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Background: Liver cancer is the sixth most commonly diagnosed cancer and the

third leading cause of cancer-related death worldwide. Hepatocellular carcinoma

accounts for an estimated 90% of all liver cancers. Many enzymes of the GPAT/

AGPAT family are required for the synthesis of triacylglycerol. Expression of AGPAT

isoenzymes has been reported to be associated with an increased risk of

tumorigenesis or development of aggressive phenotypes in a variety of cancers.

However, whether members of the GPAT/AGPAT gene family also influence the

pathophysiology of HCC is unknown.

Methods: Hepatocellular carcinoma datasets were obtained from the TCGA and

ICGC databases. Predictive models related to the GPAT/AGPAT gene family were

constructed based on LASSO-Cox regression using the ICGC-LIRI dataset as an

external validation cohort. Seven immune cell infiltration algorithms were used to

analyze immune cell infiltration patterns in different risk groups. IHC, CCK-8,

Transwell assay, and Western blotting were used for in vitro validation.

Results: Compared with low-risk patients, high-risk patients had shorter survival

and higher risk scores. Multivariate Cox regression analysis showed that risk score

was a significant independent predictor of overall survival (OS) after adjustment for

confounding clinical factors (p < 0.001). The established nomogram combined risk

score and TNM staging to accurately predict survival at 1, 3, and 5 years in patients

with HCC with AUC values of 0.807, 0.806, and 0.795, respectively. This risk score

improved the reliability of the nomogram and guided clinical decision-making. In

addition, we comprehensively analyzed immune cell infiltration (using seven

algorithms), response to immune checkpoint blockade, clinical relevance,

survival, mutations, mRNA expression-based stemness index, signaling pathways,

and interacting proteins related to the three core genes of the prognostic

model (AGPAT5, LCLAT1, and LPCAT1). We also performed preliminary validation

of the differential expression, oncological phenotype, and potential downstream

pathways of the three core genes by IHC, CCK-8, Transwell assay, and

Western blotting.
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Conclusion: These results improve our understanding of the function of GPAT/

AGPAT gene family members and provide a reference for prognostic biomarker

research and individualized treatment of HCC.
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1 Introduction

In 2020, liver cancer was the sixth most prevalent cancer and the

third leading cause (8.3%) of cancer-related death worldwide, after

lung cancer (18%) and colorectal cancer (9.4%) (1–3). Hepatocellular

carcinoma (HCC) is the most common type of liver cancer,

accounting for approximately 90% of all liver cancer cases (2).

Despite the progress in the diagnosis and treatment of HCC over

recent years, the treatment of which still faces considerable challenges.

The identification of more effective therapeutic targets and more

promising prognostic biomarkers is essential for the control of liver

cancer globally. There is also an urgent need for optimal stratification

of patients with HCC to allow the adequate monitoring of patients

with different degrees of malignancy and, consequently, the

implementation of more precise diagnostic and therapeutic measures.

Physiological lipid metabolism represents an alternative source of

energy and has been widely demonstrated to play an important role in

microenvironmental adaptation and cellular signaling. However,

dysregulated lipid metabolism has also been implicated in the

development and progression of HCC (4–6). Recently, many

enzymes of the GPAT/AGPAT family have been identified (7, 8). 1-

Acylglycerol-3-phosphate O-acyltransferases (AGPATs) is essential

for the production of triacylglycerol (TAG), and these enzymes are

also involved in the synthesis of most fatty acids (7). AGPAT

isozymes reportedly promote proliferation and drug resistance in

cancer cells and are associated with a high risk of tumor formation or

aggressive tumor profiles (9–12).

The tumor microenvironment (TME) contains a wide variety of

immune cells that have complex interactions and regulation with

tumor cells. Understanding the abundance of immune cells in tumor

samples is valuable for the discovery of tumor immunotherapeutic

agents and clinical decision-making in therapeutic regimens (13). The

correlation between the level of tumor immune cell infiltration and

clinical prognosis has been studied in many cancers (14–19).

In this study, we integrated clinical information and gene

expression profile data for HCC patients from The Cancer Genome

Atlas (TCGA) database. A risk prediction model based on the GPAT/

AGPAT gene family was constructed based on a least absolute

shrinkage and selection operator (LASSO)-Cox regression, with the

ICGC-LIRI dataset serving as the external validation cohort.

Subsequently, a nomogram was plotted for predicting 1-, 3-, and 5-

year overall survival (OS). We also compared immune cell infiltration

in different risk populations using multiple cutting-edge algorithms

and performed a comprehensive bioinformatic analysis of the three

core genes of the predictive model, as well as a preliminary validation

of the oncological phenotype. In conclusion, we established a novel
02
prognostic signature for HCC based on the GPAT/AGPAT gene

family and performed an in-depth assessment of the potential

biological functions of this gene family in HCC. The results

enhance our understanding of the function of the GPAT/AGPAT

gene family and provide prognostic biomarkers that may aid in the

development of individualized treatments for HCC.
2 Materials and methods

2.1 Data source

RNA sequencing expression profiles (level 3), gene mutations, and

associated clinical data were collected from TCGA (https://portal.gdc.

cancer.gov/), GTEx (https://gtexportal.org/home/datasets), and ICGC

(https://dcc.ICGC.org/releases) databases. Pan-cancer data were

retrieved from the UCSC Xena Browser (http://xena.ucsc.edu/).

All data were filtered to remove duplicate records before being

normalized using Log2(TPM+1) transformation. As the data used in

this study were gathered from public databases, approval from an ethics

committee was not required.
2.2 Gene expression analysis

The expression profiles of genes belonging to the GPAT/AGPAT

gene family were extracted from 531 cases of RNA sequencing data

from TCGA-GTEx-LIHC after normalization by Log2(TPM+1)

transformation. The Mann-Whitney U test was employed to assess

GPAT/AGPAT gene expression in unpaired tumor and normal tissue

samples. The Wilcoxon signed-rank test was utilized to assess the

expression of the genes in paired tumor and normal tissue samples.

The Kruskal-Wallis test was used to compare the expression of the

genes in tumor and normal tissue samples grouped by different

clinical variables. All statistical analysis was performed using R

(version 3.6.3). Plots were generated using the “ggplot2” package.

