genes were clustered
and sorted according WGCNA modules. (B) WGCNA module-trait associations was computed using ‘plotEigengeneNetworks’ function with all factors
(disease status and cell fractions) on the x-axis used as covariates. The colors indicate Pearson’s correlation value and P-values are displayed with star.
*P <=0.05; **P <=0.01; ***P <= 0.001. (C) Functional enrichment of genes from MEturquoise module using Metascape. (D) Functional enrichment of
genes from MEbrown module using Metascape. (E) Protein-protein interaction network of genes from MEbrown.
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expressed cell death-related genes in sepsis detected in GSE154918

RNA-seq data. Six sepsis patients, six septic shock patients and seven

healthy controls with matched age and sex features were enrolled to

extract PBMCs and perform validation experiments. Two

DElncRNAs of LINC00861 and LINC01278 were selected as

candidates. The expression levels of both lncRNAs in Seps P and

Shock P groups were significantly lower than those of Hlty group,

which were consistent to those acquired from RNA-seq in

GSE154918, although there was individual variation within the

same group (Figure 4C). Four cell death-related genes, including

BCL11B, MTOR, IL7R and KMT2A, were also detected in Seps P vs.

Hlty and Shock P vs. Hlty groups (Figure 4C; Figures S4C, D). All of

them showed high consistency with their up-regulated changes from

the RNA-seq data. Taken together, these results demonstrated the

important roles of lncRNAs and their potential targets in immune

microenvironment regulation during the occurrence and

development of sepsis, thereby could serve as new biomarkers and

targets for facilitating treatment in sepsis.
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Discussion

Sepsis is charactered by the body’s systemic immune response to

infection, along with the dysfunctional and fraction-changed immune

cell types (35–38). There is no doubt that extensive death of immune

cells is a major driver of sepsis, and the extent of immune cell death is

strongly associated with severity and mortality of sepsis. However, the

mechanisms of how immune cells die so extensively in sepsis is far

from clear. With the development of second-generation sequencing

technology, there is increasing evidence that lncRNAs play vital roles

in regulating the cell-death pathway of diverse immune cells. Based

on bioinformatics technology and the public RNA-seq data of

GSE154918, we here explored the mechanism through which

lncRNAs regulate the cell death of immune cells in sepsis,

providing new opportunities for biomarker-guided therapy

targeting the immune cell-death pathway in sepsis cases.

I t i s we l l known tha t seps i s in i t i a t e s a complex

immunopathogenesis process involving both innate and adaptive
A B

D

E F

C

FIGURE 3

Dynamic changes of lncRNA associated with immune microenvironment regulation in healthy donors and sepsis patients with varying degrees. (A) Venn
diagram of Known (left) and novel (right) lncRNA genes in Hlty, Inf1 P, Seps P, Shock P. At least two samples with FPKM >= 0.2 is considered to be
detected in the group. (B) The number of differentially expressed (DE) lncRNAs among different groups. Bar plot showing the number of up-regulated
and down-regulated DElncRNAs. (C) DElncRNAs were clustered using K-means. Heatmap in up-panel presenting 4 clusters of DE lncRNAs identified by
K-means clustering and heatmap in down-panel showing expression patterns according clustered lncRNAs. (D) Boxplot showing cluster centers for k-
mean clustering in each sample group. (E) The bar graph showing co-disturbed DElncRNA number of each cell type. (F) The statistical chart showing the
distribution of co-disturbed DElncRNA number of each cell type in each cluster.
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immune cells (39, 40). In the present study, we systematically

analyzed the composition and alternation of hematopoietic cell

types between normal and sepsis specimens using whole blood

transcriptome sequencing (RNA-seq) dataset GSE154918 and

bioinformatics tools, and also found that fifteen immune cell types

were extensively regulated during the development of sepsis,

including lymphocytes, macrophages, monocytes, NK cells,

neutrophils, and DCs. Numerous studies indicated that NK cells are
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affected during sepsis and the absolute number of circulating NK cells

is markedly decreased in sepsis patients, which frequently persists for

weeks (38, 41, 42). Monserrat et al. reported that CD8+ T cells are

significantly changed by sepsis and counts of which drop significantly

in sepsis patients compared with healthy subject (43). Neutrophils are

essential for pathogens eradication and for sepsis survival. It was

reported that patients with sepsis typically have markedly increased

numbers of circulating neutrophils of various degrees of maturation
A

B C

FIGURE 4

Construction of co-disturbed network between immune microenvironment associated lncRNAs and cell death genes. (A) The co-disturbed network
between expression of immune cell related DElncRNAs and expression of cell death-related genes from three related WGCNA modules was constructed
using 79 samples. |Pearson’s correlation| ≤ -0.85 or ≥ 0.95 and P-value ≤ 0.01 were retained. Circles indicate cell death-related genes and triangles
indicate DE lncRNA. Lines between nodes indicate correlation between DElncRNAs and cell death-related genes. Node size indicates connections.
(B) The dot-plot demonstrated the correlations between sample traits (each cell type) and expression of each dysregulated DElncRNAs and their target
cell death related genes. Different colors indicate positive (red) or negative (blue) correlation and significant ones were labeled with star. *P ≤ 0.05; **P ≤