P-values<0.05 were considered significant.
2.3 The human protein atlas

The HPA is a proteomics-based database that contains the

antibody-based expression profiles of proteins, allowing the

assessment of protein expression (immunohistochemical results) in

different tumors as well as in the corresponding normal tissues.
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2.4 Construction of the GPAT/AGPAT
family-related gene prognostic signature

Using the TCGA-LIHC cohort (n = 371), the “survival” R package

was used to run a univariate Cox analysis on GPAT/AGPAT family-

related genes to uncover OS-associated mRNAs. Subsequently,

patients were randomly divided into training and validation sets in

a 1:1 ratio, and the R package “glmnet” was used to conduct a LASSO

Cox regression analysis in the training set to obtain a coefficient for

each OS-related mRNA. To prevent overfitting, a 10-fold cross-

validation was performed. the penalized regularization parameter l
was selected by the cross-validation program cv.glmnet, “nfolds = 10”,

and lambda.min was used to determine the l value. The risk score of

each sample was then calculated according to the following formula:

o
n

i=1
(Expi*Coefi), where Coef refers to the coefficient of survival-related

mRNAs and Exp denotes mRNA expression. Samples from the

TCGA-LIHC training set were separated into high-risk and low-

risk groups according to the median risk score of each sample.
2.5 Validation of the model

Kaplan-Meier survival analysis was used to analyze the differences

in OS between the high-risk and low-risk groups in the training,

validation, and total sets of TCGA-LIHC using the R packages

“survminer” and “survivor”. The sensitivity and specificity of this

prognostic model were assessed by plotting the receiver operating

characteristic (ROC) curve and area under the curve (AUC) using the

R packages “timeROC” and “ggplot2”. Further validation was

performed in the ICGC-LIRI external validation set. To investigate

the effect of the specified variables on OS, univariate and multivariate

Cox regression analysis was undertaken in the R package “survival”.

Finally, the R packages “rms” and “survival” were used to build the

nomogram of the multivariate model, and a calibration plot was used

to evaluate the predictive ability of the nomogram.
2.6 Analysis of immune cell infiltration

Immuno-infiltration algorithms were derived from the R

packages “GSVA” (ssGSEA) (20) and “immunedeconv” (21)

[TIMER (22), xCell (23), MCP-counter (24, 25), CIBERSORT (26),

EPIC (27), and quanTIseq (28)]. Enrichment scores were calculated

for each sample using the ssGSEA algorithm based on the 24 immune

cell markers provided by Bindea et al (29). Finally, the Mann-

Whitney U test (Wilcoxon rank sum test) was used to determine

the difference in immune cell infiltration between the high-risk and

low-risk groups. Significance signs: ns, p ≥ 0.05; *, p< 0.05; **, p< 0.01;

***, p< 0.001.
2.7 Mutation analysis

Based on the expression of the AGPAT5, LCLAT1, and LPCAT1

genes, the 369 samples from TCGA-LIHC with detected mutations

were separated into high- and low-expression groups, and the

differences in mutation frequencies in each group were examined
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using chi-square tests. The mutation landscape of the 20 genes with

the highest mutation frequencies was presented as waterfall plots

using the R package “maftools”. The AGPAT5, LCLAT1, and LPCAT1

mutation types in HCC were further evaluated using the Catalogue of

Somatic Mutations in Cancer (COSMIC) database (http://cancer.

sanger.ac.uk). We integrated sample gene expression data and

TMB, MSI, purity, and HRD data to calculate the Pearson

correlation between genomic heterogeneity indicators and gene

expression. The Simple Nucleotide Variation dataset of the level4 of

all TCGA samples processed by MuTect2 software (30) was

downloaded from GDC (https://portal.gdc.cancer.gov/), and the

tmb function of the r package “maftools” was used to calculate the

TMB (Tumor mutation burden) of each tumor. MSI (microsatellite

instability) score of each tumor obtained from the previous study

(31). Tumor purity data and tumor HRD (homologous

recombination deficiency) data were obtained from a previous

study (32).
2.8 Correlation analysis

We obtained common tumor-associated pathway gene sets from

published studies and MsigDB database (http://www.broadinstitute.

org/gsea/msigdb/index.jsp), such as Cellular_response_to_hypoxia,

Tumor_proliferation_signature, EMT_markers, ECM-relatted_genes,

Angiogenesis, Apoptosis, DNA_repair, G2M_checkpoint,

Inflammatory_response, PI3K_AKT_mTOR_pathway, P53_pathway,

MYC_targets, TGFB, IL-10_Anti-inflammatory_Signaling_Pathway,

Genes_up-regulated_by_react ive_oxigen_species_(ROS),

DNA_replication, Collagen_formation, and Degradation_of_ECM.

The absolute enrichment fraction of gene sets in individual samples

was calculated using the R package “GSVA” with parameter

method=“ssgsea”. The association between gene expression and

pathway scores was assessed using Spearman’s rank-order correlation

and visualized in R using the “ggplot2” package.
2.9 Protein-protein interaction network and
drug sensitivity analysis

Data for constructing the PPI network were obtained from the

STRING database (interaction score >0.7) and further visualized

using the R packages “igraph” and “ggraph”. Gene Set Cancer

Analysis (GSCA), a comprehensive cancer analysis database that

can be utilized to study the link between mRNA expression and

drug IC50 values, was used for drug sensitivity analysis. Raw data

were primarily obtained from the Genomics of Drug Sensitivity in

Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP)

drug databases.
2.10 Immunohistochemistry

Immunohistochemistry was performed on paraffin-embedded

sections of human hepatocellular carcinoma samples. Briefly, after

deparaffinized and rehydrated, tissue sections were subjected to
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antigen repair in a microwave oven with EDTA antigen repair buffer

(pH 9.0) for 8 min on medium heat until boiling, ceased for 8 min to

hold and then turned to medium-low heat for 7 min. Endogenous

peroxidase activity was blocked with 3% hydrogen peroxide solution

for 25 min at room temperature. After washing, the non-specific

binding sites were blocked by incubation with 3% BSA for 30 min at

room temperature. Sections were then incubated with anti-AGPAT5

(Affinity Biosciences, DF3641, 1:100), anti-LCLAT1 (abcepta,

AP5723b, 1:100) and anti-LPCAT1 (proteintech, 16112-1-AP,

1:300) overnight at 4°C. After incubation with the primary

antibody, sections were washed and the tissue was covered with

secondary antibody (HRP-labeled) of the species corresponding to

the primary antibody and incubated at room temperature for 50 min.

after which the sections were incubated with DAB staining reagent.

After restaining with hematoxylin and dehydration, the sections were

sealed and imaged using a Leica microscope. Tissue microarrays of

human hepatocellular carcinoma and paired adjacent normal tissues

(HLiv-HCC060PG-01) were purchased from Shanghai Outdo Biotech

Company (Shanghai, China). The study was approved by the ethics

committee of Shanghai Outdo Biotech Company.
2.11 Cell culture and siRNA transfection

The human liver cancer cell line HepG2was obtained from StemCell

Bank, Chinese Academy of Sciences (Shanghai, China). HepG2 cells were

cultured in high-sugar DMEM supplemented with 10% fetal bovine

serum (GeminiBio, 900-108-A46G00J, USA) and 1% penicillin and

streptomycin, and all cells were incubated at 37°C in a humidified

environment containing 5% CO2. siRNA-AGPAT5 (5′- GCCUGU

GGGUUUACUAUUAATT-3′ forward, and 5′-UUAAUAGUAA
CCCACAGGCTT-3′ reverse), siRNA-LCLAT1 (5′-CAGCCACAUUU
AAAUUCAATT-3′ forward, and 5′-UUGAAUUUAAAUGUGGCU
GTT-3′ reverse), siRNA-LPCAT1 (5′-CCAGAAGGAACUUGUACAA
TT-3′ forward, and 5′-UUGUACAAGUUUCCUUCUGGTT-3′
reverse) and non-targeting control siRNA (NC-siRNA, 5′-UUCUCC
GAACGUGUCACGUTT-3′ forward, and 5′-ACGUGACACGUU
CGGAGAATT-3′ reverse) were obtained from GenePharma Ltd

(Shanghai, China). Cells were transfected with Lipofectamine 3000

(Invitrogen, L3000015) according to the manufacturer’s instructions,

and protein level changes were detected after 48 h.
2.12 Western blotting

After 48 h of transfection, cell lysates were obtained using RIPA lysis

buffer (Solarbio Life Sciences, R0010, Beijing, China) and protease

phosphatase inhibitor mixture (Beyotime Biotechnology, P1048,

Shanghai, China), and total proteins were extracted. Total proteins were

electrophoresed bySDS-PAGEgels (8%-10%) and then transferred to 0.45

µmPVDFmembranes (Millipore, IPVH00010,Germany) and sealedwith

5% skim milk for 120 min at room temperature. The PVDF membranes

were then incubated overnight at 4°C with the primary antibody and the

next daywith the secondary antibody for 2 h at room temperature. Protein

bands are detected with the ECL kit. The primary antibody against

AGPAT5 was obtained from Affinity Biosciences (DF3641, USA).
Frontiers in Immunology 04
Primary antibody against LCLAT1 was obtained from abcepta

(AP5723b, China). Primary antibodies against LPCAT1, Vimentin, E-

Cadherin, GAPDH, Actin, and the corresponding species of secondary

antibodies were obtained from proteintech (item numbers 16112-1-AP,

10366-1-AP, 20874-1-AP, 60004-1-lg, 66009-1-lg. SA00001-1 and

SA00001-2, China). The primary antibody against VEGF was obtained

from Santa Cruz Biotechnology (sc-7269, USA).
2.13 CCK-8

The transfected cells were inoculated in 96-well plates, and 5

replicate wells were set up in each group with 3000 cells/100 mL per

well. the proliferation rate of HepG2 cells was detected by Cell

Counting Kit-8 (MCE, HY-K0301-100T, USA). The absorbance of

all wells at 450 nm was measured with an automated microplate

reader at 24 h, 48 h, and 72 h, respectively.
2.14 Cell migration and invasion assay

In vitro migration and invasion assays were performed using PC

polycarbonate membrane cell insert dishes (8.0-mm membrane, JET

BIOFIL, TCS003024, China). Matrigel (Corning, 356230, USA) was

wrapped around the membrane in the invasion assay. Post-transfected

cells of logarithmic growth phase were taken and resuspended in serum-

free medium, and the cell density was adjusted to 5*10^5/mL. 200 mL of

cell suspension was inoculated in the upper chamber and 600 mL of

medium supplemented with 10% FBS was added to the lower chamber.

After 48-72 hours of incubation, the cells were fixed with 4%

paraformaldehyde, and the cells in the upper chamber were gently

wiped with cotton swabs and finally stained with 0.1% crystal violet for

15 minutes. Four to five × 200 magnification fields were randomly

selected for cell counting. The experiment was repeated three times.
3 Results

3.1 Differential expression of GPAT/AGPAT
gene family in HCC patients

We analyzed the expression of 17 genes of the GPAT/AGPAT

gene family in tissues of patients with LIHC and compared it with that

in normal liver tissues. The samples consisted of 371 tumor tissues, 50

adjacent normal tissues, and 110 normal liver tissues. As shown in

Figure 1A, the transcript levels of GPAT3, AGPAT1, AGPAT3,

AGPAT4, AGPAT5, LPCAT4, LCLAT1, LPCAT1, LPCAT2,

LPGAT1, GNPAT, and ABHD5 were significantly upregulated in

TCGA-LIHC unpaired samples compared with those in normal

liver tissues, while the levels of AGPAT2 were significantly

decreased. These results are consistent with reports indicating that

some members of the GPAT/AGPAT gene family are upregulated in

multiple cancers and are associated with poor prognosis (33, 34). In

TCGA-LIHC paired samples, the transcript levels of GPAT2 and

GPAT4 were found to be significantly higher in tumor tissue samples

than in the respective adjacent normal tissue samples (Figure 1A). We
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further retrieved the immunohistochemical staining data from the

HPA database (Supplementary Figure 1) and found differential

protein expression patterns similar to those obtained in the TCGA-

GTEx-LIHC gene expression analysis.
3.2 The development of a prognostic model
based on the GPAT/AGPAT gene family

To identify potential prognostic biomarkers for HCC among the

genes in the GPAT/AGPAT family, we developed a prognostic risk
Frontiers in Immunology 05
model. First, we downloaded RNA sequencing data and clinical

information for 371 tumor tissues and 50 adjacent normal tissues from

the TCGA database and matched the sample IDs in the expression

matrix with the clinical information. Then, we performed a univariate

Cox regression analysis, incorporating TNM stage, pathologic stage, and

expression values of GPAT/AGPAT gene family as variables. Seven genes

were found to be significantly associated with OS (p< 0.05) (Figure 1B).

The differential expression of these seven genes is shown in Figure 1A,

and most of them were significantly associated with each other

(Supplementary Figure 2A). Then, we randomly allocated 370 HCC

patients (at a 1:1 ratio) into two groups, one for training and one for
A

B

FIGURE 1

Differential expression of GPAT/AGPAT gene family members in HCC patients and forest plots from univariate Cox regression analysis. (A) Differential
expression levels of 17 members of the GPAT/AGPAT gene family in paired and unpaired samples of TCGA-LIHC/GTEx. (B) Forest plot for univariate Cox
regression analysis. Significance signs: ns, p ≥ 0.05; *p< 0.05; **p< 0.01; ***p< 0.001.
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validation (n = 185 in each group). A LASSO Cox regression analysis