0.01; ***P ≤ 0.001. (C) Boxplot and barplot showing expression profile of lncRNA-mRNA pairs (LINC00861-BCL11B; LINC01278-MTOR) in different
groups. The left boxplots showing the expression by RNA-seq, the right showing the clinical validation by qRT-PCR. ***P ≤ 0.001, ****P ≤ 0.0001.
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(44). Our bioinformatics analysis results showed consistently

changing pattern of these cells described above when comparing

their fractions in Hlty group with that in sepsis groups (Figure 1A). In

addition, we also found M0 type of macrophages were significantly

upregulated in sepsis and sepsis shock patients. Previous study has

demonstrated that the important antigen-presenting dendritic cells

(DCs) are obviously changed in the development of sepsis at multiple

levels, including the number, differentiation, and functions (45). We

found the resting DCs and activate DCs showed reverse changes in

septic groups (Figures 1B, E), suggesting their extensive dysregulation

and they could be treated as novel therapeutic target during sepsis

development. Meanwhile, we also observed that Tregs and gd T cells

were decreased and increased in septic groups, respectively, which

were not well correlated with published studies (46, 47). We

conjecture that this difference may come from the different

analyzing method in our study. In summary, the dysregulated

immune system greatly contributes to pathogenesis of sepsis.

Further studies are needed to resolve the underlying mechanisms of

immune response to sepsis at higher resolution or even at single cell

level (48).

Another important discovery in this study is that we

systematically investigated the expression pattern and potential

functions of lncRNAs in sepsis, and deciphered their potential

regulatory roles in cell-death pathway and immune cell types.

Increasing evidences demonstrate that lncRNAs are essential

regulators of inflammatory response and potential biomarkers of

sepsis, including NEAT1, HOTAIR, UCA1 and HULC (49–51). We

highlighted cell death process was associated with lncRNAs in septic

transcriptome data, and identified several lncRNAs without known

functions. Immune cell death plays critical roles in sepsis by releasing

a large quantity of damage-associated molecular patterns (DAMPs)

and inducing the dysfunction syndrome of multiple organs (10).

Immune cell apoptosis is considered to be a contributing factor for

immunosuppression in sepsis (52). We propose that dysregulated

lncRNAs in sepsis are involved in the cell death process by

modulating expression of associated genes. Among lncRNAs co-

expressed with cell death genes from turquoise module,

XLOC_011309 is a novel lncRNA identified for the first time; while

RARA_AS1 is the antisense RNA of RARA and identified as

potentially risk lncRNA that might lead to septic shock (53).

Another study selected RARA_AS1 as the hub genes in mRNA-

lncRNA-Pathway co-expression network in developing pediatric

sepsis (54). In this study we also observed RARA_AS1 was co-

expressed with large number of cell death genes and its expression

was significantly higher in septic groups (Figure 4A; Figure S4A),

indicating the potentially regulatory roles of RARA_AS1 in cell death

in sepsis. It will be very important and has clinical values to further

explore the functions and molecular mechanisms of RARA_AS1 in

cell death during the development of sepsis.

Meanwhile, we constructed the relationship between lncRNAs

and dysregulated immune cell fractions in sepsis for the first time.

One recent study has summarized that lncRNAs emerge as key

epigenetic and transcriptional regulators of immune cells and

modulate the polarization and homeostasis of immune cell

population (55). In sepsis, lncRNAs are recognized as potential

targets for sepsis-induced cellular disorders and sepsis-induced

organ failure, suggesting lncRNAs have functions in the cellular
Frontiers in Immunology 09
homeostasis of septic patients (56). We identified seven

DElncRNAs that were correlated with the fractions of immune cell

types (Figure 4B). We have discussed lncRNA XLOC_011309 and

RARA_AS1 in the above paragraph, meanwhile the other five

lncRNAs were all significantly downregulated in septic groups

(Figure 4C; Figure S4A). The regulatory outcomes of lncRNAs on

immune system have been extensively studied in cancer immunity,

including immune evasion (57), immune cell infiltration, and

immunotherapy response (58). In sepsis, very limited lncRNAs

were reported to be associated with immune system dysregulation

and the underlying mechanisms are largely unknown. LncRNA

MALAT1 could accelerate inflammatory response by promoting

neutrophil migration, and finally aggravating the progression of

sepsis (59). LncRNA HOTAIRM1 is highly expressed in late phase

of sepsis in a mouse model; it could induce T cell exhaustion by

increasing the percentage of PD-1+ T cells and regulatory T cells (60).

In this study, five downregulated lncRNAs in sepsis groups, including

LINC00861, LINC01278, RP11−156P1.3, RP11−264B17.3, and RP11

−284N8.3, were positively correlated with several immune cells,

including CD8+ T cells, CD4+ memory T cells, Tregs, NK cells, and

resting dendritic cells (Figure 4B). We infer that these lncRNAs could

modulate the proportion of dysregulated immune cell types in sepsis

perhaps by regulating gene expression profile and protein functions.

Integrating with the association between lncRNAs and cell death

genes identified in this study, it is possible that lncRNAs are

potentially master regulators and the link between cell death

process and immune cell population changes in sepsis.

Conclusions

In summary, our study depicted the co-distributed network

among immune cell types, cell death genes, and lncRNAs in the

development of sepsis, and demonstrated the hub regulatory lncRNAs

in the network. These results indicate that the identified lncRNAs

may orchestrate the process of cell death and finally modulate the

immune microenvironment of sepsis, although they are largely with

unknown functions in sepsis. Following studies are necessary to

systematically address the molecular functions and mechanisms of

these dysregulated lncRNAs in sepsis, which is not deeply investigated

in this study. More clinical samples should be used to further validate

the dysregulated lncRNAs and their potential as septic biomarkers. In

summary, the discovery contributes to the understanding of lncRNA

functions in the septic immunity and the discovered lncRNAs could

be served as potential therapeutic targets of sepsis in the future.
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