(Figure 2A) was performed in the training set using the R package

“glmnet” and a coefficient was generated for each OS-related gene

(Figure 2B). The prognostic model consisted of 3 risk factors, namely,
Frontiers in Immunology 06
AGPAT5, LCLAT1, and LPCAT1 (Figure 2C). For all samples, the risk

score was calculated using the following formula: Risk score = (0.09587 ×

Exp of AGPAT5) + (0.33746 × Exp of LCLAT1) + (0.24719 × Exp of

LPCAT1), where Exp denotes mRNA expression.
A B

D E F

G

I
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J K L

M N

C
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P Q R S

FIGURE 2

Construction and validation of prediction model based on the GPAT/AGPAT gene family. (A, C) LASSO penalized Cox regression was performed to
screen out the three best prognosis-related genes. (B) Genes associated with overall survival (OS) and their coefficients. (D) Risk score distribution, risk
grouping, survival outcome, and molecular expression for the prognostic model in the TCGA-LIHC training set. (E–H) Time-dependent receiver
operating characteristic (ROC) analysis to assess the sensitivity and specificity of the prognostic model in TCGA training set (E), validation set (F), total set
(G), and ICGC-LIRI external validation set (H). (I–L) Kaplan-Meier survival analysis comparing the differences in survival outcomes between the high-risk
and low-risk groups in TCGA training set (I), validation set (J), total set (K), and ICGC-LIRI external validation set (L). (M, N) Univariate and multivariate
Cox regression analysis identified the risk score as an independent prognostic factor when clinical variables were included. (O) A Cox model-based
nomogram for predicting 1–5-year overall survival (OS). (P) Calibration curves of the nomogram in the overall set for predicting 1–5-year OS. (Q)
Coefficients were obtained for each variable based on the results of the multivariable Cox model integrating the clinical variables and the three-gene risk
score. (R, S) Time-dependent receiver operating characteristic (ROC) analysis (R) and Kaplan-Meier survival analysis (S) was performed based on the
median grouping of the new risk scores for each sample.
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3.3 Validation of the prognostic model

All samples were grouped at the median according to the risk

score of each sample. samples from the TCGA-LIHC training set,

validation set, and total set were all categorized into high-risk and

low-risk groups, respectively. Then, a Kaplan-Meier survival analysis

was performed to examine whether there were differences in survival

outcomes between the high-risk and low-risk groups. The results

showed that patients in the high-risk group had a shorter median OS

than those in the low-risk group (log-rank test, p< 0.001) (Figure 2I).

Similar results were observed for the validation and total sets (p =

0.002 and p< 0.001, respectively) (Figures 2J, K). We also performed a

time-dependent ROC analysis to determine the predictive accuracy of

the model. For the training set, the AUC for 1-, 3-, and 5-year OS was

0.758, 0.733, and 0.735, respectively (Figure 2E); for the validation set,

the AUC for 1-, 2-, and 3-year OS was 0.686, 0.612, and 0.689,

respectively (Figure 2F); and for the total set, the AUC for 1-, 3-, and

5-year OS was 0.750, 0.716, and 0.690, respectively (Figure 2G). We

further validated the ability of the model to predict OS using the

ICGC-LIRI external validation set (n = 232). We calculated the risk

score for each sample using the risk score formula mentioned above

and divided the samples in the external validation set into high-risk

and low-risk groups based on the median risk score. Then, we

performed Kaplan-Meier survival analysis and time-dependent

ROC analysis. The results showed that in the external validation

set, the median OS was shorter in high-risk patients than in low-risk

patients (log-rank test, p = 0.009) (Figure 2L). The AUC for OS at 1, 3,

and 4 years was 0.698, 0.615, and 0.723, respectively (Figure 2H). The

risk score distribution, risk grouping, survival outcome, and

molecular expression of the prognostic model for the TCGA-LIHC

training set are shown in Figure 2D; the same parameters for the

TCGA-LIHC validation set, TCGA-LIHC total set, and the ICGC-

LIRI external validation set are depicted in Supplementary

Figures 2B–D, respectively. The data showed that the high-risk

group had a lower survival rate and higher risk scores than the low-

risk group. The heat maps illustrate the differential expression of risk

factors between the two groups in each set. Finally, we performed

univariate and multivariate Cox regression analyses using TCGA-

LIHC data to investigate the relationship between clinical

characteristics and the risk scores (Figures 2M, N). The variables

included were TNM stage, age, gender, body mass index, Child_Pugh

classification, alpha-fetoprotein level, and risk score. After adjusting

for other confounding clinical characteristics, multivariate Cox

regression analysis revealed that risk score was strongly linked with

OS (p< 0.001), implying that risk score might serve as an independent

prognostic factor for HCC (hazard ratio [HR] = 4.172, 95% CI =

2.508–6.940, p< 0.001). Similarly, in the ICGC-LIRI external

validation dataset (Supplementary Figures 2E, F), the risk score

remained an independent predictor of survival (HR = 2.314, 95%

CI = 1.115–4.801, p = 0.024).
3.4 Nomogram construction

We constructed a nomogram for predicting 1–5-year OS

(Figure 2O) based on the Cox model. After assigning scaled scores

to the individual variables within the multivariate Cox regression
Frontiers in Immunology 07
model, total scores were calculated to predict the probability of event

occurrence. Analysis of the calibration plot (Figure 2P) indicated that

the nomogram was well-calibrated and that the average predicted

probability for each subgroup was close to the observed probability.

The concordance index for the model was 0.732 (0.698–0.766).

Finally, we integrated the clinical variables and the three-gene risk

score based on the results of the multivariate Cox model to obtain the

coefficients for each variable (Figure 2Q). A new risk score was

subsequently produced for each sample using the above-outlined

procedure, followed by Kaplan-Meier survival analysis and time-

dependent ROC analysis. The results showed that patients in the

high-risk group had a shorter median OS than those in the low-risk

group (log-rank test, p< 0.001) (Figure 2S). In TCGA total dataset, the

AUC for 1-, 3-, and 5-year OS was 0.807, 0.806, and 0.795,

respectively (Figure 2R). This implied that the multivariate Cox

model, which integrated clinical variables and the three-gene risk

score, exhibited higher predictive power, and further suggested that

the GPAT/AGPAT gene family-related three-gene risk score

prediction model is a stable and independent prognostic model for

OS in HCC.
3.5 Immune cell infiltration patterns in
different risk groups

To investigate the role of risk scores consisting of three prognostic

genes in the LIHC tumor microenvironment, we evaluated the

immune cell score of each LIHC sample using seven algorithms:

xCell, CIBERSORT, ssGSEA, MCP-counter, quanTIseq, TIMER, and

EPIC. A more detailed and diverse uniform access to bulk RNA

sequencing data is available to assess the immune cell scores of each

hepatocellular liver cancer sample. This allows a comparative analysis

of immune cell infiltration between the high-risk and low-risk groups.

The stacked histogram of Figure 3A shows the relative percentages of

22 immune cells in the high-risk and low-risk groups obtained by the

CIBERSORT algorithm. Figures 3B–H shows the differences in most

immune cell infiltration between the high- and low-risk groups. We

observed that CD4+ T cells infiltrated at higher levels in the high-risk

group than in the low-risk group, where the results of the

CIBERSORT algorithm showed higher levels of Tregs infiltration in

the high-risk group, the results of the TIMER and quanTIseq

algorithms showed higher levels of CD4+ T cells or Tregs

infiltration in the high-risk group, and the results of the ssGSEA

algorithm indicated Th1, Th2, and T helper cells had higher

infiltration levels in the high-risk group, and the results of the xCell

algorithm demonstrated higher infiltration levels of Th2 and CD4+

memory T cells in the high-risk group. As for CD8+ T cells, by

ssGSEA, CIBERSORT, and xCell algorithms, we found that their

infiltration levels were lower in the high-risk group than in the low-

risk group, where the xCell algorithm showed lower infiltration levels

of CD8+ naive T cells in the high-risk group. For B cells, we observed

that their infiltration levels were higher in the high-risk group than in

the low-risk group by the xCell, TIMER, and quanTIseq algorithms.

For Neutrophils, the results of TIMER and CIBERSORT algorithms

showed higher levels of infiltration in the high-risk group. For NK

cells, we observed a lower level of infiltration in the high-risk group by

the EPIC and CIBERSORT algorithms. For Macrophages, we
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observed a lower level of infiltration in the high-risk group by EPIC,

CIBERSORT, and xCell algorithms. For DC, we observed a higher

level of infiltration in the high-risk group by TIMER, CIBERSORT,

and ssGSEA algorithms. In addition, we performed a validation of

immune cell infiltration in an independent dataset (ICGC-LIRI)

(Supplementary Figure 3A). Using the CIBERSORT algorithm, we

observed higher infiltration levels of M0 Macrophages, Tregs,

Dendritic cells resting, and T cells CD4 memory activated in the

high-risk group. This is in general agreement with the results obtained

from the TCGA dataset.
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3.6 Tumor-associated signaling pathway
analysis and stemness index
(mRNAsi) analysis

Weselectedgenes functioning incommontumor-associatedpathways

(Cellular_response_to_hypoxia, Tumor_proliferation_signature,

EMT_markers, ECM-relatted_genes, Angiogenesis, Apoptosis,

DNA_repair , G2M_checkpoint , Inflammatory_response,

PI3K_AKT_mTOR_pathway, P53_pathway, MYC_targets, TGFB, IL-

10_Ant i - inflammatory_S igna l ing_Pathway , Genes_up-
A

B

D

E

F

G

H

C

FIGURE 3

Immune cell infiltration patterns in different risk groups. (A) The relative percentage of 22 immune cells in the high-risk and low-risk groups. (B–H)
Differences in immune cell infiltration between the high-risk and low-risk groups. (B) xCell, (C) CIBERSORT, (D) ssGSEA, (E) MCP-counter, (F) quanTIseq,
(G) TIMER, and (H) EPIC. Significance signs: *p< 0.05; **p< 0.01; ***p< 0.001.
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regulated_by_reactive_oxigen_species_(ROS), DNA_replication,

Collagen_formation, and Degradation_of_ECM) and analyzed them

using the R package “GSVA”, selecting the parameter method=“ssgsea”.

We calculated the enrichment scores of each sample in each pathway in

turn, and finally determined the correlation between risk score and

pathway scores using Spearman’s rank-order correlation. The results

showed a strong positive correlation between risk scores and all tumor-

relatedpathwayswe selected (Figure 4A). Basedon theRNAseqdata of the

TCGA-LIHC dataset, we used the OCLR algorithm to calculate the

mRNAsi (degree of stemness) for each sample (35). We found that the

mRNAsi was higher in the high-LCLAT1-expression and high-LPCAT1-

expression groups relative to that in the respective low-expression groups

(Top25%) (p< 0.05 and p< 0.05, respectively) (Figures 4C, D). The high-
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AGPAT5-expression group (Top25%) also displayed a trend for a greater

degreeofstemnesscomparedwiththerespective low-expressiongroup(p=

0.29) (Figure 4B). And a higher stemness index was associated with

biological activity in cancer stem cells and larger dedifferentiation of

the tumor.
3.7 Relationship between gene expression
and clinical characteristics

We explored the expression levels of AGPAT5, LCLAT1, and

LPCAT1, the three core genes of the prognostic model, in normal and

pan-cancer tissues based on XENA-TCGA-GTEx datasets. We found
A B

D

C

FIGURE 4

Tumor-associated signaling pathway analysis and stemness index (mRNAsi) analysis. (A) Analysis of the correlation between risk scores and 18 tumor
signaling pathways. (B–D) Comparison of mRNAsi in the high- and low-gene-expression (AGPAT5, LCLAT1, and LPCAT1, respectively) groups.
Significance signs: ns, p ≥ 0.05; *p< 0.05; **p< 0.01; ***p< 0.001.
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that AGPAT5, LCLAT1, and LPCAT1 were highly expressed in most

tumors (Supplementary Figures 3B–D). A search of the published

literature revealed a scarcity of information regarding the role of the

three signature genes in HCC. We next investigated the link between

gene expression and clinical characteristics using the Kruskal-Wallis

test. The results indicated that the expression of the three genes was

higher in all the samples from different TNM stage subgroups and

pathologic stage subgroups than in the normal samples (Figures 5A–

C). LPCAT1 expression was higher in stages T2 and T3 than in the T1

stage and was also upregulated in pathologic stages II and III

compared with pathologic stage I. Additionally, AGPAT5 and
Frontiers in Immunology 10
LPCAT1 were more highly expressed in the Dead subgroup than in

the Alive subgroup.
3.8 Kaplan-Meier survival analysis relating to
AGPAT5, LCLAT1, and LPCAT1 expression

Additionally, we conducted a Kaplan-Meier survival analysis

relating to the expression levels of AGPAT5, LCLAT1, and LPCAT1.

The optimal cut-off for continuous gene expression data was

determined using the “surv_cutpoint” function in the R package
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FIGURE 5

Relationship between Gene Expression and Clinical Characteristics, and Kaplan-Meier Survival Analysis. (A) Expression of AGPAT5 gene in different TNM
stages, pathological stages, and survival subgroups compared with that in normal samples. (B) Expression of LCLAT1 gene in different TNM stages,
pathological stages, and survival subgroups compared with that in normal samples. (C) Expression of LPCAT1 gene in different TNM stages, pathological
stages, and survival subgroups compared with that in normal samples. (D) Survival curves for AGPAT5 high and low expression groups, for all patients, T2
stage, T3 stage, pathologic stage I, and pathologic stage III, respectively. (E) Survival curves for LCLAT1 high and low expression groups, for all patients,
T2 stage, T3 stage, pathologic stage II, and pathologic stage III, respectively. (F) Survival curves for LPCAT1 high and low expression groups, for all
patients, T1 stage, T3 stage, pathologic stage I, and pathologic stage III, respectively. Significance signs: ns, p ≥ 0.05; *p< 0.05; **p< 0.01; ***p< 0.001.
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“survminer” and the expression data were separated into high- and

low-expression groups. OS was selected as the prognostic type. The

results of the analysis showed that the high-expression group had a

shorter OS than the low-expression group (p< 0.05) (Figures 5D–F).

We also evaluated the prognostic value of these genes in the different

clinical characteristic subgroups and found that the groups with high

expression of AGPAT5, LCLAT1, and LPCAT1 had shorter OS than

the groups with low expression, regardless of the T stage or

pathological stage (p< 0.05).
3.9 Gene mutations (AGPAT5, LCLAT1, and
LPCAT1) in HCC

Wemined the COSMIC database and evaluated the mutation types

in the AGPAT5, LCLAT1, and LPCAT1 genes. For better visualization,

the mutation types are depicted as pie charts. For AGPAT5, missense

substitutions were found in approximately 24.75% of the samples and

synonymous substitutions in 12.37% of the samples. C>T was the most

common substitution mutation (30.41%), followed by G>A (18.92%)

and G>T (12.84%) (Figure 6A). For LCLAT1, missense substitutions

occurred in approximately 14.82% of the samples, with C>T again

being the most frequently detected substitution mutation (28.65%),

followed by G>A (26.49%), G>T (10.27%), and A>G (10.27%)

(Figure 6B). For LPCAT1, missense substitutions occurred in

approximately 30.75% of the samples and synonymous substitutions

in 13.32% of the samples. C>T was the most commonly observed

substitution mutation (39.14%), followed by G>A (26.32%) and G>T

(12.17%) (Figure 6C). We also calculated Pearson correlations of

genomic heterogeneity indicators with gene expression, and we

observed that expression of AGPAT5, LCLAT1, and LPCAT1 were

significantly positively correlated with HRD. expression of LCLAT1was

significantly positively correlated with purity, and expression

of LPCAT1 was significantly negatively correlated with purity

(Figure 6D). In addition, we compared the somatic mutation

landscape between the three high- and low-gene-expression groups

(AGPAT5, LCLAT1, and LPCAT1) in the TCGA-LIHC dataset. The

most common differentially mutated genes between the high-AGPAT5-

expression and low-AGPAT5-expression groups were TP53 (p = 0.03),

CTNNB1 (p = 0.00083), BAP1 (p = 0.04), LRP2 (p = 0.02), and DYSF (p

= 0.02) (Figure 6E). The most common differentially mutated genes

between the high-LCLAT1-expression and low-LCLAT1-expression

groups were TP53 (p = 0.000054), OBSCN (p = 0.02), DCHS2 (p =

0.04), DNAH10 (p = 0.01), and CSMD2 (p = 0.04) (Figure 6F). The

most common differentially mutated genes between the high-LPCAT1-

expression and low-LPCAT1-expression groups were TP53 (p =

0.000047), LRP1B (p = 0.02), OBSCN (p = 0.04), AXIN1 (p = 0.04),

and RB1 (p = 0.0091) (Figure 6G).
3.10 Analysis of immune checkpoint
differences and potential
immunotherapeutic response

We analyzed the expression of eight common immune checkpoint-

related genes (CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,

TIGIT, and SIGLEC15) in different subgroups (Figures 7A–C) and could
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see that most of the immune checkpoint-related genes had higher

expression levels in the AGPAT5, LCLAT1, and LPCAT1 high

expression groups. We also predicted the potential immunotherapeutic

response based on the TIDE algorithm (36). When the TIDE score was

high, immune checkpoint blockade (ICB) efficacy was poor and survival

after receiving ICB therapy was short. Our calculations showed that the

TIDE score was significantly higher in the high-AGPAT5-expression and

high-LPCAT1-expression groups (Top25%) (p = 0.0079 and p = 4.7e-11,

respectively) (Figures 7D, F). The high-LCLAT1-expression group

(Top25%) also exhibited a trend of higher TIDE scores (p =

0.083) (Figure 7E).
3.11 PPI network construction and drug
sensitivity analysis

To identify the potential AGPAT5, LCLAT1, and LPCAT1

interacting proteins, we constructed a PPI network using the STRING

database (interaction score >0.7) and further visualized the resulting

network using the R packages “igraph” and “ggraph” (Figure 7G). We

combined the data for AGPAT5, LCLAT1, and LPCAT1 interacting

proteins and performed GO and KEGG enrichment analysis. The results

indicated that, in biological processes, AGPAT5-, LCLAT1, and LPCAT1

interacting proteins were mainly enriched in glycerophospholipid

metabolic process, pyrimidine nucleotide biosynthetic process, and

lipid catabolic process. For cellular components, AGPAT5, LCLAT1,

and LPCAT1 interacting proteins were mainly associated with

mitochondrial inner membrane, outer membrane, organelle outer

membrane, and mitochondrial outer membrane. In molecular

function, meanwhile, the interacting proteins were mainly enriched in

O-acyltransferase activity and lysophospholipid acyltransferase activity.

Regarding KEGG pathways, AGPAT5, LCLAT1, and LPCAT1

interacting proteins were primarily enriched in Glycerophospholipid

metabolism, Ether lipid metabolism, and Glycerolipid metabolism

(Figure 7H). We also explored the correlation between the mRNA

expression of AGPAT5, LCLAT1, and LPCAT1 and drug sensitivity

(IC50 values) (Figures 7I, J). The results showed that AGPAT5 was

negatively regulated by various drugs or small molecule targets, such as I-

BET-762, FK866, NPK76-II-72-1, LY-2183240, vincristine, BI-2536,

GSK461364, KX2-391, etc., while LCLAT1 was negatively regulated by

Afatinib. LPCAT1 was negatively regulated by KPT185 and

necrosulfonamide. These results provide a possible strategy for clinical

treatment of abnormal expression of AGPAT5, LCLAT1, and LPCAT1 in

patients with LIHC.
3.12 Preliminary validation of AGPAT5,
LCLAT1, and LPCAT1

To verify the protein expression levels of AGPAT5, LCLAT1, and

LPCAT1, we performed immunohistochemistry. The results of tissue

samples showed that AGPAT5, LCLAT1, and LPCAT1were significantly

upregulated in HCC tumor tissues than in adjacent normal tissues

(Figure 8A). Similarly, immunohistochemistry from HPA Database

further validated our results (Figure 8A) (Supplementary Figure 1). To

further explore the functions that AGPAT5, LCLAT1, and LPCAT1 may

exercise in the development of HCC. First, we explored the expression of
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1026669
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2023.1026669
AGPAT5, LCLAT1, and LPCAT1 in common hepatocellular carcinoma

cell lines by data mining in the CCLE database. We found that the

transcript levels of these three genes were highly expressed in HepG2 cell

lines (Supplementary Figures 4A–C). Therefore, we used siRNA and

non-targeting control siRNA to knock down AGPAT5, LCLAT1, and

LPCAT1 in HepG2, respectively. CCK8 experiments showed that

knocking down AGPAT5, LCLAT1 and LPCAT1 could significantly

inhibit the proliferation of HepG2 cells (Figure 8B). Furthermore, by

performing Transwell experiments, we observed that silencing of

AGPAT5, LCLAT1, and LPCAT1 effectively inhibited the migration

(Figure 8C) and invasion (Figure 8D) ability of HepG2 cells. In short,
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the knockdown ofAGPAT5, LCLAT1, and LPCAT1 effectively attenuated

the proliferation, migration, and invasion of HepG2 cells. We observed

by Western blotting that the protein levels of AGPAT5, LCLAT1, and

LPCAT1 were significantly downregulated after siRNA transfection

compared to NC-siRNA-transfected cells (Figure 8E). In addition, we

verified common tumor-associated protein markers and found that after

the knockdown of AGPAT5 (Figure 8F) (Supplementary Figure 4D),

their VEGF levels were significantly reduced, along with a significant

trend of Vimentin reduction. After the knockdown of LCLAT1

(Figure 8G) (Supplementary Figure 4E) or LPCAT1 (Figure 8H)

(Supplementary Figure 4F), the results showed a significant increase in
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FIGURE 6

Mutations of genes (AGPAT5, LCLAT1, and LPCAT1) in HCC. (A–C) Evaluation of AGPAT5 (A), LCLAT1 (B), and LPCAT1 (C) mutation types (COSMIC database).
(D) Pearson correlations between genomic heterogeneity indicators with gene expression. (E–G) Differences in the somatic mutation landscape between
high- and low-gene-expression (AGPAT5, LCLAT1, and LPCAT1, respectively) groups. Significance signs: *p< 0.05; **p< 0.01; ***p< 0.001.
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the protein level of E-Cadherin and a significant decrease in the level

of VEGF.
4 Discussion

Many methods are available for staging HCC, such as BCLC

staging (37), AJCC-TNM (38), CLIP (39), Tokyo systems (40), and

HKLC (41). A study comparing 11 HCC staging systems (42) found
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that CLIP can be used for a more accurate prognosis before treatment,

while the BCLC and HK systems (43) are better for treatment

selection. However, these staging and scoring methods have a

limited ability to accurately predict the survival of HCC patients

and require updating.

The clinical and pathological implications of the molecular

staging of HCC are mostly at the research and demonstration stage.

Accordingly, it is important to identify prognostic biomarkers and to

optimally stratify patients with HCC to implement more accurate
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FIGURE 7

Potential immunotherapeutic response and drug sensitivity analysis. (A–C) The expression of eight immune checkpoint-related genes in the high- and
low-gene-expression (AGPAT5, LCLAT1, and LPCAT1) groups. (D–F) Comparison of TIDE scores in the high- and low-gene-expression (AGPAT5, LCLAT1,
and LPCAT1) groups. (G) Network diagram of AGPAT5-, LCLAT1-, and LPCAT1-interacting proteins. (H) GO and KEGG enrichment analysis of AGPAT5-,
LCLAT1-, and LPCAT1-interacting proteins. (I, J) Bubble plots of the correlation between AGPAT5, LCLAT1, and LPCAT1 mRNA expression and drug IC50
values. Significance signs: ns, p ≥ 0.05; *p< 0.05; **p< 0.01; ***p< 0.001.
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diagnosis and treatment for the control of this disease. Therefore, in

this study, we developed and validated a risk prediction model based

on the GPAT/AGPAT gene family to better stratify patients with

HCC. The model was externally validated using the ICGC-LIRI

dataset. Patients in the high-risk group had a lower survival rate

and a higher risk score than those in the low-risk group. Univariate

and multivariate Cox regression analysis demonstrated that the risk

score was a meaningful prognostic indicator and an independent

predictor of OS in HCC.
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The expression of AGPAT isoforms has been shown to enhance

tumor cell proliferation and drug resistance and is associated with an

increased risk of tumorigenesis or the development of aggressive

phenotypes in a variety of cancers (9). Therefore, we built a machine-

learning model with LASSO regression to identify the variables in this

gene family that is most associated with OS in HCC and to reduces

the effect of multicollinearity (44). This reduced the complexity of the

model and improved its predictive accuracy. A signature consisting of

three genes of the GPAT/AGPAT family (AGPAT5, LCLAT1, and
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FIGURE 8

Preliminary validation of AGPAT5, LCLAT1, and LPCAT1. (A) Immunohistochemistry of HCC tumor tissues and adjacent normal tissues. (B–D) CCK-8 assay
(B), migration assay (C), and invasion assay (D) after knockdown of AGPAT5, LCLAT1, and LPCAT1 in HepG2 using siRNA and non-targeted control siRNA,
respectively. (E) Western blotting validation of knockdown efficacy after transfection of HepG2 using siRNA and non-targeting control siRNA. (F)
Validation of common tumor-associated protein markers after knockdown of AGPAT5. (G) Validation of common tumor-associated protein markers after
knockdown of LCLAT1. (H) Validation of common tumor-associated protein markers after knockdown of LPCAT1. Representative images are shown.
Magnification 100x; scale bar: 200 mm. Significance signs: *p< 0.05; **p< 0.01; ***p< 0.001.
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LPCAT1) showed high specificity and sensitivity in predicting OS in

patients with HCC. The expression of these three core genes was

negatively correlated with a good prognosis. We also established a

nomogram that combined risk score and TNM staging that predicted

with high accuracy the survival at 1, 3, and 5 years of patients with

HCC, with AUC values of 0.807, 0.806, and 0.795, respectively. The

risk score improved the reliability of the nomogram and could serve

as a guide for decision-making in the clinic.

We found that AGPAT5, LCLAT1, and LPCAT1 expression is

commonly upregulated in HCC tissues, while patients with high levels

of expression of these genes have a worse prognosis. AGPAT5 was

only detected in mitochondria (45). Phosphatidic acid (PA) synthesis

is catalyzed by AGPATs, and PA has been demonstrated to promote

tumor cell survival, proliferation, and metastasis. However, beyond

PA synthesis, the specific physiological role of AGPAT5 is currently

unknown. AGPAT5 may have a crucial function in mitochondrial

fusion and division (9). In turn, the results of recent studies suggest

that mitochondrial membrane fusion-mediated increases in oxidative

phosphorylation and NADH/NAD+ metabolism contribute to tumor

immortalization (46). It has also been reported that miR-26, which is

downregulated by estrogen in breast cancer cell lines, can directly

target AGPAT5 via its 3′UTR (47). The LCLAT1 protein is predicted

to be associated with phosphatidylinositol acyl-chain remodeling and

is localized to the cytoplasm and endoplasmic reticulum. Recently,

LCLAT1 was identified as a partner gene for ALK in a patient with

non-small cell lung cancer (NSCLC). The patient showed a partial

response to crizotinib (48). Moreover, high expression of the LPCAT1

gene has been implicated in the pathology of lung adenocarcinoma

(49), breast cancer (50), prostate cancer (51), esophageal squamous

cell carcinoma (52), and HCC (53), among other cancers.

Accordingly, LPCAT1 has the potential as a therapeutic target for

the inhibition of HCC progression (54) as well as a marker for the

prognosis of tumor patients. However, whether AGPAT5 and

LCLAT1 have a clear role in HCC remains to be determined.

In this study, we screened these three differential genes with

prognostic value by combing through public databases. Meanwhile,

we further confirmed by IHC that the protein levels of AGPAT5,

LCLAT1, and LPCAT1 were significantly upregulated in HCC tissues

compared with adjacent normal tissues, which was consistent with the

transcript levels and also with the results of the HPA Database.

Furthermore, we confirmed the ability of major members of this gene

family to participate in tumor cell proliferation, migration, and

invasion by silencing AGPAT5, LCLAT1, and LPCAT1, respectively,

in HepG2 cell lines.

A series of biomarkers of the Epithelial-mesenchymal transition

(EMT) process is used in the diagnosis and prognosis of several types of

tumors. reduced E-cadherin expression levels are an important marker

event for the development of EMT, and E-Cadherin deficiency is

strongly associated with EMT in a variety of tumors (55, 56). Also,

E-cadherin expression was negatively correlated with tumor cell

motility and invasive behavior as well as metastasis in cancer patients

(56). When we knocked down both LCLAT1 and LPCAT1 in

hepatocellular carcinoma cell lines, we could observe a significant

increase in the protein level of E-cadherin. si-LPCAT1 results again

validated the reported findings (57), but si-LCLAT1 results were the

first ones we found. In addition, we observed that a significant

reduction in the protein level of VEGF was observed after knocking
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down respectively three genes of prognostic value in this gene family.

VEGFA is one of the 34 most frequently reported genes in HCC (58),

which encodes vascular endothelial growth factor A, a heparin-binding

protein that induces vascular endothelial cell proliferation and

migration and is required for physiological and pathological

angiogenesis (59). This gene is upregulated in many known tumors

and its expression plays an important role in tumor progression (60,

61). Targeted therapy of VEGFA as an innovative treatment in

oncology, the VEGFA inhibitor bevacizumab has been used as a first-

line treatment for metastatic colorectal cancer since 2004 (59, 62). In

the treatment of hepatocellular carcinoma, the combination of

atezolizumab and bevacizumab has been shown to improve overall

survival relative to sorafenib (63, 64). Given its important role in tumor

angiogenesis, targeted therapy of VEGF signaling has emerged as one of

the key avenues for the development of anti-angiogenic therapies. Our

findings provide new ideas for the co-application of anti-angiogenic

therapies. In addition, our oncological phenotypic experiments lay the

foundation for further investigation of the potential functions of

AGPAT5 and LCLAT1 in HCC. Therefore, we consider these three

members of the GPAT/AGPAT gene family (AGPAT5, LCLAT1, and

LPCAT1) to be valued prognostic biomarkers and potential therapeutic

targets for HCC patients.

This study had several limitations. First, as only relatively few

HCC datasets containing prognostic information are currently

available, we only used the ICGC-LIRI dataset for external

validation. Second, we only performed common tumor phenotype

experiments, and we did not perform Bulk sequencing on knockdown

cell lines, so the more specific downstream pathways of AGPAT5,

LCLAT1, and LPCAT1 and their biological mechanisms still need to

be investigated in depth, which will be further explored in our future

work. In conclusion, we developed a GPAT/AGPAT gene family-

related risk model for predicting the prognosis of patients with HCC,

as well as a predictive nomogram for determining the prognosis of

patients with HCC and for guiding their individualized treatment,

which can be used to identify LIHC patients at high risk of death and

provide a reference for early clinical intervention to better improve

their prognosis. We also compared the immune cell infiltration in

different risk populations by multiple cutting-edge algorithms. We

also performed a comprehensive analysis of the three core genes of the

prognostic model (AGPAT5, LCLAT1, and LPCAT1), involving

relevant signaling pathways, mRNAi, clinical relevance, survival,

mutations, ICB responses, and interacting proteins. Finally, we

performed preliminary validation of the differential expression,

oncological phenotypes, and potential downstream pathways of

three members of the GPAT/AGPAT gene family (AGPAT5,

LCLAT1, and LPCAT1) by IHC, CCK-8, Transwell assays, and

Western blotting. Our findings enhance the understanding of the

potential biological functions of the GPAT/AGPAT gene family and

provide a reference for exploring prognostic biomarkers and

individualized therapy for HCC.
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SUPPLEMENTARY FIGURE 1

Differential expression of GPAT/AGPAT gene family in patients with HCC

(immunohistochemical staining data in the Human Protein Atlas [HPA]

database). (A–I) The expression of GPAT3, AGPAT1, AGPAT2, AGPAT4,
AGPAT5, LPCAT4, LCLAT1, LPCAT1, and LPCAT2 in tumor tissues and normal

liver tissues (immunohistochemical staining data for AGPAT3 were not available
in the HPA database).

SUPPLEMENTARY FIGURE 2

Validation of the prediction model based on the GPAT/AGPAT gene family. (A)
Correlation heat map of the seven genes significantly associated with overall
survival. (B–D) Risk score distribution, risk grouping, survival outcome, and

molecular expression for the prognostic model in the TCGA-LIHC validation
set, TCGA-LIHC total set, and the ICGC-LIRI external validation set, respectively.

(E, F) Univariate and multivariate Cox regression analysis identified risk score as
an independent prognostic factor after the inclusion of clinical variables (ICGC-

LIRI external validation dataset).

SUPPLEMENTARY FIGURE 3

Validation of the ICGC-LIRI dataset for immune cell infiltration, Pan-cancer
expression analysis. (A) Differences in immune cell infiltration between high-

and low-risk groups within the ICGC-LIRI dataset. (B–D) The expression levels
of AGPAT5, LCLAT1, and LPCAT1 in normal and pan-cancer tissues.

SUPPLEMENTARY FIGURE 4

Quantification for Western blotting. (A–C) Expression of AGPAT5, LCLAT1, and

LPCAT1 in common hepatocellular carcinoma cell lines. (D–F) Quantification
for Western blotting (for ). Data are shown as the mean ± SD of at least three

independent experiments. statistical analysis was performed using unpaired t-
test to compare experimental and control groups. *P< 0.05, **P< 0.01,

***P< 0.001.
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